Как зависит скорость звука от температуры среды

В вестернах часто встречается персонаж-индеец, который, приложив ухо к земле, может определить, как далеко находятся его противники. Он слышит вибрацию земли, вызванную копытами лошадей. Подобным образом мы производим и воспринимаем звуки, совершая и принимая колебания молекул воздуха.

Когда вы слышите термин «звук» или «звуковая волна», вы, конечно, понимаете, о чем идет речь. В этой статье вы узнаете, что такое звук на самом деле и как вы воспринимаете окружающий мир своими ушами.

Звук — это волна. Эти звуковые волны достигают вашего уха и позволяют вам воспринимать звуки и шумы через систему «ухо-мозг». Как правило, существует два различия: полезный звук и звук помех. Полезный звук включает музыку или голоса во время разговора. Звук помех включает в себя, например, шум строительной площадки или шум транспорта.

В физике звук — это вибрация. Эта вибрация распространяется как механическая волна (также акустическая волна) в среде. Такой средой является, например, воздух. Но вы, вероятно, также слышали звуки под водой или сквозь стены. Звуковые волны в воздухе возникают из-за колебаний давления и плотности.

Человек издает звуковые волны

Что такое звук (звуковая волна)?

Какое-то событие, например, произнесение слов, заставляет воздух вибрировать. Затем это возбуждение распространяется в виде волнового движения. Помимо воздуха, возбуждаться могут и другие упругие среды, например, вода.

Итак, звук — это колебательное двuжение частиц упругой среды, которое распространяется от источника звука в виде волн в различных средах.

Можно дать и другое определение:

Звук — это механическая волна, распространяющаяся в пространстве из-за изменения давления и плотности воздуха.

Необходимым условием распространения звуковых волн является наличие упругой среды. Если вокруг источника звука нет упругой среды, то звук распространяться не будет. Например, в вакууме механические волны не могут распространяться.

Быстрее распространите: какая связь между сменой сезонов и скоростью звука

А вы знали, что звук зимой замедляется? Оказывается, скорость распространения звука зависит от температуры окружающей среды: чем теплее вокруг, тем быстрее звуковая волна преодолевает расстояния.

Поделиться:

Для начала вспомним, что такое скорость звука. Это скорость распространения упругих волн в среде как в продольных (в газах, жидкостях или твердых телах), так и в поперечных, сдвиговых (в твердых телах). Первые опыты и теоретические расчеты скорости звука в воздухе предпринимались еще в XVII веке. Потребовалось, правда, двести лет, чтобы вывести окончательную формулу для ее определения. Это удалось французскому ученому Пьер-Симону де Лапласу: именно он вычислил, что скорость звука напрямую зависит от температуры. Так, при 0° этот показатель составляет 331 м/с (1192 км/ч), а при +20° он уже равен 343 м/с (1235 км/ч). Почему так происходит? Увеличение температуры среды вызывает такое же изменение в частоте взаимодействия между частицами, которые несут колебания. А увеличение этой активности приводит к увеличению скорости звука. Более того, скорость распространения звуковых волн меняется не только с прогревом/охлаждением воздуха при смене сезонов. На этот показатель еще влияет среда, в которой распространяется звук. Так, в твердых телах он движется быстрее всего. Это легко доказывает эксперимент с рельсами (только не пытайтесь его проделать в реальной жизни). Приложив ухо к рельсу, вы быстрее услышите приближающийся поезд. А если будете стоять на шпалах и прислушиваться к пространству, как Крокодил Гена с Чебурашкой, то о надвигающейся опасности узнаете не скоро. Дело в том, что рельс состоит из твердого металла и звук по нему распространяется быстрее, чем по воздуху. Даже в разных слоях большого снежного сугроба скорость звука будет разной! Все потому, что каждый слой снега имеет разную температуру. Те области сугроба, что ближе к поверхности Земли, и те, что недоступны Солнцу, меньше прогреваются. Соответственно, там ниже температура. Поэтому в таких более прохладных слоях скорость распространения звука будет ниже. На втором месте по скорости звука жидкости, а хуже всего звуковые волны разносятся в газах. В жидкостях звук разливается в 4 с лишним раза быстрее, чем в воздухе. Например, при температуре +8° она оказалась равной примерно 1440 м/с. В газах такой параметр, как скорость звука, также зависит от температуры среды.

