Электроды полупроводникового диода имеют название

В основе принципа действия полупроводникового диода — свойства электронно-дырочного перехода, в частности, сильная асимметрия вольт-амперной характеристики относительно нуля. Таким образом различают прямое и обратное включение. В прямом включении диод обладает малым Принцип действия универсального диода [ ]

Вольт-амперная характеристика диода описывается уравнением Шоттки:

  • I — ток через диод,
  • U — напряжение между выводами,
  • I 0 — темновой ток насыщения,
  • η — коэффициент идеальности,
  • U T = k B T q e =T>>>> — термическое напряжение (около 25 мВ при 300 К),
  • T — абсолютная температура p—n-перехода,
  • q e ≈ 1 , 6 × 10 − 19 approx 1,6times 10^> Кл — элементарный заряд,
  • k B ≈ 1 , 38 × 10 − 23 approx 1,38times 10^> Дж/К — постоянная Больцмана.

Темновой ток насыщения — ток утечки диода, определяемый его конструкцией, является масштабным коэффициентом. Коэффициент идеальности — также конструктивная характеристика диода. Для идеального диода равен 1, для реальных диодов колеблется от 1 до 2 в зависимости от различных параметров (резкость перехода, степень легирования и пр.)

Типы полупроводниковых диодов [ ]

Diodes

Под понятием полупроводникового диода собрано множество приборов с различным назначением. Приборы с одним p—n-переходом;

  1. универсальный;
  2. лавинно-пролётный диод ;
  3. фотодиод — диод, преобразующий свет в разность потенциалов;
  4. динистор (диод Шокли), неуправляемый тиристор, имеющий слоистую p—n—p—n-структуру;

От вакуумного диода к полупроводниковому

Термином диод называется двухэлектродный элемент электроники (от греческого «ди-» — два, окончание «-од» — путь), имеющий существенную разницу в электропроводности при смене полярности напряжения, поданного на его электроды. Один из электродов называется «анод», второй — «катод». Первые диоды представляли собой стеклянные лампы, в которые были впаяны металлические электроды. Источником электронов в них служит разогретый катод, через который пропускается ток, возбуждающий термоэлектронную эмиссию.

Если к аноду приложено положительное напряжение, то возникает поток электронов, вылетевших из катода в направлении анода, то есть, в цепи формируется ток (диод открыт). В случае подачи на анод отрицательного напряжения электроны отталкиваются в зону катода — ток в цепи отсутствует (диод закрыт). Данный физический механизм применяется для выпрямления переменного тока и детектирования высокочастотных радиосигналов. В ламповом диоде для улучшения термоэлектронной эмиссии по соседству с катодом добавляется нить накала. Впервые электровакуумный диод был запатентован английским исследователем в области радиотехники Д. А. Флемингом в 1904 г.

Полупроводниковый диод. Транзистор | Физика 10 класс #59 | Инфоурок

В настоящее время ПД практически вытеснили вакуумные аналоги из областей массового применения по следующим причинам:

  • Лампы имеют существенно большие габаритные размеры и массу.
  • Стеклянная колба требует дополнительных мер защиты от случайных ударов, падений или вибрации. Этот недостаток отсутствует у полупроводниковых аналогов.

Устройство электровакуумного диода

Начало полупроводниковой эры

Интересно, что кристаллический полупроводниковый диод был изобретен и запатентован почти одновременно с вакуумным. Немецкий физик К. Ф. Браун в 1874 г. обнаружил выпрямляющий диодный эффект у кристаллов PbS (сульфид свинца) и CdS (сульфид кадмия). На картинке ниже представлена конструкция выпрямителя на основе полупроводника. Видно, что тонкий проволочный контакт упирается в кристалл, образуя переход металл-полупроводник. Такая конфигурация, но только в современном, микроэлектронном исполнении есть не что иное, как диод Шоттки. В 1899 г. К. Ф. Браун получил первый патент на полупроводниковый выпрямитель.

Типичная конструкция первых кристаллических диодов

Дальнейшее развитие полупроводниковой электроники связано с открытием и изучением физических параметров p-n-перехода.

p-n переход

Начнем с того, что полупроводники бывают n-типа и p-типа. Первые получают легированием четырехвалентного полупроводника (чаще всего кремния) пятивалентным полупроводником (например, мышьяком). Эту пятивалентную примесь называют донором. Ее атомы образуют четыре химических связи с атомами кремния, а пятый валентный электрон остается свободным и может выйти из валентной зоны в зону проводимости, если, например, незначительно повысить температуру вещества. Таким образом, в проводнике n-типа возникает избыток электронов.

