Закон ома для участка цепи определение и формула

Для описания процесса протекания электрического тока в цепи у нас есть уже три характеристики: сила тока, напряжение и сопротивление.

Мы выяснили, что некоторые из них связаны между собой. Сила тока зависит от напряжения. Эти величины прямо пропорциональны друг другу. Во сколько раз увеличивается напряжение на концах проводника, во столько же раз увеличивается сила тока в нем. Проводник мы меняли в этих опытах, сопротивление оставалось постоянным.

Далее мы узнали, что сила тока зависит и от электрического сопротивления проводника. Показания амперметра при подключении в цепь разных проводников менялись. Напряжение при этом оставалось в этих проводниках постоянным.

Но мы пока не установили, каким образом между собой связаны сразу эти три величины. На данном уроке мы опытным путем докажем эту связь и познакомимся с законом Ома для участка цепи.

Опытное определение зависимости силы тока от сопротивления при постоянном напряжении

Для того, чтобы определить зависимость силы тока от сопротивления проводника, мы проведем еще один опыт. Теперь мы будем знать электрическое сопротивление тех проводников, которые будем использовать.

Обратите внимание, что в ходе опыта напряжение на концах используемых проводников должно быть постоянным. Эта величина не должна изменяться, чтобы мы могли корректно оценить зависимость силы тока от сопротивления.

Соберем электрическую цепь из источника тока, ключа, амперметра, проводника. К проводнику параллельно подсоединим вольтметр (рисунок 1).

Проводников у нас будет три разных. Они обладают разными сопротивлениями. Мы будем поочередно подключать их в цепь. Каждый раз мы будем фиксировать показания амперметра.

По показаниям вольтметра необходимо следить, чтобы напряжение на концах каждого проводника было одинаковым.

Закон Ома для участка цепи [ ]

Закон Ома для участка цепи гласит, что сила тока в участке цепи помноженная на сопротивление участка равна напряжению между его концами.

U — напряжение между концами участка цепи, I — сила тока, протекающий через участок цепи, R — сопротивление участка цепи.

Закон Ома для всей цепи [ ]

Закон ома для всей цепи гласит, что сила тока циркулирующего по неразветвлённой замкнутой цепи, помноженная на суммарное сопротивление этой цепи равна суммарной ЭДС источников в ней.

Закон Ома применим как к постоянному току, так и к мгновенным значениям напряжения и тока:

  • U ( t ) — напряжение между концами участка цепи в момент времени t ,
  • I ( t ) — сила тока, протекающего через участок цепи в момент времени t .

Более того, закон Ома применим и к таким величинам, как амплитудное, действующее, среднее, минимальное, максимальное значение, размах напряжения и тока, связывая соответствующие величины между собой. Так амплитуда напряжения A будет связана с амплитудой тока I A выражением

Закон Ома

и т. д. Любая линейная функция тока и напряжения будет подчиняться закону Ома, если закону Ома подчиняется мгновенное значение.

Как запомнить формулы закона Ома

Треугольник Ома поможет запомнить закон. Нужно закрыть искомую величину, и два других символа дадут формулу для её вычисления.

Треугольник Ома

.

Закон Ома

  • U — электрическое напряжение;
  • I — сила тока;
  • P — электрическая мощность;
  • R — электрическое сопротивление

Смотри также:

  • Первый закон Ньютона
  • Второй закон Ньютона
  • Третий закон Ньютона

Для закрепления своих знаний решай задания и варианты ЕГЭ по физике с ответами и пояснениями.

Формулировка и объяснение закона Ома

Закон немецкого учителя Георга Ома очень прост. Он гласит:

Сила тока на участке цепи прямо пропорционально напряжению и обратно пропорциональна сопротивлению.

Георг Ом вывел этот закон экспериментально (эмпирически) в 1826 году. Естественно, чем больше сопротивление участка цепи, тем меньше будет сила тока. Соответственно, чем больше напряжение, тем и ток будет больше.

