Как устроен гальванический элемент

Электрические заряды могут быть разными. Это могут быть электроны или ионы (положительно или отрицательно заряженные).
Чтобы получить электрический ток в проводнике, надо создать в нём электрическое поле. Под действием поля электрические заряды начнут перемещаться, возникнет электрический ток.

Обрати внимание!
Условия существования электрического тока:

• наличие свободных электрических зарядов;
• наличие электрического поля, которое обеспечивает движение зарядов;
• замкнутая электрическая цепь.

Электрическое поле создают источники электрического тока.

Источник тока — это устройство, в котором происходит преобразование какого-либо вида энергии в электрическую энергию.

В любом источнике тока совершается работа по разделению положительно и отрицательно заряженных частиц, которые накапливаются на полюсах источника.

Существуют различные виды источников тока:

• Механический источник тока — механическая энергия преобразуется в электрическую энергию. Сюда относятся: электрофорная машина, динамо-машина, генераторы.

скачанные файлы.jpg

Рис. (1). Электрофорная машина

Диски электрофорной машины приводятся во вращение в противоположных направлениях. В результате трения щёток о диски на кондукторах машины накапливаются заряды противоположного знака.

• Тепловой источник тока — внутренняя энергия преобразуется в электрическую энергию.
Рис. (2). Тепловой источник тока

К нему относится термоэлемент. Две проволоки из разных металлов спаяны с одного края. Затем место спая нагревают, тогда между другими концами этих проволок появляется напряжение.

• Световой источник тока — энергия света преобразуется в электрическую энергию. Сюда относится фотоэлемент.

Рис. (3). Световой источник тока

При освещении некоторых полупроводников световая энергия превращается в электрическую. Из фотоэлементов составлены солнечные батареи.

• Химический источник тока — внутренняя энергия преобразуется в электрическую в результате протекающих химических реакций.
Примером такого источника является гальванический элемент.

Рис. (4). Химический источник тока

Угольный стержень У (с металлической крышкой М) помещают в полотняный мешочек, наполненный смесью оксида марганца с углём С, а затем в цинковый сосуд Ц. Оставшееся пространство заполняют желеобразным раствором соли Р. При протекании химической реакции цинк заряжается отрицательно (отрицательный электрод), а угольный стержень — положительно (положительный электрод). Между заряженным угольным стержнем и цинковым сосудом возникает электрическое поле.

Из нескольких гальванических элементов можно составить батарею.

Источники тока на основе гальванических элементов применяются в бытовых автономных электроприборах, источниках бесперебойного питания. Они являются одноразовыми. В быту часто используют батарейки, которые можно подзаряжать многократно. Их называют аккумуляторами.

Как работает батарейка (гальванический элемент)

Простейший аккумулятор состоит из сосуда, наполненного слабым раствором серной кислоты в воде, в который опущены две свинцовые пластины (электроды). Чтобы аккумулятор стал источником тока, его надо зарядить. Если обе пластины соединить с полюсами какого-либо источника электрической энергии, то электрический ток, проходя через раствор, зарядит один электрод положительно, а другой — отрицательно. Такие аккумуляторы называют кислотными или свинцовыми. Кроме них ещё существуют щелочные или железоникелевые аккумуляторы. В металлогидридных аккумуляторах отрицательный электрод состоит из порошкообразного железа, а положительный из гидроокиси никеля с добавками графита и окиси бария. Электролитом служит раствор едкого калия с добавками моногидрата лития.
Аккумуляторы используют в автомобилях, электромобилях, сотовых телефонах, железнодорожных вагонах и даже на искусственных спутниках Земли.
Наряду с источниками тока существуют различные потребители электроэнергии: лампы, пылесосы, компьютеры и многие другие.

Элементы электрической цепи:

  • источник напряжения;
  • потребители: резисторы, лампы, реостат.
  • измерительные приборы: вольтметр, амперметр, ваттметр, омметр;
  • соединительные провода;
  • ключи для размыкания и переключения цепи.