Полупроводники p-типа тоже получаются путем легирования кремния, но уже трехвалентной примесью (например, бором). Эта примесь носит название акцептора. Он может образовывать только три из четырех возможных химических связей. А оставшуюся незаполненной валентную связь принято называть дыркой. Т.е. дырка — это не реальная частица, а абстракция, принятая для более удобного описания процессов, происходящих в полупроводнике. Ее заряд полагают положительным и равным заряду электрона. Итак, в полупроводнике p-типа у нас получается избыток положительных зарядов.

В полупроводниках обоих типов кроме основных носителей заряда (электроны для n-типа, дырки для p-типа) в наибольшом количестве присутствуют неосновные носители заряда: дырки для n-области и электроны для p-области.

Если расположить рядом p- и n-полупроводники, то на границе между ними возникнет диффузный ток. Произойдет это потому, что с одной стороны у нас чересчур много отрицательных зарядов (электронов), а с другой — положительных (дырок). Соответственно, электроны будут перетекать в приграничную область p-полупроводника. А поскольку дырка — место отсутствия электрона, то возникнет ощущение, будто дырки перемещаются в противоположную сторону — к границе n-полупроводника. Попадая в p- и n-области, электроны и дырки рекомбинируют, что приводит к снижению количества подвижных носителей заряда. На этом фоне становятся ясно видны неподвижные положительно и отрицательно заряженные ионы на границах полупроводников (от которых «ушли» рекомбинировавшие дырки и электроны). В итоге получим две узкие заряженные области на границе веществ. Это и есть p-n переход, который также называют обедненным слоем из-за малой концентрации в нем подвижных носителей заряда. Естественно, что здесь возникнет электрическое поле, направление которого препятствует дальнейшей диффузии электронов и дырок. Возникает потенциальный барьер, преодолеть который основные носители заряда смогут только обладая достаточной для этого энергией. А вот неосновным носителям возникшее электрическое поле наоборот помогает. Соответственно, через переход потечет ток, в противоположном диффузному направлении. Этот ток называют дрейфовым. При отсутствии внешнего воздействия диффузный и дрейфовый ток уравновешивают друг друга и перетекание зарядов прекращается.

Ширина обедненной области и контактная разность потенциалов границ перехода (потенциальный барьер) являются важными характеристиками p-n перехода.

Если приложить внешнее напряжение так, чтобы его электрическое поле «поддерживало» диффузный ток, то произойдет снижение потенциального барьера и сужение обедненной области. Соответственно, ток будет легче течь через переход. Такое подключение внешнего напряжения называют прямым смещением.

Но можно подключиться и наоборот, чтобы внешнее электрическое поле поддерживало дрейфовый ток. Однако, в этом случае ширина обедненной зоны увеличится, а потенциальный барьер возрастет. Переход «закроется». Такое подключение называют обратным смещением. Если величина приложенного напряжения превысит некоторое предельное значение, то произойдет пробой перехода, и через него потечет ток (электроны разгонятся до такой степени, что смогут проскочить через потенциальный барьер). Эта граничная величина называется напряжением пробоя.

Все, конец теории, пора перейти к ее практическому применению.

Диоды, наконец-то

image

Диод, по сути, одиночный p-n переход. Если он подключен с прямым смещением, то ток через него течет, а если с обратным — не течет (на самом деле, небольшой дрейфовый ток все равно остается, но этим можно пренебречь). Этот принцип показан в условном обозначении диода: если ток направлен по стрелке треугольника, то ему ничего не мешает, а если наоборот — то он «натыкается» на вертикальную линию. Эта вертикальная линия на диодах-радиоэлементах обозначается широкой полосой у края.

Помню, когда я была глупой студенткой и впервые пришла работать в цех набивки печатных плат, то сначала ставила диоды как бог на душу положит. Только потом я узнала, что правильное расположение этого элемента играет весьма и весьма значительную роль. Но это так, лирическое отступление.

Диоды имеют нелинейную вольт-амперную характеристику.

Принцип работы полупроводниковых диодов

Полупроводниковый диод – это электронное устройство, состоящее из двух областей полупроводника с различными типами проводимости: p-типа (положительная) и n-типа (отрицательная). При соединении этих областей образуется p-n переход, который является основой работы диода.

Основной принцип работы полупроводникового диода основан на явлении диффузии и дрейфа носителей заряда в полупроводнике. В области p-типа преобладают дырки (положительно заряженные носители заряда), а в области n-типа преобладают свободные электроны (отрицательно заряженные носители заряда).

