Гальваническая развязка (гальваноразвязка, гальваническая изоляция) – это название общего принципа электрической изоляции рассматриваемой электрической цепи относительно других цепей, присутствующих в данном устройстве. Гальваническая изоляция, как правило, применяется для решения одной из двух (или обеих) задач:
1. Обеспечение независимости сигнальной цепи (при подключении приборов и устройств) за счёт того, что гальваническая изоляция обеспечивает независимый контур тока сигнальной цепи относительно других контуров тока, возникающих при соединении приборов и устройств. Например, это может быть независимость цепи измерения от силовой исполнительной цепи. Независимость сигнальной цепи решает целый ряд проблем электромагнитной совместимости (ЭМС): улучшает помехозащищённость, соотношение сигнал/шум в сигнальной цепи, точность измерения. Гальванически изолированный вход или выход устройства всегда способствует лучшей его совместимости с другими устройствами в тяжелой электромагнитной обстановке. В многоканальных измерительных системах (системах сбора данных) гальваническая развязка бывает как групповая (одна на несколько каналов измерения), так и поканальная (индивидуальная для каждого канала измерения).
2. Обеспечение электробезопасности при работе с оборудованием согласно ГОСТам на электробезопасность. Для электрического оборудования для измерения, управления и лабораторного применения применяют ГОСТ 12.2.091-2012, согласно которому определяют требования к стойкости изоляции (испытательному напряжению). Важно отметить, что гальваническая изоляция – это одна из технических мер обеспечения электробезопасности, поэтому требования к изоляции конкретной цепи всегда следует рассматривать в совокупности с другими мерами электобезопасности (защитное заземление, цепи ограничения тока и напряжения и т.д.), принятыми в данном конкретном случае. В любом случае, испытательное напряжение изоляции, указанное в документации на оборудование, должно многократно превышать номинальные напряжения изолируемых цепей.
Следует отметить, что гальваническая развязка цепей может обеспечиваться разными техническими способами: трансформаторная (индуктивная) гальваноразвязка (трансформаторы, цифровые изоляторы на высокочастотном трансформаторном принципе), оптическая гальваноразвязка (оптроны, оптореле), ёмкостная гальваноразвязка (цифровые изоляторы на ёмкостном принципе), электромеханическая развязка (электромеханические реле). Эти способы отличаются не только очевидными эксплуатационными параметрами «по назначению», но и, например, менее очевидными параметрами обеспечения «степени независимости» изолируемых цепей. Например, обычный сетевой трансформатор питания может иметь межобмоточную ёмкость – тысячи пФ, в то время как оптрон – десятые доли пФ. Эта ёмкость гальваноразвязки существенно влияет на сквозные токи высокой частоты через гальваноразвязку и фактически определяет независимость изолируемых цепей для синфазного напряжения с высокой скоростью нарастания.
Перейти к другим терминам | Cтатья создана: | 06.07.2014 |
О разделе «Терминология» | Последняя редакция: | 26.07.2019 |
Что такое гальваническая развязка
Гальванической развязкой или гальванической изоляцией называется общий принцип электрической (гальванической) изоляции рассматриваемой электрической цепи по отношению к другим электрическим цепям. Благодаря гальванической развязке осуществима передача энергии или сигнала от одной электрической цепи к другой электрической цепи без непосредственного электрического контакта между ними.
Гальваническая развязка позволяет обеспечить, в частности, независимость сигнальной цепи, поскольку формируется независимый контур тока сигнальной цепи относительно контуров токов других цепей, например силовой цепи, при проведении измерений и в цепях обратной связи. Такое решение полезно для обеспечения электромагнитной совместимости: повышается помехозащищенность и точность измерений. Гальваническая изоляция входа и выхода устройств зачастую улучшает их совместимость с другими устройствами в тяжелой электромагнитной обстановке.
Безусловно, гальваническая развязка обеспечивает и безопасность при работе людей с электрическим оборудованием. Это одна из мер, и изоляцию конкретной цепи необходимо всегда рассматривать в совокупности с другими мерами обеспечения электрической безопасности, такими как: защитное заземление и цепи ограничения напряжения и тока.