Для поддержания электрического тока в цепи необходимы источники электрической энергии: источники электрического тока, источники электрического напряжения.

Источник ЭДС (идеальный источник напряжения) — двухполюсник, на зажимах которого электродвижущая сила (и напряжение) всегда поддерживается постоянным значением.

Источник электрического тока — двухполюсник, создающий ток постоянного значения, не зависящего от значения сопротивления на подключенной нагрузке. Внутреннее сопротивление такого источника приближается к бесконечности.

Необходимое условие существования тока — замкнутая цепь! Это означает, что все элементы цепи должны быть проводниками электричества и в цепи не должно быть разрывов. В случае размыкания цепи ток прекращает течь. Именно размыкание цепи и лежит в основе работы всех реле, кнопок и выключателей.

Порядок сборки электрической цепи указывается на специальном чертеже, который принято называть схемой.

Электрический ток. Электрическая цепь. Гальванические элементы. Аккумуляторы

Электрические заряды могут быть разными. Это могут быть электроны или ионы (положительно или отрицательно заряженные).
Чтобы получить электрический ток в проводнике, надо создать в нём электрическое поле. Под действием поля электрические заряды начнут перемещаться, возникнет электрический ток.

Обрати внимание!
Условия существования электрического тока:

• наличие свободных электрических зарядов;
• наличие электрического поля, которое обеспечивает движение зарядов;
• замкнутая электрическая цепь.

Электрическое поле создают источники электрического тока.

Источник тока — это устройство, в котором происходит преобразование какого-либо вида энергии в электрическую энергию.

В любом источнике тока совершается работа по разделению положительно и отрицательно заряженных частиц, которые накапливаются на полюсах источника.

Существуют различные виды источников тока:

• Механический источник тока — механическая энергия преобразуется в электрическую энергию. Сюда относятся: электрофорная машина, динамо-машина, генераторы.

скачанные файлы.jpg

Рис. (1). Электрофорная машина

Диски электрофорной машины приводятся во вращение в противоположных направлениях. В результате трения щёток о диски на кондукторах машины накапливаются заряды противоположного знака.

• Тепловой источник тока — внутренняя энергия преобразуется в электрическую энергию.
Рис. (2). Тепловой источник тока

К нему относится термоэлемент. Две проволоки из разных металлов спаяны с одного края. Затем место спая нагревают, тогда между другими концами этих проволок появляется напряжение.

• Световой источник тока — энергия света преобразуется в электрическую энергию. Сюда относится фотоэлемент.

Рис. (3). Световой источник тока

При освещении некоторых полупроводников световая энергия превращается в электрическую. Из фотоэлементов составлены солнечные батареи.

• Химический источник тока — внутренняя энергия преобразуется в электрическую в результате протекающих химических реакций.
Примером такого источника является гальванический элемент.

Рис. (4). Химический источник тока

Угольный стержень У (с металлической крышкой М) помещают в полотняный мешочек, наполненный смесью оксида марганца с углём С, а затем в цинковый сосуд Ц. Оставшееся пространство заполняют желеобразным раствором соли Р. При протекании химической реакции цинк заряжается отрицательно (отрицательный электрод), а угольный стержень — положительно (положительный электрод). Между заряженным угольным стержнем и цинковым сосудом возникает электрическое поле.

Из нескольких гальванических элементов можно составить батарею.

Источники тока на основе гальванических элементов применяются в бытовых автономных электроприборах, источниках бесперебойного питания. Они являются одноразовыми. В быту часто используют батарейки, которые можно подзаряжать многократно. Их называют аккумуляторами.