Когда полупроводниковый диод подключен к источнику напряжения с прямой полярностью, происходит прямое смещение p-n перехода. В этом случае, свободные электроны из области n-типа переносятся в область p-типа, а дырки из области p-типа переносятся в область n-типа. Это приводит к созданию электрического тока.

В обратном направлении, когда полупроводниковый диод подключен к источнику напряжения с обратной полярностью, происходит обратное смещение p-n перехода, что препятствует протеканию тока через диод. В этом случае диод ведет себя как открытый проводник и не пропускает ток.

Принцип работы полупроводниковых диодов основан на использовании свойств полупроводниковых материалов и управлении потоком носителей заряда. Это делает полупроводниковые диоды важными компонентами в электронике и позволяет использовать их в различных приложениях, таких как выпрямление, стабилизация напряжения, сигнальные индикаторы и т.д.

Нелинейные свойства полупроводниковых диодов

Полупроводниковые диоды обладают нелинейными свойствами, что означает, что их поведение не подчиняется простому линейному закону. Вместо этого, они проявляют нелинейные зависимости между напряжением и током.

Прямое смещение

При прямом смещении полупроводникового диода, когда положительное напряжение подается на анод, а отрицательное на катод, диод начинает пропускать ток. Однако, связь между напряжением и током в этом случае нелинейна. При небольших значениях напряжения, ток через диод растет медленно, но с увеличением напряжения, ток начинает расти гораздо быстрее.

Это свойство полупроводниковых диодов позволяет использовать их для выпрямления переменного тока, так как они позволяют пропускать ток только в одном направлении.

Обратное смещение

При обратном смещении, когда положительное напряжение подается на катод, а отрицательное на анод, полупроводниковый диод не должен пропускать ток. Однако, в реальности, диод все равно пропускает небольшой обратный ток, называемый обратным током насыщения.

Если обратное напряжение становится слишком большим, диод может выйти из строя. Поэтому, важно правильно выбирать диоды для конкретных приложений, учитывая их максимальное обратное напряжение (обратное напряжение пробоя).

Температурные эффекты

Температура также влияет на нелинейные свойства полупроводниковых диодов. При повышении температуры, диоды могут иметь более высокий обратный ток насыщения и меньшую прямую проводимость. Это может привести к изменению их характеристик и требовать корректировки в расчетах и проектировании электрических цепей.

ДИОДЫ

Диод является двух электродным полупроводниковым прибором. Это соответственно Анод (+) или положительный электрод и Катод (-) или отрицательный электрод. Принято говорить, что диод имеет (p) и (n) области, они соединены с выводами диода. Вместе они образуют p-n переход. Разберем подробнее, что же такое этот p-n переход. Полупроводниковый диод представляет собой очищенный кристалл кремния или германия, в котором в область (p) введена акцепторная примесь, а в область (n) введена донорная примесь. В качестве донорной примеси могут выступать ионы Мышьяка, а в качестве акцепторной примеси ионы Индия. Основное свойство диода, это возможность пропускать ток только в одну сторону. Рассмотрим приведенный ниже рисунок:

Пример односторонней проводимости диода

Пример односторонней проводимости диода

На этом рисунке видно, что если диод включить Анодом к плюсу питания и Катодом к минусу питания, то диод находится в открытом состоянии и проводит ток, так как его сопротивление незначительно. Если диод включен Анодом к минусу, а Катодом к плюсу, то сопротивление диода будет очень большим, и тока в цепи практически не будет, вернее он будет, но настолько маленьким, что им можно пренебречь.

Иллюстрация прямой обратный ток диода

Иллюстрация прямой обратный ток диода

Подробнее можно узнать, посмотрев следующий график, Вольт-Амперную характеристику диода:

Вольт-амперная характеристика диода

Вольт-амперная характеристика диода

В прямом включении, как мы видим из этого графика диод имеет небольшое сопротивление, и соответственно хорошо пропускает ток, а в обратном включении до определенной величины напряжения диод закрыт, имеет большое сопротивление и практически не проводит ток. В этом легко убедиться, если есть под рукой диод и мультиметр, нужно поставить прибор в положение звуковой прозвонки, либо установив переключатель мультиметра напротив значка диода, в крайнем случае, можно попробовать прозвонить диод, установив переключатель на положение 2 КОм измерения сопротивления. Изображается на принципиальных схемах диод так, как на рисунке ниже, запомнить, где какой вывод легко: ток у нас, как известно, всегда течет от плюса к минусу, так вот треугольник в изображении диода как бы показывает своей вершиной направление тока, то есть от плюса к минусу.