Для обеспечения гальванической развязки могут быть использованы различные технические решения:
- индуктивная (трансформаторная) гальваническая развязка, которая применяется в трансформаторах и для изоляции цифровых цепей;
- оптическая развязка посредством оптрона (оптопара) или оптореле, применение которой является типичным для многих современных импульсных источников питания;
- емкостная гальваноразвязка, когда сигнал подается через конденсатор очень маленькой емкости;
- электромеханическая развязка посредством, например, электромеханического реле.
В настоящее время очень широкое распространение получили два варианта гальванической развязки в схемах: трансформаторный и оптоэлектронный.
Построение гальванической развязки трансформаторного типа предполагает применение магнитоиндукционного элемента (трансформатора) с сердечником или без сердечника, выходное напряжение, снимаемое со вторичной обмотки которого пропорционально входному напряжению устройства. Однако, при реализации этого способа, важно учесть следующие его недостатки:
- на выходной сигнал могут влиять помехи, создаваемые несущим сигналом;
- частотная модуляция развязки ограничивает частоту пропускания;
- большие габариты.
Развитие технологии полупроводниковых устройств в последние годы расширяет возможности построения оптоэлектронных узлов развязки, основанных на оптронах.
Принцип работы оптрона прост: светодиод излучает свет, который воспринимается фототранзистором. Так осуществляется гальваническая развязка цепей, одна из которых связана со светодиодом, а другая — с фототранзистором.
Такое решение имеет ряд достоинств: широкий диапазон напряжений развязки, вплоть до 500 вольт, что немаловажно для построения систем ввода данных, возможность работы развязки с сигналами частотой до десятков мегагерц, малые габариты компонентов.
Если не применять гальваническую развязку, то максимальный ток, протекающий между цепями, ограничивается лишь относительно небольшими электрическими сопротивлениями, что может привести в результате к протеканию выравнивающих токов, способных причинить вред как компонентам цепи, так и людям, прикасающимся к незащищенному оборудованию. Обеспечивающий развязку прибор специально ограничивает передачу энергии от одной цепи к другой.
Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Не пропустите обновления, подпишитесь на наши соцсети:
6. Гальваническая развязка
Гальваническая развязка (изоляция) цепей является радикальным решением большинства проблем, связанных с заземлением, и ее применение фактически стало стандартом в системах промышленной автоматизации.
Для осуществления гальванической развязки необходимо выполнить подачу энергии в изолированную часть цепи и обмен с ней сигналами. Подача энергии выполняется с помощью развязывающего трансформатора (в DC-DC или AC-DC преобразователях) или с помощью автономных источником питания: гальванических батарей и аккумуляторов. Передача сигнала осуществляется через оптроны и трансформаторы, элементы с магнитной связью, конденсаторы или оптоволокно.
Основная идея гальванической развязки заключается в том, что в электрической цепи полностью устраняется путь, по которому возможна передача кондуктивной помехи.
Гальваническая изоляция позволяет решить следующие проблемы:
- исключает появление паразитных токов по шине земли, вызванных разностью потенциалов отдаленных друг от друга земель, и тем самым снижает индуктивные наводки, вызванные этими токами;
- уменьшает практически до нуля напряжение синфазной помехи на входе дифференциального приемника аналогового сигнала (например, на рис. 3.73 синфазное напряжение на термопаре относительно Земли не влияет на дифференциальный сигнал на входе модуля ввода);
- защищает входные и выходные цепи модулей ввода и вывода от пробоя большим синфазным напряжением (например, на рис. 3.73 синфазное напряжение на термопаре относительно Земли может быть как угодно большим, если оно не превышает напряжение пробоя изоляции).
Для применения гальванической развязки система автоматизации делится на автономные изолированные подсистемы, обмен информацией между которыми выполняется с помощью элементов гальванической развязки. Каждая подсистема имеет свою локальную землю и локальный источник питания. Подсистемы заземляют только для обеспечения электробезопасности и локальной защиты от помех.
Основным недостатком цепей с гальванической развязкой является повышенный уровень помех от DC- DC преобразователя, который, однако, для низкочастотных схем можно сделать достаточно малым с помощью цифровой и аналоговой фильтрации. На высоких частотах емкость подсистемы на землю, а также проходная емкость элементов гальванической изоляции являются фактором, ограничивающим достоинства гальванически изолированных систем. Емкость на землю можно уменьшить, применяя оптический кабель и уменьшая геометрические размеры изолированной системы.