Скорость звука

Скорость звука в газах и жидкостях. Особенности распространения звуковых волн в зависимости от температуры воздуха. Интерференция звуковых волн. Дифракция звука.

Звук- калеб. движение в любой упругой матер. среде, вызван. каким-либо источником, проявл. в форме переод. изменений давления.

— материальная среда обладает упругостью и инерционностью

— в газах и жидкостях частицы колебл. в направлениях распространения волны

— в тверд.-перпендикулярно направлению распространения волны

Звуковая волна-процесс распростран.колебат.движения

Амплитуда-расстояние на кот. колеблится частица отклон. от положения равновесия.

y=A-sin · (wt+φ) – уравнение звуковой волны

w – круговая частота

Ухо человека воспринимает звук в диапазоне 20Гц-20000Гц

Геометрич. место точек, достигаемых в каждый момент волной – волновая поверхность (фронт)

Если фронт плоский, то волна – плоская, если сферический, то волна – сферическая

Особенности распространения звуковых волн в зависимости от температуры воздуха.

Скорость распространения звука в воздухе с= 331,45 кореньТ/273

Интерференция звуковых волн — наложения колеб. от нескольких источников

Звуковое поле – область про-ва в кот.колеб. звуковые волны.

Звуковое давление — Р-разность между мгновен.знач.полного давления и средним давлением, котор.наблюд.в среде при отсутствии звукового поля

р=Pm·sin (wt+ φ) ˂p˃=Па= н/м²

рэф=Рm·корень2 Рm- амплитуда давления

Интерференция — физическое явление, наблюдающееся при наложении нескольких волновых процессов и заключающееся в локальных отклонениях общей интенсивности от суммы интенсивностей входящих волн.

На распространение звуков в атмосфере влияет много факторов: температура на разных высотам, потоки воздуха. Эхо — это отраженный от поверхности звук. Звуковые волны могут отражаться от твердых поверхностей, от слоев воздуха в которых температура отличается от температуры соседних слоев.

Дифракция звука (лат. diffractus — буквально разломанный, переломанный) — явление, которое можно рассматривать как отклонение от законов геометрической оптики при распространении волн. Первоначально понятие дифракции относилось только к огибанию волнами препятствий, но в современном, более широком толковании, с дифракцией связывают весьма широкий круг явлений, возникающих при распространении волн в неоднородных средах, а также при распространении ограниченных в пространстве волн.

Скорость звука — скорость распространения звуковыхволн в среде.

Как правило, в газахскорость звука меньше, чем вжидкостях, а вжидкостяхскорость звука меньше, чем в твёрдых телах.

Скорость звука в любой среде вычисляется по формуле:

где β — адиабатическаясжимаемостьсреды; ρ — плотность.

Для газовэта формула выглядит так:

где γ — показатель адиабаты: 5/3 для одноатомных газов, 7/5 для двухатомных (и для воздуха), 4/3 для многоатомных; k — постоянная Больцмана;R — универсальная газовая постоянная;T — абсолютная температуравкельвинах;t — температура в градусах Цельсия;m — молекулярная масса;M — молярная масса. По порядку величины скорость звука в газах близка к средней скорости теплового движения молекул и в приближении постоянства показателя адиабаты пропорциональнаквадратному корнюиз абсолютной температуры.

Для твёрдых телскорость звука можно вычислить как:

Где K — модуль всестороннего сжатия;E — модуль Юнга; ν —коэффициент Пуассона.

В воздухепринормальных условияхскорость звука составляет 331,46 м/с (1193 км/ч).

В водескорость звука составляет 1485 м/с. (см.Опыт Колладона-Штурма)

В твёрдых телахскорость звука составляет 2000—6500 м/с.

23. Звуковое поле и основные физические величины, характеризующие его. (Звуковое давление, плотность звукового поля). Звуковая мощность, интенсивность звука.