ССЫЛКИ ПО ТЕМЕ:

Применение диодов

Вольт-амперная характеристика (ВАХ) полупроводникового диода

ещё один недоучка в среднем образовании.

все предположения и трактования движения электронов и объёмных зарядов, давно уже высрали. и не нужно быть компилятором, переводить и ызрыгать буквы как испорченный телефон

Сойдёт для меня.

Всё чётко и ясно написано.

проф, ниочем вообще

Всё отлично и доступно написано. Проф придурковатый ботан.

Дырки умеют двигаться? Незнал

Nk, когда свободное место атома с дыркой заполняется электроном из соседнего атома, соседний атом лишается одного электрона. Получается что дырка передвинулась.

Написано, конечно, доступно. Вот только перепутаны причины в состоянии покоя. До контакта p и n областей они были электрически нейтральны — в p области примесь III группы отбирает электрон у полупроводника IV, полупроводник становится «дыркой», но лишний электрон у примеси никуда не исчезает, аналогично для примеси V группы — электрон улетает, но положительный ион остается. Электрическому полю взяться неоткуда — заряды друг друга компенсируют.

Также непонятно с чего бы это электроны полетят назад в n область, где и без них полно электронов, из p области, где электронов практически нет. Диффузия — это же случайный процесс. Просто электроны берут и летят куда им «вздумается». Из n области в p вылетает куча, а назад лететь практически некому.

Происходит накопление случайно прилетевших электронов в p области, часть из них рекомбинирует с «дырками», часть остается свободными. И вот тут уже происходит нарушение электронейтральности — p область оказывается заряжена отрицательно, n — положительно. Образуется область пространственного заряда. Появляется электрическое поле и дрейф несет электроны обратно в n область. Дрейф компенсирует диффузию, а не наоборот.

1)Дырки попадают в n,а электроны в p засчет теплового движения, и там же они рекомбинируют, при этом образуется избыточный заряд — в p области и + в n области вблизи раздела. какая еще диффузия? в это вся и суть, что эти заряды имеют ядра атомов, а значит не могут рекомбинировать, а создают потенциальный барьер.

2)проводимость происходит совсем по другому. при прямом включении. барьер «рассасывается» засчет эл поля и дырки с электронами устремляются (под действием этого же поля) к границе p-n в результате чего они там рекомбинируют. электрон же никак не проходит через оба перехода.

С катода электроны «перебегают» в n область, а на анод «забирает электроны» из p области. все это под действием эл поля источника.

В обратном направлении тоже ничего подобного. Просто анод «забирает» электроны из n области, а катод отдает электроны дыркам, из за чего в p области область отрицательно заряженных ионов еще расширяется, а в n области расширяется область положительно заряженных ионов(см выше — потенциальный барьер расширяется).

Самый лучший сайт с разъеснялками и наглядными примерами, большое спасибо.

Миклашевский — Промышленная электроника, советую. Когда откроете книгу, то сами все поймете. Там более чем доступно все написано.

Автору сайта спасибо за материал и проделанную работу.

Хороший материал для «чайников», просто, доступно, с понятной графикой. Оптимально для преподавателей школ, НПО, СПО. Спасибо за работу.

Привет! такой вопрос… а может такое быть что при прямом подключении электроны с N части заполнят все дырки в P части? если нет то почему? а если да то как это повлияет на свойство диода? ….

А теория P i n диодов будет?