При использовании гальванически развязанных цепей понятие «напряжение изоляции» часто трактуется неправильно. В частности, если напряжение изоляции модуля ввода составляет 3 кВ, это не означает, что его входы могут находиться под таким высоким напряжением в рабочих условиях. В зарубежной литературе для описания характеристик изоляции используют три стандарта: UL1577, VDE0884 и IEC61010-01, но в описаниях устройств гальванической развязки не всегда даются на них ссылки. Поэтому понятие «напряжение изоляции» трактуется в отечественных описаниях зарубежных приборов неоднозначно. Главное различие состоит в том, что в одних случаях речь идет о напряжении, которое может быть приложено к изоляции неограниченно долго (рабочее напряжение изоляции), в других случаях речь идет об испытательном напряжении (напряжение изоляции), которое прикладывается к образцу в течение от 1 мин. до нескольких микросекунд. Испытательное напряжение может в 10 раз превышать рабочее и предназначено для ускоренных испытаний в процессе производства, поскольку напряжение, при котором наступает пробой, зависит от длительности тестового импульса.
табл. 3.26 показывает связь между рабочим и испытательным (тестовым) напряжением по стандарту IEC61010-01. Как видно из таблицы, такие понятия, как рабочее напряжение, постоянное, среднеквадратическое или пиковое значение тестового напряжения могут отличаться очень сильно.
Электрическая прочность изоляции отечественных средств автоматизации испытывается по ГОСТ 51350 или ГОСТ Р МЭК 60950-2002 синусоидальным напряжением с частотой 50 Гц в течение 60 сек при напряжении, указываемом в руководстве по эксплуатации как «напряжение изоляции». Например, при испытательном напряжении изоляции 2300 В рабочее напряжение изоляции составляет всего 300 В (табл. 3.26).
Табл. 3.26. Зависимость между рабочим и тестовым напряжением
Рабочее напряжение,
В
Воздушный зазор, мм
Испытательное напряжение, В
Пиковое напряжение импульса,
50 мкс
Действующее значение, 50/60 Гц,
1 мин.
Постоянное напряжение или пиковое значение напряжения 50/60 Гц, макс.,
1 мин.
Схемы решений гальванической развязки
Во время построения сложных систем для цифровой обработки поступаемых сигналов, связанных с функционированием в промышленных условиях, гальваническая развязка должна решать следующие задачи:
- Защищать компьютерные цепи от воздействия критических токов и напряжений. Это важно, если условия эксплуатации предполагают воздействие на них промышленных электромагнитных волн, существуют сложности с заземлением и т. д. Такие ситуации встречаются также на транспорте, имеющем большой фактор человеческого влияния. Ошибки могут становиться причиной полного выхода из строя дорогостоящего оборудования.
- Предохранять пользователей от поражения электрическим током. Наиболее часто проблема актуальна для приборов медицинского назначения.
- Минимизации вредного влияния различных помех. Важный фактор в лабораториях, выполняющих точные измерения, при построении прецизионных систем, на метрологических станциях.
В настоящее время широкое использование имеют трансформаторная и оптоэлектронная развязки.
Принцип работы оптрона
Светоизлучающий диод смещается в прямом направлении и принимает только излучение от фототранзистора. По такому методу осуществляется гальваническая связь цепей, имеющих связь с одной стороны со светодиодом и с другой стороны с фототранзистором. К преимуществам оптоэлектронных устройств относится способность передавать связи в широком диапазоне, возможность передачи чистых сигналов на больших частотах и небольшие линейные размеры.
Размножители электрических импульсов
Обеспечивают требуемый уровень электроизоляции, состоят из передатчиков-излучателей, линий связи и приемных устройств.
Линия связи должна обеспечивать требуемый уровень изоляции сигнала, в приемных устройствах происходит усиление импульсов до значений, необходимых для запуска в работу тиристоров.
Применение электрических трансформаторов для развязки повышает надежность установленных систем, построенных на основании последовательных мультикомплексных каналов в случае выхода из строя одного из них.