Плотность звукового поля, Д- это звуковая энергия, содержащаяся в единице объема среды D=р²/pc² p-плотность среды кг/м³; с-скорость звука в среде

Мощность звука p-количество звуковой энергии , излучаемой источником звука в единицу времени

Характер. источник звука или шума кол-во звуковой энергии, проходящей в 1с через площадь S, окружающую источник звука ˂р˃=Вм

Интенсивность звука, I-кол-во звуковой энергии, распространяемой в звуковом поле в единицу времени через единичную площадь (если в звуковом поле волны идут только в одном направлении)

I=р²/рс ˂I˃=Вт/м²; р-плотность среды рс-акустич.сопротивление среды (импедание) кг/м²с

Звуковое поле, область пространства, в которой распространяются звуковые волны, т. е. происходят акустические колебания частиц упругой среды (твёрдой, жидкой или газообразной), заполняющей эту область. З. п. определено полностью, если для каждой его точки известно изменение во времени и в пространстве какой-либо из величин, характеризующих звуковую волну: смещения колеблющейся частицы из положения равновесия, колебательной скорости частицы, звукового давления в среде; в отдельных случаях представляют интерес изменения плотности или температуры среды при наличии З. п. Понятие З. п. применяется обычно для областей, размеры которых порядка или больше длины звуковой волны.

С энергетической стороны З. п. характеризуется плотностью звуковой энергии (энергией колебательного процесса, приходящейся на единицу объёма); в тех случаях, когда в З. п. происходит перенос энергии, он характеризуется интенсивностью звука, т. е. средней по времени энергией, переносимой в единицу времени через единицу поверхности, перпендикулярной к направлению распространения волны.

Картина З. п. в общем случае зависит не только от акустической мощности и характеристики направленности излучателя — источника звука, но и от положения и свойств поверхностей раздела различных упругих сред, если такие поверхности имеются. В неограниченной однородной среде З. п. является полем бегущей волны. Вдали от источника в З. п. практически любого излучателя звуковое давление спадает по закону 1/r (где r — расстояния от источника .

Интенсивность звука (абсолютная) — величина, равная отношению потока звуковой энергии dP через поверхность, перпендикулярную направлению распространения звука, к площади dS этой поверхности:

Для количественных сравнений громкости нужно ввести понятие интенсивности звука. Интенсивность звуковой волны определяется как средний поток энергии через единицу площади волнового фронта в единицу времени. Иначе говоря, если взять единичную площадку (например, 1 см 2 ), которая полностью поглощала бы звук, и расположить ее перпендикулярно направлению распространения волны, то интенсивность звука равна акустической энергии, поглощаемой за одну секунду. Интенсивность обычно выражается в Вт/см 2 (или в Вт/м 2 ).

Звуковое давление – разность между давлением, существующем в среде pср в данный момент, и атмосферным давлением pатм.

Измеряется в паскалях (сила в 1 Н, приложенная к площади 1 кв. м.). Атмосферное давление ~10 5 Па. Звуковые давления речи и музыки имеют величину до 100 Па.

. Как всякая сила, звуковое давление имеет направление. Однако, под давлением понимается сила, перпендикулярная к поверхности.

Скорость распространения звуковой волны (скорость звука) сзв в среде зависит от массы молекул или атомов и расстояния между ними. А они в свою очередь зависят от химического состава вещества, его температуры, а для газов и давления. Для технических расчетов достаточно считать

,

где Т — температура, К. При нормальном атмосферном давлении и Т=290 К (17 0 С) скорость звука 340 м/с.

Плотностью звуковой энергии e называется энергия, содержащаяся в единице объема среды распространения.

Время пробега волной единицы длины по лучу 1/сзв => e =I/сзв; [e]=[Вт/м 2 ]/[м/с]=[Вт*с/м 3 ]=[Дж/м 3 ].

Плотность энергии через давление:

.

Плотность энергии в отличие от интенсивности величина скалярная, и поэтому может применяться и в тех случаях, когда определение лучей и волновых фронтов затруднительно или невозможно, например, при распространении звуковых волн в помещениях.

25. Уровень интенсивности звука и уровень звукового давления. Уровень звуковой мощности. Эквивалентный уровень звукового давления и эквивалентный уровень звука.