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Данная формулировка закона Ома – самая простая и подходит для участка цепи. Говоря «участок цепи» мы подразумеваем, что это однородный участок, на котором нет источников тока с ЭДС. Говоря проще, этот участок содержит какое-то сопротивление, но на нем нет батарейки, обеспечивающей сам ток.

Если рассматривать закон Ома для полной цепи, формулировка его будет немного иной.

Пусть у нас есть цепь, в ней есть источник тока, создающий напряжение, и какое-то сопротивление.

Закон запишется в следующем виде:

Объяснение закона Ома для полой цепи принципиально не отличается от объяснения для участка цепи. Как видим, сопротивление складывается из собственно сопротивления и внутреннего сопротивления источника тока, а вместо напряжения в формуле фигурирует электродвижущая сила источника.

Кстати, о том, что такое что такое ЭДС, читайте в нашей отдельной статье.

Как понять закон Ома?

Чтобы интуитивно понять закон Ома, обратимся к аналогии представления тока в виде жидкости. Именно так думал Георг Ом, когда проводил опыты, благодаря которым был открыт закон, названный его именем.

Представим, что ток – это не движение частиц-носителей заряда в проводнике, а движение потока воды в трубе. Сначала воду насосом поднимают на водокачку, а оттуда, под действием потенциальной энергии, она стремиться вниз и течет по трубе. Причем, чем выше насос закачает воду, тем быстрее она потечет в трубе.

Отсюда следует вывод, что скорость потока воды (сила тока в проводе) будет тем больше, чем больше потенциальная энергия воды (разность потенциалов)

Сила тока прямо пропорциональна напряжению.

Теперь обратимся к сопротивлению. Гидравлическое сопротивление – это сопротивление трубы, обусловленное ее диаметром и шероховатостью стенок. Логично предположить, что чем больше диаметр, тем меньше сопротивление трубы, и тем большее количество воды (больший ток) протечет через ее сечение.

Сила тока обратно пропорциональна сопротивлению.

Такую аналогию можно проводить лишь для принципиального понимания закона Ома, так как его первозданный вид – на самом деле довольно грубое приближение, которое, тем не менее, находит отличное применение на практике.

В действительности, сопротивление вещества обусловлено колебанием атомов кристаллической решетки, а ток – движением свободных носителей заряда. В металлах свободными носителями являются электроны, сорвавшиеся с атомных орбит.

В данной статье мы постарались дать простое объяснение закона Ома. Знание этих на первый взгляд простых вещей может сослужить Вам неплохую службу на экзамене. Конечно, мы привели его простейшую формулировку закона Ома и не будем сейчас лезть в дебри высшей физики, разбираясь с активным и реактивным сопротивлениями и прочими тонкостями.

Если у Вас возникнет такая необходимость, Вам с удовольствием помогут сотрудники нашего студенческого сервиса. А напоследок предлагаем Вам посмотреть интересное видео про закон Ома. Это действительно познавательно!

Мы поможем сдать на отлично и без пересдач

  • Контрольная работа от 1 дня / от 120 р. Узнать стоимость
  • Дипломная работа от 7 дней / от 9540 р. Узнать стоимость
  • Курсовая работа от 5 дней / от 2160 р. Узнать стоимость
  • Реферат от 1 дня / от 840 р. Узнать стоимость

Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.

Последовательное и параллельное соединение проводников

Проводники в электрических цепях могут соединяться последовательно и параллельно. Смешанное соединение сочетает оба эти соединения.

Сопротивление, при включении которого вместо всех других проводников, находящихся между двумя точками цепи, ток и напряжение остаются неизменными, называют эквивалентным сопротивлением этих проводников.

Последовательное соединение

Последовательным называется соединение, при котором каждый проводник соединяется только с одним предыдущим и одним последующим проводниками.

Как следует из первого правила Кирхгофа, при последовательном соединении проводников сила электрического тока, протекающего по всем проводникам, одинакова (на основании закона сохранения заряда).

1. При последовательном соединении проводников (рис. 1) сила тока во всех проводниках одинакова: I1 = I2 = I3 = I

Рис. 1. Последовательное соединение двух проводников.