Простейший аккумулятор состоит из сосуда, наполненного слабым раствором серной кислоты в воде, в который опущены две свинцовые пластины (электроды). Чтобы аккумулятор стал источником тока, его надо зарядить. Если обе пластины соединить с полюсами какого-либо источника электрической энергии, то электрический ток, проходя через раствор, зарядит один электрод положительно, а другой — отрицательно. Такие аккумуляторы называют кислотными или свинцовыми. Кроме них ещё существуют щелочные или железоникелевые аккумуляторы. В металлогидридных аккумуляторах отрицательный электрод состоит из порошкообразного железа, а положительный из гидроокиси никеля с добавками графита и окиси бария. Электролитом служит раствор едкого калия с добавками моногидрата лития.
Аккумуляторы используют в автомобилях, электромобилях, сотовых телефонах, железнодорожных вагонах и даже на искусственных спутниках Земли.
Наряду с источниками тока существуют различные потребители электроэнергии: лампы, пылесосы, компьютеры и многие другие.

Элементы электрической цепи:

  • источник напряжения;
  • потребители: резисторы, лампы, реостат.
  • измерительные приборы: вольтметр, амперметр, ваттметр, омметр;
  • соединительные провода;
  • ключи для размыкания и переключения цепи.

Для поддержания электрического тока в цепи необходимы источники электрической энергии: источники электрического тока, источники электрического напряжения.

Источник ЭДС (идеальный источник напряжения) — двухполюсник, на зажимах которого электродвижущая сила (и напряжение) всегда поддерживается постоянным значением.

Источник электрического тока — двухполюсник, создающий ток постоянного значения, не зависящего от значения сопротивления на подключенной нагрузке. Внутреннее сопротивление такого источника приближается к бесконечности.

Необходимое условие существования тока — замкнутая цепь! Это означает, что все элементы цепи должны быть проводниками электричества и в цепи не должно быть разрывов. В случае размыкания цепи ток прекращает течь. Именно размыкание цепи и лежит в основе работы всех реле, кнопок и выключателей.

Порядок сборки электрической цепи указывается на специальном чертеже, который принято называть схемой.

2. Устройство и принцип действия гальванических элементов

Гальванический элемент (ГЭ) — это устройство для превращения химической энергии в электрическую. ГЭ состоит из двух электродов (полуэлементов). Простейший полуэлемент состоит из металлической пластинки, опущенной в раствор своей соли. Более активный металл называется анодом. На его поверхности протекает процесс окисления. При работе ГЭ анод заряжается отрицательно. На менее активном металле, называемом катодом, протекает процесс восстановления. При работе гальванического элемента катод заряжается положительно. На рис.15 представлена схема медно-цинкового гальванического элемента Якоби-Даниеля.

Рисунок 15. — Медно-цинковый элемент Якоби-Даниеля

Медный и цинковый электроды соединены металлическим проводником, образующим внешнюю цепь гальванического элемента. Растворы солей CuSO4 и ZnSO4 соединены между собой солевым мостиком, образующим внутреннюю цепь гальванического элемента. Солевой мостик (электролитический ключ)— это стеклянная трубка, заполненная раствором электролита.

Цинковый электрод является анодом; на нем протекает процесс окисления:

Zn 0 – 2e — Zn 2+ .

Катионы Zn 2+ переходят в раствор, вследствие чего раствор приобретает положительный заряд, а электрод – отрицательный.

Электроны, отданные цинком, поступают во внешнюю цепь и мигрируют к меди.

Медный электрод является катодом; на нем протекает процесс восстановления:

Cu 2+ + 2e — Cu 0 .

Катионы Cu 2+ принимают электроны, поступающие из внешней цепи, восстанавливаются и осаждаются на медном электроде. В результате раствор приобретает отрицательный заряд, а электрод – положительный.

Схема медно-цинкового гальванического элемента записывается следующим образом:

(-) Zn / Zn 2+ // Cu 2+ / Cu (+),

где / обозначает поверхность раздела металл-раствор, а также ОВ потенциал (электродный потенциал), возникающий на поверхности электрода вследствие того, что металл и раствор имеют разноименные заряды;

// обозначают границу раздела двух растворов, а так же диффузионный потенциал, возникающий из-за их разноименных зарядов.