Единицы уровня звука Уровень интенсивности звука измеряют в десятых долях Белла(Б) – децибел (дБ)

Для различных уровней звукового давления – различные условия восприятия звука:

94- внутри вагона метро

Сложение уровней интенсивности звука

Пусть имеется n источников звука, каждый из которых в данной точке поля одну и ту же интенсивность звука I(первое), с уровнем интенсивности L(первое) L=lg·I(первое). Суммарная интенсивность звука I=I(первое) · n; Уровень суммарной интенсивности звука:

24. Закон Вебера – Фехнера и его интерпретация в акустике. Единицы уровня интенсивности звука. Сложение уровней интенсивности звука.

Для всех органов чувств человека ощущение пропорционально логарифму раздражителя, впряженному в единицах порога ощущения.

Свойства логарифмов log6a – показатель степени b которое надо возвести число b, чтобы получить число a.

Уровень интенсивности звука и уровень звукового давления. Диапазон изменения звукового давления

Уровень интенсивности звука

Уровень интенсивности звука, выраженный через звуковое давление

Пороговая величина звукового давления pₒ соответствует пороговой величине интенсивности звука Iₒ

рₒ=2 · 10(*в (– 5) степени)* Па; I0 =10 (*в – 12 степени*) Вт/м²; рₒ=10 (*в – 12 степени) Вт;

соотв.порогу слышимости на частоте 1000 Гц

При пороговых величинах уровень интенсивности звука и уровень давл.=0

Уровень звуковой мощности Lp=10·lg(p/pₒ) болевой порог: р=2·10²Па I=10² Вт/м² L=140 дБ

Нормальный разговор – 50-60 дБ

Практически тишина – 10 дБ

Порого слышимости мертвая тишина – 0дБ

НО: менее 20 дб трудно получить

Интенсивностью волны I называют величину, численно равную средней по времени энергии Е, переносимой волной в единицу времени через единицу площади поверхности, расположенную перпендикулярно направлению распространения волны:

где S — площадь поверхности, через которую проходит волна, t — время ее прохождения через эту поверхность. Единица измерения интенсивности волны: Дж/(м 2 с) = Вт/м 2 .

Звук является объектом слуховых ощущений, поэтому оценивается человеком также субъективно. Субъективными характеристиками звука являются: высота -обусловленная частотой тона, тембр — определяется спектральным составом звука, громкость — уровень слухового ощущения, зависящая, прежде всего от I интенсивности звука. Следовательно объективными характеристиками звука являются: частота, интенсивность, акустический спектр. Человеческое ухо воспринимает звуки на частоте 1 кГц с интенсивностью не менее I0=10 -12 Вт/м 2 и называется интенсивность на пороге слышимости. Максимальная интенсивность звука на частоте 1 кГц, воспринимаемая человеком Iб=10 Вт/м 2 и называется болевым порогом, так как вызывает болевые ощущения. Различие между I0 и Iб очень велико (Iб/ I0 = 10 13 ), поэтому при измерениях удобно пользоваться логарифмической шкалой. В связи с этим вводят величину уровня интенсивности звука, равную десятичному логарифму отношения интенсивности исследуемого звука I к интенсивности I0 на пороге слышимости

Уровень интенсивности звука измеряется в белах. бел — есть единица шкалы уровней интенсивности звука, соответствующая изменению интенсивности в 10 раз. Обычно применяют единицу в 10 раз меньшую, называемую децибелом (дБ). Тогда формула (4.11) принимает вид.

Если L=1 дБ, то , а. Таким образом, децибел соответствует таким двум уровням, интенсивности которых отличаются в 1,26 раза.

Согласно закону Вебера — Фехнера прирост силы ощущения пропорционален логарифму отношения интенсивностей двух сравнимых раздражений.

Закон Вебера — Фехнера лежит в основе создания шкалы уровней громкости, а также шкалы уровней интенсивности. результате область слышимости ограничена как сверху, так и снизу кривыми. Эти кривые получены на основании измерений, проведенных с людьми, обладающими наиболее чувствительными органами слуха. Для большинства людей область слышимости меньше; для многих частотная граница наступает при 18, 15 и даже при 10 кГц. Интенсивность в 10 -12 Вт/м 2 также ощущается далеко не всяким человеком. С возрастом область слышимости сужается. При повреждении уха она может стать совсем маленькой, а при глухоте сжимается в точку.