Параметры мультикомплексных каналов
Сообщения каналов состоят из информационных, командных или ответных сигналов, один из адресов свободен и используется для выполнения системных задач. Применение трансформаторов повышает надежность функционирования систем, собранных на основе последовательных мультикомплексных каналов и обеспечивает работу устройства при выходе из строя нескольких получателей. За счет применения многоступенчатого контроля передач на уровне сигналов обеспечиваются высокие показатели помехозащищенности. В общем режиме функционирования допускается отправка сообщений нескольким потребителям, что облегчает первичную инициализацию системы.
Простейшее электрическое устройство – электромагнитное реле. Но гальваническая развязка на основе этого прибора имеет высокую инертность, относительно большие размеры и может обеспечить только небольшое число потребителей при большом количестве потребляемой энергии. Такие недостатки препятствуют широкому применению реле.
Гальваническая развязка типа push-pull позволяет значительно уменьшить количество используемой электрической энергии в режиме полной нагрузки, за счет этого улучшаются экономические показатели использования устройств.
Развязка типа push-pull
За счет использования гальванических развязок удается создавать современные схемы автоматического управления, диагностики и контроля с высокой безопасностью, надежностью и устойчивостью функционирования.
Также мы производим
Воздуховоды хим стойкие
В разделе представлены цилиндрические и прямоугольные воздуховоды. Специалисты и менеджеры компании Пласт Продукт помогут подобрать и рассчитают цену любой интересующей вас продукции. Воздуховоды применяются на промышленных и бытовых объектах, устойчивы к химии и коррозии.
Вентиляторы промышленные коррозионностойкие и химстойкие
Промышленные химически стойкие вентиляторы Plast-Product – предназначенные для гальванических цехов и производственных помещений с агрессивными испарениями. Производятся из хим стойких пластиков Полипропилен ПНД, ПВХ и ПВДФ. Материал и характеристики подбираются в зависимости от задач заказчика.
Фильтры волокнистые гальванические (ФВГ, ФКГ)
Фильтры волокнистые гальванические предназначены для высокоэффективной очистки воздушных вентиляционных выбросов от жидких и растворимых в воде твердых аэрозольных частиц и паров в гальванических, травильных и химических производствах; из вытяжных шкафов, лабораторных помещений; моечных камер для струйной обработки поверхностей. Могут использоваться в пищевой промышленности.
Скруббер
Компания Plast-Product производит скрубберы абсорберы и центробежно-барботажные установки, аппараты которые используются для очистки воздуха от пыле-газо-воздушных смесей и токсичных испарений.
Зачем оно нужно
Существует три основные задачи, которые решаются развязкой цифрового сигнала.
Первой приходит в голову защита от высоких напряжений. Действительно, обеспечение гальванической развязки — это требование, которое предъявляет техника безопасности к большинству электроприборов.
Пусть микроконтроллер, который имеет, естественно, небольшое напряжение питания, задает управляющие сигналы для силового транзистора или другого устройства высокого напряжения. Это более чем распространенная задача. Если между драйвером, который увеличивает управляющий сигнал по мощности и напряжению, и управляющим устройством не окажется изоляции, то микроконтроллер рискует попросту сгореть. К тому же, с цепями управления как правило связаны устройства ввода-вывода, а значит и человек, нажимающий кнопку «включить», легко может замкнуть цепь и получить удар в несколько сотен вольт.
Итак, гальваническая развязка сигнала служит для защиты человека и техники.
Не менее популярным является использование микросхем с изоляционным барьером для сопряжения электрических цепей с разными напряжениями питания. Тут всё просто: «электрической связи» между цепями нет, поэтому сигнал логические уровни информационного сигнала на входе и выходе микросхемы будут соответствовать питанию на «входной» и «выходной» цепях соответственно.
Гальваническая развязка также используется для повышения помехоустойчивости систем. Одним из основных источников помех в радиоэлектронной аппаратуре является так называемый общий провод, часто это корпус устройства. При передаче информации без гальванической развязки общий провод обеспечивает необходимый для передачи информационного сигнала общий потенциал передатчика и приемника. Поскольку обычно общий провод служит одним из полюсов питания, подключение к нему разных электронных устройств, в особенности силовых, приводит к возникновению кратковременных импульсных помех. Они исключаются при замене «электрического соединения» на соединение через изоляционный барьер.