Суммируя уравнения окислительно-восстановительных полуреакций, получаем уравнение суммарной токообразующей реакции:

Катод: Zn 0 – 2e — Zn 2+ 1

Анод: Cu 2+ + 2e — Cu 0 1

Zn 0 + Cu 2+ Zn 2+ + Cu 0

Эдс гальванического элемента рассчитывают как разность окислительно-восстановительных потенциалов катода и анода:

Помимо окислительно-восстановительных и диффузионных потенциалов, возникновение электрического тока в гальваническом элементе происходит за счет мембранных потенциалов, возникновение которых обусловлено неравномерным распределением заряженных частиц (например, ионов) по обе стороны мембраны. Именно такое распределение ионов характерно для клеток человека (таблица 6).

Таблица 6 — Ионный состав нервной клетки

Ваш браузер не поддерживается

Интернет-сервис Студворк построен на передовых, современных технологиях и не может гарантировать полную поддержку текущего браузера.

Chrome

Установить новый браузер

    Google Chrome

Yandex browser

Скачать
Яндекс Браузер

Opera

Скачать
Opera

Firefox

Скачать
Firefox

Edge

Скачать
Microsoft Edge

Нажимая на эту кнопку, вы соглашаетесь с тем, что сайт в вашем браузере может отображаться некорректно. Связаться с техподдержкой

Работаем по будням с 8.00 до 18.00 по МСК

Согласие на обработку персональных данных

Данные, которые вы предоставляете, будут использованы Обществом с ограниченной ответственностью «Электропоставщик» (ИНН 9710008385) (далее – Оператор) для достижения следующих целей обработки персональных данных: обеспечение соблюдения требований законодательства Российской Федерации; ведение переговоров; заключение и исполнение договора; информирование о статусе заказа; осуществление доставки продукции; возврат продукции; предоставление актуальной информации по продукции, проходящим акциям и специальным предложениям; анализ качества предоставляемого Оператором сервиса и улучшению качества обслуживания клиентов Оператора.

Совокупность операций обработки включает сбор, запись, систематизацию, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передачу (предоставление, доступ), обезличивание, блокирование, удаление, уничтожение Данных.

Перечень персональных данных, на обработку которых дается согласие субъекта персональных данных, отражено в Политике в отношении обработки персональных данных Оператора.

Обработка вышеуказанных персональных данных будет осуществляться путем смешанной обработки персональных данных.

Оператор вправе поручить обработку Данных субъектов Данных третьим лицам с согласия субъекта Данных, на основании заключаемого с этими лицами договора. Лица, осуществляющие обработку Данных на основании заключаемого с Оператором договора (поручения оператора), обязуются соблюдать принципы и правила обработки и защиты Данных, предусмотренные Законом. Для каждого третьего лица в договоре определяются перечень действий (операций) с Данными, которые будут совершаться третьим лицом, осуществляющим обработку Данных, цели обработки, устанавливается обязанность такого лица соблюдать конфиденциальность и обеспечивать безопасность Данных при их обработке, указываются требования к защите обрабатываемых Данных в соответствии с Законом.

Настоящее согласие на обработку персональных данных действует с момента его представления оператору на период исполнения обязательств по Договору и может быть отозвано в любое время путем подачи оператору заявления в простой письменной форме. Сроки обработки (хранения) персональных данных определяются исходя из целей обработки персональных данных, в соответствии со сроком действия договора с субъектом персональных данных, требованиями федеральных законов, требованиями операторов персональных данных, по поручению которых Оператор осуществляет обработку персональных данных, основными правилами работы архивов организаций, сроками исковой давности.

Персональные данные субъекта подлежат хранению в течение сроков, установленных законодательством Российской Федерации.

Персональные данные субъекта подлежат хранению в течение сроков, установленных законодательством Российской Федерации. Персональные данные уничтожаются: по достижению целей обработки персональных данных; при ликвидации или реорганизации оператора; на основании письменного обращения субъекта персональных данных с требованием о прекращении обработки его персональных данных (оператор прекратит обработку таких персональных данных в течение 3 (трех) рабочих дней, о чем будет направлено письменное уведомление субъекту персональных данных в течение 10 (десяти) рабочих дней.