Для того чтобы найти соответствие между громкостью и интенсивностью звука на разных частотах, пользуются кривыми равной громкости. Видно, что среднее человеческое ухо наиболее чувствительно к частотам 2500 — 3000 Гц. Каждая промежуточная кривая отвечает одинаковой громкости, но разной интенсивности звука для разных частот. Используя совокупность кривых равной громкости, можно найти для разных частот громкости, соответствующие определенной интенсивности. Например, пусть интенсивность звука частотой 100 Гц равна 60 дБ

Скорость звука

Физика

Ско́рость зву́ка, скорость распространения в среде упругих волн . Определяется упругостью и плотностью среды. Для плоской гармонической волны в среде без дисперсии скорость звука равна c = ω / k > c = ω / k , где ω omega ω – частота , k boldsymbol k – волновое число . Со скоростью c c распространяется фаза гармонической волны, поэтому её называют также фазовой скоростью звука. В средах с дисперсией звука фазовая скорость различна для разных частот; в этих случаях используют понятие групповой скорости . При больших амплитудах упругой волны скорость распространения каждой точки профиля волны зависит от величины давления в этой точке, возрастая с ростом давления, что приводит к искажению формы волны (см. в статье нелинейная акустика ). Скорость звука в газах меньше, чем в жидкостях , а в жидкостях, как правило, меньше, чем в твёрдых телах . При температуре 20 °C и нормальном давлении скорость звука в воздухе составляет 343,1 м/c, в воде – 1490 м/c.

В газах и жидкостях звук распространяется в виде объёмных волн сжатия – разряжения. Если процесс распространения звука происходит адиабатически , то скорость звука равна c = x ( ∂ P / ∂ ρ ) s text= sqrt> c = x ( ∂ P / ∂ ρ ) s ​

​ , где P P – давление, ρ rho ρ – плотность вещества, индекс s s показывает, что производная берётся при постоянной энтропии . Эта скорость звука называется адиабатической.

В идеальном газе c = γ P / ρ = γ R T / μ =sqrt=sqrt c = γ P / ρ

​ , где R R – универсальная газовая постоянная , Т textit Т – абсолютная температура, μ mu μ – молекулярная масса газа, γ gamma γ – отношение теплоёмкостей при постоянном давлении и постоянном объёме. Это т. н. лапласова скорость звука; в газе она совпадает по порядку величины со средней тепловой скоростью движения молекул. Величина c ′ = P / ρ >=sqrt c ′ = P / ρ

​ называется ньютоновой скоростью звука; она определяет скорость звука при изотермическом процессе распространения, который имеет место на очень низких частотах.

В идеальном газе при заданной температуре скорость звука не зависит от давления и растёт с ростом температуры как T sqrt> T

​ . При комнатной температуре относительное изменение скорости звука в воздухе составляет примерно 0,17 % на 1 °C. В жидкостях скорость звука, как правило, уменьшается с ростом температуры. Исключением является вода , в которой скорость звука при комнатной температуре увеличивается с ростом температуры, достигает максимума при температуре ≈ 74 approx 74 ≈ 74 °C и уменьшается с дальнейшим ростом температуры. Скорость звука в воде растёт с увеличением давления примерно на 0,01 % на 1 атм, а также с увеличением содержания растворённых в ней солей .

В морской воде скорость звука зависит от температуры, солёности и глубины. Эти зависимости имеют сложный вид; для расчёта скорости звука используются таблицы, рассчитанные по эмпирическим формулам. Поскольку температура, давление, а иногда и солёность меняются с глубиной, то скорость звука в океане является функцией глубины. Эта зависимость в значительной степени определяет характер распространения звука в океане, в частности определяет существование подводного звукового канала .