2. Согласно закону Ома, напряжения U1 и U2 на проводниках равны U1 = IR1, U2 = IR2, U3 = IR3.

Напряжение при последовательном соединении проводников равно сумме напряжений на отдельных участках (проводниках) электрической цепи.

U = U1 + U2 + U3

По закону Ома, напряжения U1, U2 на проводниках равны U1 = IR1, U2 = IR2, В соответствии вторым правилом Кирхгофа напряжение на всем участке:

U = U1 + U2 = IR1+ IR2 = I(R1+ R2)= I·R. Получаем: R = R1 + R2

Общее напряжение U на проводниках равно сумме напряжений U1, U2 ,U3 равно: U = U1 + U2 + U3 = I·(R1 + R2 + R3) = IR

где RЭКВ – эквивалентное сопротивление всей цепи. Отсюда: RЭКВ = R1 + R2 + R3

При последовательном соединении эквивалентное сопротивление цепи равно сумме сопротивлений отдельных участков цепи: R ЭКВ= R1 + R2 + R3+…

Этот результат справедлив для любого числа последовательно соединенных проводников.

Из закона Ома следует: при равенстве сил тока при последовательном соединении:

I = ,I = . Отсюда = или =, т. е. напряжения на отдельных участках цепи прямо пропорциональны сопротивлениям участков.

При последовательном соединении n одинаковых проводников общее напряжение равно произведению напряжению одного U1 на их количество n:

UПОСЛЕД= n ·U1. Аналогично для сопротивлений: RПОСЛЕД = n· R1

При размыкании цепи одного из последовательно соединенных потребителей ток исчезает во всей цепи, поэтому последовательное соединение на практике не всегда удобно.

Электрическая цепь и закон Ома

Три величины — напряжение, электрический ток и сопротивление — могут быть четко представлены в электрической цепи. В простейшем случае она состоит из источника постоянного напряжения и резистора. Резистор подключен к источнику напряжения, а для упрощения возьмем, что сопротивление проводов равно 0 Ом.

Электрическая цепь и закон ома для участка цепи

Направление электрического тока.

В электротехнике ток течет от плюса до минуса (смотрите рисунок 1). Другими словами, как только возникает замкнутая цепь, ток начинает течь от положительного полюса к отрицательному полюсу источника напряжения. Мы говорим о замкнутой цепи, когда два полюса источника напряжения соединены друг с другом сопротивлением.

Как и чем измерять ток и напряжение?

Есть два способа определения силы тока и напряжения. С одной стороны, их можно определить арифметически с помощью закона Ома для участка цепи. С другой стороны, две переменные также могут быть определены путем измерения.

Однако для арифметического определения тока или напряжения должны быть известны две другие величины (напряжение и сопротивление либо ток и сопротивление).

С другой стороны, метрологический метод также работает с любой электрической цепью. Для этого в электрическую цепь необходимо вставить амперметр и вольтметр . Они используются для измерения силы тока и напряжения. Но здесь также применяется закон Ома, поскольку сопротивление нельзя измерить напрямую, но его можно будет рассчитать, когда будут измерены значения тока и напряжения.

Итак, ток измеряется так амперметром, который последовательно подключается к потребителю (резистору, лампе накаливания и т. д.), Через который нужно определять ток. На принципиальной схеме он изображен как A внутри круга (см. рисунок 1). Амперметр имеет очень низкое внутреннее сопротивление, чтобы не влиять на ток, который должен протекать через потребителя. В идеале, внутреннее сопротивление амперметра принимается равным 0 Ом и поэтому просто опускается.

Измерение напряжения производится с помощью вольтметра, который замеряет разность потенциалов между двумя его точками подключения. На электрической схеме он обозначен буквой V внутри круга (см. рисунок 1). В отличие от амперметра, вольтметр подключается параллельно нагрузке, на которой измеряется напряжение. Добавление вольтметра параллельно некоторому потребителю (например, резистору) создает току еще один «обходной» путь, что резко изменяет параметры цепи. Чтобы избежать этих нежелательных последствий, надо применять вольтметры с максимально большим сопротивлением.