Согласие на получение рассылки рекламно-информационных материалов

В соответствии с Федеральным законом от 13.03.2006 № 38-ФЗ «О рекламе» и Федеральным законом от 07.07.2003 г. № 126-ФЗ «О связи», настоящим я, действуя по своей волей и в своем интересе, даю свое согласие Обществу с ограниченной ответственностью «Электропоставщик» (ИНН 9710008385) (далее – Компания) на направление мне на указанные мной на сайте https://cable.ru/ контактные данные (номер телефона и/или электронную почту) сообщений в информационных, рекламно-информационных целях об услугах (сервисах) Компании, а именно: рассылок уведомлений об изменении заказов, предложений и другой информации; новостной рассылки и иных сведений от имени Компании, в виде sms-сообщений, и/или электронных писем, и/или сообщений в мессенджерах, и/или push-уведомлений, и/или посредством телефонных звонков.

Я согласен(а) с тем, что текст данного мной по собственной воле и в моих интересах согласия хранится в электронном виде в базе данных и подтверждает факт согласия на обработку персональных данных в соответствии с вышеизложенными положениями и беру на себя ответственность за достоверность предоставления персональных данных

Я подтверждаю, что владею информацией о том, что в любой момент в течение всего срока действия настоящего согласия, я вправе отозвать согласие и отписаться от получения рассылок путем перехода по соответствующей ссылке, существующей в любом письме

Также я информирован(-а), что при возникновении вопросов относительно отказа от рассылки, я могу обратиться за помощью, отправив письмо в службу технической поддержки Компании.

Настоящее согласие предоставляется на неограниченный срок при отсутствии сведений о его отзыве.

Настоящим подтверждаю, что мои конклюдентные действия является достаточной формой согласия и позволяет подтвердить сторонам факт получения такого согласия, при этом иных доказательств для дополнительного подтверждения моего свободного волеизъявления не потребуется.

2. Устройство и принцип действия гальванических элементов

Гальванический элемент (ГЭ) — это устройство для превращения химической энергии в электрическую. ГЭ состоит из двух электродов (полуэлементов). Простейший полуэлемент состоит из металлической пластинки, опущенной в раствор своей соли. Более активный металл называется анодом. На его поверхности протекает процесс окисления. При работе ГЭ анод заряжается отрицательно. На менее активном металле, называемом катодом, протекает процесс восстановления. При работе гальванического элемента катод заряжается положительно. На рис.15 представлена схема медно-цинкового гальванического элемента Якоби-Даниеля.

Рисунок 15. — Медно-цинковый элемент Якоби-Даниеля

Медный и цинковый электроды соединены металлическим проводником, образующим внешнюю цепь гальванического элемента. Растворы солей CuSO4 и ZnSO4 соединены между собой солевым мостиком, образующим внутреннюю цепь гальванического элемента. Солевой мостик (электролитический ключ)— это стеклянная трубка, заполненная раствором электролита.

Цинковый электрод является анодом; на нем протекает процесс окисления:

Zn 0 – 2e — Zn 2+ .

Катионы Zn 2+ переходят в раствор, вследствие чего раствор приобретает положительный заряд, а электрод – отрицательный.

Электроны, отданные цинком, поступают во внешнюю цепь и мигрируют к меди.

Медный электрод является катодом; на нем протекает процесс восстановления:

Cu 2+ + 2e — Cu 0 .

Катионы Cu 2+ принимают электроны, поступающие из внешней цепи, восстанавливаются и осаждаются на медном электроде. В результате раствор приобретает отрицательный заряд, а электрод – положительный.

Схема медно-цинкового гальванического элемента записывается следующим образом:

(-) Zn / Zn 2+ // Cu 2+ / Cu (+),

где / обозначает поверхность раздела металл-раствор, а также ОВ потенциал (электродный потенциал), возникающий на поверхности электрода вследствие того, что металл и раствор имеют разноименные заряды;

// обозначают границу раздела двух растворов, а так же диффузионный потенциал, возникающий из-за их разноименных зарядов.