В неограниченной твёрдой среде распространяются продольные и сдвиговые (поперечные) упругие волны. В изотропном твёрдом теле фазовая скорость для продольной волны

c l = E ( 1 − σ ) ρ ( 1 + σ ) ( 1 − 2 σ ) = K + 4 / 3 G ρ , >=sqrt< frac> =sqrt< frac>, c l ​ = ρ ( 1 + σ ) ( 1 − 2 σ ) E ( 1 − σ ) ​

​ , для сдвиговой волны

c t = E 2 ρ ( 1 + σ ) = G ρ , >=sqrt< frac> =sqrt< frac>, c t ​ = 2 ρ ( 1 + σ ) E ​

где E E – модуль Юнга , G G – модуль сдвига, σ sigma σ – коэффициент Пуассона , K K – модуль объёмного сжатия. Скорость распространения продольных волн всегда больше, чем скорость сдвиговых волн, причём обычно выполняется соотношение c l > 2 c t >>sqrt > c l ​ > 2

​ c t ​ . В монокристаллах скорость звука зависит от направления распространения волны в кристалле (см. статью Кристаллоакустика ). В тех направлениях, в которых возможно распространение чисто продольных и чисто поперечных волн, в общем случае имеется одно значение c l > c l ​ и два значения c t > c t ​ . Если значения c t > c t ​ различны, то соответствующие волны иногда называют быстрой и медленной поперечными волнами. В общем случае для каждого направления распространения волны в кристалле могут существовать три смешанные волны с различными скоростями распространения, которые определяются соответствующими комбинациями модулей упругости.

В металлах и сплавах скорость звука существенно зависит от предшествующей механической и термической обработки; это явление частично связано с дислокациями , наличие которых также влияет на скорость звука. В металлах, как правило, скорость звука уменьшается с ростом температуры. При переходе металла в сверхпроводящее состояние величина ∂ c ∂ T frac ∂ T ∂ c ​ в точке перехода меняет знак. В сильных магнитных полях проявляются некоторые эффекты в зависимости скорости звука от магнитного поля, отражающие особенности поведения электронов в металле.

Измерения скорости звука используются для определения многих свойств вещества, таких как величина отношения теплоёмкостей для газов, сжимаемости газов и жидкостей, модулей упругости твёрдых тел, температуры Дебая и др. Измерение малых изменений скорости звука – чувствительный метод определения примесей в газах и жидкостях. В твёрдых телах измерение скорости звука и её зависимости от температуры, магнитного поля и других параметров позволяет исследовать строение вещества: зонную структуру полупроводников , форму ферми-поверхности в металлах и многое другое.

Редакция физических наук

Опубликовано 4 мая 2023 г. в 18:54 (GMT+3). Последнее обновление 4 мая 2023 г. в 18:54 (GMT+3). Связаться с редакцией

Распространение звука. Звуковые волны

Наше ухо постоянно слышит различные звуки. Чаще всего звук распространяется по воздуху, но может распространяться и в других средах. Эти среды называют упругими.

Если между ухом и источником звука удалить звукопередающую среду, то мы ничего не услышим. Это означает, что для передачи звука на расстояние необходима звукопередающая среда.

Чтобы изолировать источник звука (будильник) от звукопередающей среды (воздуха), поместим его в установку, где сможем откачать воздух (рис. (1)).

3.png

Рис. (1). Эксперимент с будильником в вакууме

Для чистоты эксперимента послушаем будильник в воздушной среде под колоколом воздушного насоса. Звук слышен очень хорошо. Постепенно начнём откачивать воздух. Громкость звука уменьшается. При достижении вакуума под колоколом звук перестаёт передаваться — будильник не слышно. Этим экспериментом мы подтвердили утверждение о том, что в отсутствие упругой среды звук не передаётся.

Звуковые волны распространяются в упругой среде. Чем больше плотность вещества, тем лучше оно проводит звук.

Проведём эксперимент с доской из древесины (рис. (2)). Сможем ли мы расслышать тиканье часов на расстоянии, приложив ухо к одному концу доски, а к другому — наручные часы? Звук хорошо передаётся по доске.

1.png

Рис.(2). Эксперимент с доской из древесины

Если подвесить металлическую ложку на верёвочке (рис. (3)) и привязать другой конец к пальцам, то вибрация будет им передаваться. Проволока из металла будет лучше проводить звук.

2.png

Рис. (3). Эксперимент с ложкой и верёвочкой

Тела с низкой плотностью, не обладающие упругостью, содержащие звукоизолирующие слои (например, прослойку воздуха) проводят звук в меньшей степени. Например, пробка, поролон, вата.