Статья очень понравилась, спасибо автору, правда уровень средний

Все права защищены >iдр и можно считать, что iпр?iдиф, т. е. прямой ток в переходе является чисто диффузионным.
При прямом напряжении не только уменьшается потенциальный барьер, но уменьшается толщина запирающего слоя (dпр >Rпр.
Уже при сравнительно небольшом обратном напряжении обратный ток становится практически постоянным. Это связано с тем, что число неосновных носителей ограничено. С повышением температуры концентрация их возрастает и обратный ток увеличивается, а обратное сопротивление уменьшается.
Посмотрим, как устанавливается обратный ток при включении обратного напряжения. Сначала возникает переходный процесс, связанный с движением основных носителей. Электроны в n-области движутся по направлению к положительному полюсу источника, т. е. удаляются от p-n-перехода. А в p-области, удаляясь от перехода, движутся дырки. У отрицательного электрода они рекомбинируют с электронами, которые приходят из проводника, соединяющего этот электрод с отрицательным полюсом источника.
Поскольку из n-области уходят электроны, она заряжается положительно, так как в ней остаются положительно заряженные атомы донорной примеси. Подобно этому p-область заряжается отрицательно, т. к. дырки заполняются пришедшими электронами и в ней остаются отрицательно заряженные атомы акцепторной примеси. Рассмотренное движение основных носителей в противоположные стороны продолжается лишь малый промежуток времени. По обе стороны p-n-перехода возникают два разноименных объемных заряда, и вся система становится аналогичной заряженному конденсатору с диэлектриком, в котором имеется значительный ток утечки (его роль играет обратный ток). Но ток утечки конденсатора в соответствии с законом Ома пропорционален приложенному напряжению, а обратный ток p-n-перехода сравнительно мало зависит от напряжения.
В зависимости от структуры различают точечные и плоскостные диоды.
У точечных диодов линейные размеры, определяющие площадь p-n-перехода, такие же, как толщина перехода, или меньше ее. У плоскостных диодов эти размеры значительно больше толщины перехода.
Точечные диоды имеют малую емкость перехода (обычно менее 1 пФ) и поэтому применяются на любых частотах, вплоть до СВЧ. Но они могут пропускать токи не более единиц или десятков миллиампер. Плоскостные диоды в зависимости от площади перехода обладают емкостью в десятки пикофарад и, соответственно, их применяют на частотах не выше десятков килогерц, а допустимый ток бывает до сотен ампер. На рисунке представлена конструкция точечных и плоскостных диодов.

Рис. 8 Принцип устройства точечного диода

Обобщенный вид переменного напряжения

Рис. 9 Принцип устройства плоскостных германиевых диодов, изготовленных сплавным (а) и диффузионным методом(б)
Диоды бывают различного назначения.
Выпрямительные диоды. Как видно из названия их основное предназначение — выпрямление переменного тока (напряжения). Процесс этот весьма важен в радиоэлектронике, поскольку питание практически всех устройств осуществляется постоянным напряжением. Для переменного напряжения характерно изменение полярности с плюса на минус во времени по определенному закону. Рассмотрим выпрямление переменного тока упрощенно.
Наглядно это показано на рисунке (начальная фаза равна нулю).

Процесс выпрямления напряжения

Рис. 9 Обобщенный вид переменного напряжения
Поскольку диод обладает однонаправленными свойствами, т. е. пропускает ток только в одном направлении, соответственно, положительные полуволны входного напряжения будут проходить через диод, отрицательные — нет. В данном случае при отрицательной полуволне диод оказывается включенным при обратном напряжении. Весь процесс выглядит примерно так:

Рис. 10 Процесс выпрямления напряжения
На второй части графика небольшое отрицательное напряжение есть не что иное, как воздействие обратного тока, но этим можно пренебречь. Таким образом, на нагрузке выделяются только положительные полуволны входного переменного напряжения. Соответственно, задача выпрямителя состоит в преобразовании переменного напряжения в однонаправленное пульсирующее. Самая простая схема выглядит так:

 Простейшая схема выпрямителя

Рис. 11 Простейшая схема выпрямителя
Для того, чтобы на нагрузке не было таких пульсаций, параллельно резистору ставят конденсатор большой емкости. Потом стабилизатор и так далее. Об этом потом.
Широко распространены низкочастотные выпрямительные диоды, предназначенные для работы на частотах до нескольких килогерц. НЧ диоды являются плоскостными, изготавливаются из германия или кремния и делятся на диоды малой, средней и большой мощности.
Для выпрямления высоких напряжений, например, несколько киловольт, выпускают кремниевые столбы в прямоугольных пластмассовых корпусах, залитых изолирующей смолой. Эти диоды рассчитаны на обратное напряжение в несколько киловольт и ток в несколько миллиампер. Вообще же, главной характеристикой выпрямительных диодов является допустимое обратное напряжение, поскольку, как было указано выше, отрицательные полуволны переменного напряжения являются для диода обратным напряжением, поэтому, если неправильно подобрать диод по обратному напряжению, может возникнуть пробой и диод выйдет из строя.
Выпрямительные точечные диоды широко применяются на высоких частотах, иногда на СВЧ, хотя успешно работают на низких частотах. Эти диоды работают во многих устройствах, поэтому их называют еще универсальными. Естественно, для таких диодов характерен небольшой прямой ток, в отличие от плоскостных (всего до сотен миллиампер).
Импульсные диоды. При работе диода в импульсном режиме для него характерны некоторые особенности. Ну, например, диод включен в цепь импульсного напряжения с длительностью импульсов в несколько микросекунд. Положительные импульсы проходят через диод, при этом прямым сопротивлением диода мы пренебрегаем. Когда полярность напряжения на диоде меняется на противоположную, диод закрывается не сразу, а в течении некоторого времени, за которое через переход протекает обратный ток, значительно превосходящий по амплитуде обратный ток в установившемся режиме. Основной причиной возникновения обратного тока является разряд диффузионной емкости, т. е. рассасывание зарядов, образованных подвижными носителями в p- и n-областях. Поскольку концентрации примесей в этих областях весьма различны, то практически импульс обратного тока создается рассасыванием заряда, накопленного в базе, т. е. в области с относительно малой проводимостью.
Стабилитроны. При рассмотрении вольт-амперной характеристики полупроводникового диода видно, что в области электрического пробоя имеется участок, который может быть использован для стабилизации напряжения. Такой участок у кремниевых плоскостных диодов соответствует изменениям обратного тока в широких пределах. При этом до наступления пробоя обратный ток очень мал, а в режиме пробоя, в данном случае в режиме стабилизации, он становится такого же порядка, как и прямой ток. Стабилитроны изготавливаются исключительно из кремния, их также еще называют опорными диодами, т. к. в ряде случаев получаемое от них стабильное напряжение используется в качестве опорного. На рисунке показана ВАХ стабилитрона.

Схема включения стабилитрона

Рис. 12 Вольт-амперная характеристика стабилитрона
Из рисунка видно, что при обратном токе напряжение стабилизации меняется незначительно. Стабилитрон работает при обратном напряжении. Принцип работы поясняет простейшая схема включения стабилитрона. Эта схема называется параметрическим стабилизатором напряжения и несмотря на свою простоту используется довольно широко. Такая схема позволяет получить ток в нагрузке в несколько миллиампер.

Рис. 13 Схема включения стабилитрона
Нагрузка включена параллельно стабилитрону, поэтому в режиме стабилизации, когда напряжение на стабилитроне постоянно, такое же напряжение будет и на нагрузке. Все изменение входного напряжения будет поглощаться резистором Rогр, которое еще называют балластным. Если входное напряжение будет изменяться, то будет изменяться ток стабилитрона, но напряжение на нем, следовательно и на нагрузке, будет оставаться постоянным.
Следует отметить, что если имеют место пульсации входного напряжения, то стабилитрон неплохо сглаживает их. Это объясняется тем, что стабилитрон обладает малым сопротивлением переменному току.
Стабисторы. Это полупроводниковые диоды, аналоги стабилитронов, но в отличие от последних у стабисторов используется не обратное напряжение, а прямое. Значение этого напряжение мало зависит от тока в некоторых пределах. Напряжение стабилизации стабисторов обычно не более 2 вольт, чаще всего 0,7 В при токе до нескольких десятков мА. Особенность стабисторов — отрицательный температурный коэффициент напряжения, т. е. напряжение стабилизации с повышением температуры уменьшается. Поэтому стабисторы применяют также в качестве термокомпенсирующих элементов, соединяя их с обычными стабилитронами, имеющими положительный ТКН.
Варикапы. Эти плоскостные диоды, иначе называемые параметрическими, работают при обратном напряжении, от которого зависит барьерная емкость. Другими словами, варикап — это конденсатор переменной емкости, управляемый не механически, а электрически.
Варикапы применяются главным образом для настройки колебательных контуров, а также в некоторых специальных схемах, например, в так называемых параметрических усилителях. Вот простейшая схемка включения варикапа в колебательный контур:

Схема включения варикапа в колебательный контур

Рис. 14 Схема включения варикапа в колебательный контур
Изменяя с помощью потенциометра R обратное напряжение на варикапе, можно менять резонансную частоту контура. Добавочный резистор R1 с большим сопротивлением включен для того, чтобы добротность контура не снижалась заметно от шунтирующего влияния потенциометра R. Конденсатор Cр является разделительным. Без него варикап был бы для постоянного напряжения замкнут накоротко катушкой L.
В качестве варикапов можно использовать стабилитроны с напряжением ниже напряжения стабилизации, когда обратный ток еще очень мал, а обратное сопротивление очень велико.
Мы рассмотрели основные типы полупроводниковых диодов. Существуют еще и туннельные диоды, диоды Ганна, фотодиоды и пр.

Оцените статью
TutShema
Добавить комментарий