Суммируя уравнения окислительно-восстановительных полуреакций, получаем уравнение суммарной токообразующей реакции:

Катод: Zn 0 – 2e — Zn 2+ 1

Анод: Cu 2+ + 2e — Cu 0 1

Zn 0 + Cu 2+ Zn 2+ + Cu 0

Эдс гальванического элемента рассчитывают как разность окислительно-восстановительных потенциалов катода и анода:

Помимо окислительно-восстановительных и диффузионных потенциалов, возникновение электрического тока в гальваническом элементе происходит за счет мембранных потенциалов, возникновение которых обусловлено неравномерным распределением заряженных частиц (например, ионов) по обе стороны мембраны. Именно такое распределение ионов характерно для клеток человека (таблица 6).

Таблица 6 — Ионный состав нервной клетки

Строение и принцип работы гальванического элемента Якоби-Даниэля

Рисунок 1. Схема гальванического элемента Якоби-Даниэля. Автор24 — интернет-биржа студенческих работ

В одном сосуде находится раствор соли цинка с погруженным цинковым электродом, в другом — раствор соли меди с медным электродом. Сосуды соединены между собой стеклянной трубкой (солевым «мостиком»), которая заполнена концентрированным раствором электролита. Она служит ионным проводником, не допускающим смешения растворов. При погружении в раствор электрод приобретает электрический заряд.

Начинай год правильно
Выигрывай призы на сумму 400 000 ₽
Замечание 2

Разность потенциалов между электродом и раствором называют электродным потенциалом, величина и знак (+/-) которого зависят от природы материала электрода и раствора, в котором он находится.

Наблюдаемая разность потенциалов обусловлена протекающей ОВР-реакцией между цинком и ионами меди и называется электродвижущей силой.

В полуреакции окисления цинка образуются электроны, которые по внешней цепи поступают на медный электрод, в результате чего с цинкового электрода растворяются ионы цинка, а на медном электроде разряжаются ионы меди, то есть выделяется металлическая медь.

$mathrm + 2elongrightarrow Cu>$

Ток течет от точки с более высоким потенциалом к точке с более низким потенциалом: знак (+) относится к медному электроду, а знак (-) — к цинковому. Измеренная разность потенциалов считается положительной.

Классификация химических источников тока

Химические источники тока подразделяются на гальванические элементы, аккумуляторы и топливные элементы.

Гальванические элементы в свою очередь делятся на химические (преобразуют энергию химического процесса в электрическую), концентрационные (состоят из одинаковых электродов) и элементы без переноса, где раствор электролита является общим для двух электродов.

Аккумуляторы являются вторичными химическими источниками тока, так как электрическая энергия превращается в химическую, а химическая — обратно в электрическую, то есть они накапливают химическую энергию под действием внешнего источника тока, которая потом переходит в электрическую.

Замечание 3

Заряд аккумулятора — это процесс накопления химической энергии, разряд аккумулятора — процесс превращения химической энергии в электрическую. При заряде аккумулятор работает как электролизер, при разряде — как гальванический элемент.

Аккумуляторы делятся на солевые, щелочные и литиевые.

Топливный элемент представляет собой гальванический элемент, в котором химическая энергия непрерывно подаваемых взаимодействующих реагентов превращается в электрическую энергию, при этом электроды не расходуются. В топливных элементах используют жидкие или газообразные восстановители и окислители.

Ответ на Вопрос №4, Параграф 32 из ГДЗ по Физике 8 класс: Пёрышкин А.В.

ГДЗ (готовое домашние задание из решебника) по Физике 8 класса авторов А. В. Перышкин. — М. : Дрофа, 2013-2017 на Вопрос №4, § 32. Электрический ток. Источники электрического тока.

Издание: Физика. 8 класс. : белый учебник для общеобразовательных учреждений / А. В. Перышкин. — М. : Дрофа, 2013-2017г.

Оцените статью
TutShema
Добавить комментарий