Чтобы изолировать помещение от посторонних или ненужных звуков, необходимо облицевать потолок, стены и даже пол различными звукопоглощающими материалами. Для этих целей используют минеральную, базальтовую или хлопковую вату, а также газостекло, пенобетон, вспененный полиуретан и меламин и др. Все эти материалы в порах содержат воздух, что и способствует поглощению звука.

Таким образом,

звук может распространяться в любой среде (твёрдой, жидкой и газообразной), где есть молекулы. И не может распространяться там, где молекул нет, т.е. в вакууме.

Колебания источника звука создают в окружающей среде волну звуковой частоты, которая является упругой волной.

Восприятие звука слуховым аппаратом (рис. 4):

  1. Волна, достигая наружного уха, воздействует на барабанную перепонку, что заставляет её колебаться с точно такой же частотой, с какой колеблется источник звука.
  2. Колебания барабанной перепонки передаются на слуховые косточки в среднем ухе, далее — во внутреннее ухо.
  3. Во внутреннем ухе колебания воздействуют на улитку, в которой есть волосковые клетки, которые преобразуют механические колебания в электрические нервные импульсы.
  4. Слуховой нерв передаёт электрические нервные импульсы от улитки в головной мозг.
  5. Мозг анализирует сигналы: распознаёт, сравнивает, интерпретирует.

4.png

Рис. (4). Строение слухового аппарата

В газах и жидкостях могут существовать только продольные упругие волны. Поэтому звук в воздухе передаётся продольными волнами, то есть чередующимися сгущениями и разрежениями воздуха, идущими от источника звука.

Звуковая волна распространяется в пространстве с определённой скоростью.

Наблюдая за стрельбой из оружия (например, из пушки), мы сначала видим вспышку и только потом (через некоторое время) слышим звук выстрела.

Измерив промежуток времени (t) между моментом появления вспышки и моментом, когда звук доходит до уха, а также расстояние между источником звука и наблюдателем, можно определить скорость распространения звука по формуле:

По опытным данным, при нормальном атмосферном давлении и температуре воздуха (0) °С скорость звука составляет (332) м/с.

В газах скорость звука прямо пропорциональна температуре.

Например, при (20) °С скорость звука в воздухе равна (343) м/с, при (60) °С — (366) м/с, при (100) °С — (387) м/с.

При повышении температуры среды увеличивается скорость движения молекул (или атомов) среды, что повышает интенсивность взаимодействия частиц среды. Значит, увеличивается передача энергии колебательного движения.

На скорость распространения звука оказывает влияние среда, в которой распространяется звук. Это связано не только с плотностью среды, но и расположением частиц этой среды относительно друг друга.

При решении задач скорость звука в воздухе обычно считают равной (340) м/с.

При температуре (0) °С скорость звука в водороде равна (1284) м/с, а в углекислом газе — (259) м/с. Это различие связано с массой молекул газов, в которых распространяется звук. Масса молекул водорода меньше массы молекул углекислого газа.

Для измерения скорости звука существуют специальные устройства, принцип действия которых связан с определением времени, за которое звук проходит определенное расстояние.

Плотности жидкостей и твёрдых тел значительно больше плотностей газов. Поэтому молекулы в этих средах находятся значительно ближе друг к другу, а следовательно, взаимодействие между ними более сильное. Это способствует более быстрому распространению звука.

Скорость распространения звука

В открытом пространстве в воздухе звук распространяется во всех на­правлениях. В этом случае звуковые волны имеют сферический вид и подобны световым волнам. Их можно экранировать, фокусировать и направлять в определенную сторону так же, как световые лучи от какого-либо источ­ника.

В связи с тем, что плотность газов существенно зависит от температуры, скорость звука в газах также зависит от температуры газообразной среды.

Законами распространения звука в атмосфере занимается атмосферная акустика (см. Акустический словарь). Распространение звука в свободной атмосфере имеет ряд особенностей.

Звуковые волны, благодаря низкой теплопроводности, сжимаемости и вязкости воздуха, поглощаются тем сильнее, чем выше частота звука и чем меньше плотность атмосферы.