Вольт-амперная характеристика (ВАХ).

Вольт-амперная характеристика или характеристика UI резистора может быть записана путем приложения к нему различных напряжений и последующего измерения тока. Обычно при омическом сопротивлении достаточно одной точки измерения, которая затем соединяется с началом системы координат. Однако на практике, для целей контроля, выполняют серию измерений с тремя точками измерения.

Затем эти точки измерения отмечаются в системе координат и соединяются. Напряжение откладывают по оси абсцисс, а ток — по оси ординат. Пример ВАХ смотрите на рисунке ниже

Вольт-амперная характеристика

ВАХ может быть использована для определения тока через резистор при определенном напряжении.

«Треугольник Ома»

Связь между отдельными величинами из закона Ома может быть показана в так называемом «треугольнике Ома».

Вверху треугольника вы найдете напряжение U, слева — сопротивление R, а справа — ток I.

Треугольник Ома

Если вы хотите определить недостающую величину, то прикройте эту величину мысленно или пальцем, а затем посмотрите на две другие величины. Если две «не закрытые» величины находятся рядом друг с другом, то они умножаются. С другой стороны, если они расположены друг над другом, то верхняя величина делится на нижнюю.

Например, вы «закрываете» напряжение U в вершине «треугольника Ома». Две оставшиеся величины, то есть сопротивление R и ток I, находятся рядом. Соответственно, чтобы получить напряжение U, нужно умножить сопротивление R на ток I. Это в точности соответствует формуле закона Ома для участка электрической цепи.

Примеры применения закона Ома

Рассмотрим пример использования закона Ома для расчёта электрической цепи постоянного тока. Допустим, цепь состоит из источника с ЭДС E = 50 В с внутренним сопротивлением r = 5 Ом, к которому последовательно подключены резисторы с сопротивлениями R1 = 10 Ом, R2 = 20 Ом и R3 = 15 Ом. Требуется найти силу тока в цепи.

Согласно закону Ома, сила тока рассчитывается по формуле:

Полное сопротивление цепи равно:

R = r + R1 + R2 + R3 = 5 + 10 + 20 + 15 = 50 Ом.

Подставляя числовые значения в формулу закона Ома, получаем:

I = 50 В / 50 Ом = 1 А.

Таким образом, сила тока в данной цепи постоянного тока равна 1 А.

Рассмотрим ещё один пример, где резисторы соединены параллельно. Пусть цепь состоит из источника напряжением U = 100 В и двух параллельно соединённых резисторов с сопротивлениями R1 = 10 Ом и R2 = 20 Ом.

Полное сопротивление при параллельном соединении вычисляется по формуле:

R = (R1 * R2) / (R1 + R2) = (10 * 20) / (10 + 20) = 6,67 Ом.

По закону Ома сила тока в цепи:

I = U / R = 100 В / 6,67 Ом = 15 А.

Практическое применение закона Ома

Важнейшие практические применения закона Ома:

  1. Измерение сопротивления проводников. По закону Ома, зная напряжение на участке цепи и силу тока в нем, можно рассчитать сопротивление: R = U / I. Этот метод используется в омметре для измерения сопротивлений.
  2. Расчет электрических цепей. Закон Ома позволяет рассчитать ток в цепи, напряжение на отдельных участках, суммарное сопротивление и другие параметры, зная некоторые исходные данные. Это широко применяется при проектировании электрических схем.
  3. Экспериментальная проверка закона Ома. Измеряя напряжение на резисторе и ток через него при разных условиях, можно опытным путём подтвердить прямую пропорциональную зависимость между этими величинами. Такие опыты демонстрируют справедливость закона Ома.

Таким образом, закон Ома широко используется на практике при работе с электрическими цепями, приборами, устройствами. Он позволяет производить расчёты, измерения и экспериментальную проверку зависимостей между параметрами цепи.

Оцените статью
TutShema
Добавить комментарий