Поэтому резкие вблизи звуки выстрелов или взрывов на больших расстояниях становятся глухими. В соответствии с законами классической аэродинамики скорость звука с (в м/с) в воздухе можно вычислить, зная абсолютную температуру T (K), по формуле (1):

На практике скорость звука в воздухе свопределяется такжепо эмпирической формуле (2):

св = 331,4 + 0,6 • tв(2)
где,
331,4 (м/сек) — скорость звука при температуре воздуха tв = 0°С
tв — температура воздуха
0,6 — эмпирический коэффициент

При этом надо учитывать, что в воздухе в связи со сферической фор­мой звуковых волн происходит довольно быстрое затухание зву­ковой энергии и соответствующее этому ослабление звука.
Ско­рость звука в воздухе в зависимости от его температуры, а также скорость звука в воде и различных твёрдых материалах приведены в Таблице №1.

Скорость распространения продольных звуковых волн сп зависит от упру­гих свойств материальной среды, в которой они распространя­ются, − чем эластичнее среда, тем меньше скорость распростра­нения звуковых волн.

В противоположность сферическим звуковым волнам в частях здания, имеющих вид плит (Рис. 3), звук распространяется в виде плоских двумерных волн, аналогичных обра­зующимся на поверхности жидкостей.

Скорость зву­ка в воздухе в зависимости от температуры

Реверберация

  • Повторяющееся отражение, которое приводит к стойкости звуковых волн, известно как reverberation. Например, в большом зале (особенно зрительном зале) можно услышать чрезмерную реверберацию.
  • Обычно потолкам концертных или кинозалов придают криволинейную форму, чтобы звуковые волны после отражения достигли всех углов зала (см. Изображение, приведенное ниже).
  • Звуковой диапазон человека варьируется от 20 Гц до 20000 Гц.
  • Однако по мере того, как люди становятся старше, их уши постепенно становятся менее чувствительными к более высоким звуковым частотам.
  • Звуки частот ниже 20 Гц известны как infrasonic sound или же infrasound.
  • Киты, носороги и слоны издают звук в инфразвуковом диапазоне.
  • Звук с частотами выше 20 кГц известен как ultrasonic sound или же ultrasound.
  • Ультразвуковая техника широко используется в различных отраслях промышленности и в медицинских целях.
  • Дельфины, летучие мыши и морские свиньи издают ультразвуковой звук.

Слуховой аппарат

  • Слуховой аппарат — это электронное устройство, которое помогает глухим людям правильно слушать.
  • Слуховой аппарат — это устройство с батарейным питанием, которое принимает звук через микрофон.

  • Термин SONAR означает Sound Navigation And Ranging.
  • Сонар — это усовершенствованное устройство, использующее ультразвуковые волны для измерения направления, расстояния и скорости подводных объектов (подводных лодок); глубина моря; под водой горки; долины; затонувшие корабли; и т.п.

Japanese Spanish German French Thai Portuguese Russian Vietnamese Italian Korean Turkish Indonesian Polish Hindi

Примечания по физике для предварительных требований UPSC IAS (Часть I)

  • Примечания по физике для предварительных требований UPSC IAS (Часть I)
  • Физика — сила и давление
  • Физика — Трение
  • Физика — некоторые природные явления
  • Физика — Движение
  • Физика — сила и законы движения
  • Физика — Гравитация
  • Физика — масса и вес
  • Физика — Работа и энергия
  • Физика — Свет
  • Физика — отражение и преломление
  • Изображения, сформированные сферическими зеркалами
  • Физика — преломление света
  • Физика — Сферические линзы
  • Человеческий глаз и красочный мир
  • Физика — преломление света через призму
  • Физика — Электричество
  • Физика — химические эффекты электрического тока
  • Физика — Магнитные эффекты электрического тока
  • Физика — Электродвигатель
  • Физика — Источник энергии
  • Физика — Звук Часть I
  • Физика — Звук Часть II
  • Физика — Скорость звука в различных средах
  • Физика — Солнечная система
  • Физика — Звезды и Солнечная система

Полезные ресурсы по физике

  • Физика Часть 1 Онлайн-тест
  • Физика, часть 1 — Краткое руководство
Оцените статью
TutShema
Добавить комментарий