Как оно работает
Традиционно гальваническая развязка строится на двух элементах — трансформаторах и оптронах. Если опустить детали, то первые применяются для аналоговых сигналов, а вторые — для цифровых. Мы рассматриваем только второй случай, поэтому имеет смысл напомнить читателю о том кто такой оптрон.
Для передачи сигнала без электрического контакта используется пара из излучателя света (чаще всего светодиод) и фотодетектора. Электрический сигнал на входе преобразуется в «световые импульсы», проходит через светопропускающий слой, принимается фотодетектором и обратно преобразуется в электрический сигнал.
Оптронная развязка заслужила огромную популярность и несколько десятилетий являлась единственной технологией развязки цифровых сигналов. Однако, с развитием полупроводниковой промышленности, с интеграцией всего и вся, появились микросхемы, реализующие изоляционный барьер за счет других, более современных технологий.
Цифровые изоляторы — это микросхемы, обеспечивающие один или несколько изолированных каналов, каждый из которых «обгоняет» оптрон по скорости и точности передачи сигнала, по уровню устойчивости к помехам и, чаще всего, по стоимости в пересчете на канал.
Изоляционный барьер цифровых изоляторов изготавливается по различным технологиям. Небезызвестная компания Analog Devices в цифровых изоляторах ADUM в качестве барьера использует импульсный трансформатор. Внутри корпуса микросхемы расположено два кристалла и, выполненный отдельно на полиимидной пленке, импульсный трансформатор. Кристалл-передатчик по фронту информационного сигнала формирует два коротких импульса, а по спаду информационного сигнала — один импульс. Импульсный трансформатор позволяет с небольшой задержкой получить на кристалле-передатчике импульсы по которым выполняется обратное преобразование.
Описанная технология успешно применяется при реализации гальванической развязки, во многом превосходит оптроны, однако имеет ряд недостатков, связанных с чувствительностью трансформатора к помехам и риску искажений при работе с короткими входными импульсами.
Гораздо более высокий уровень устойчивости к помехам обеспечивается в микросхемах, где изоляционный барьер реализуется на емкостях. Использование конденсаторов позволяет исключить связь по постоянному току между приемником и передатчиком, что в сигнальных цепях эквивалентно гальванической развязке.
Если последнее предложение вас взбудоражило..
Если вы почувствовали жгучее желание закричать что гальванической развязки на конденсаторах быть не может, то рекомендую посетить треды вроде этого. Когда ваша ярость утихнет, обратите внимание что все эти споры датируются 2006 годом. Туда, как и в 2007, мы, как известно, не вернемся. А изоляторы с емкостным барьером давно производятся, используются и отлично работают.
Преимущества емкостной развязки заключаются в высокой энергетической эффективности, малых габаритах и устойчивости к внешним магнитным полям. Это позволяет создавать недорогие интегральные изоляторы с высокими показателями надежности. Они выпускаются двумя компаниями — Texas Instruments и Silicon Labs. Эти фирмы используют различные технологии создания канала, однако в обоих случаях в качестве диэлектрика используется диоксид кремния. Этот материал имеет высокую электрическую прочность и уже несколько десятилетий используется при производстве микросхем. Как следствие, SiO2 легко интегрируется в кристалл, причем для обеспечения напряжения изоляции величиной в несколько киловольт достаточно слоя диэлектрика толщиной в несколько микрометров.
На одном (у Texas Instruments) или на обоих (у Silicon Labs) кристаллах, которые находятся в корпусе цифрового изолятора, расположены площадки-конденсаторы. Кристаллы соединяются через эти площадки, таким образом информационный сигнал проходит от приемника к передатчику через изоляционный барьер.
Хотя Texas Instruments и Silicon Labs используют очень похожие технологии интеграции емкостного барьера на кристалл, они используют совершенно разные принципы передачи информационного сигнала.
Каждый изолированный канал у Texas Instruments представляет собой относительно сложную схему.
Рассмотрим её «нижнюю половину». Информационный сигнал подается на RC-цепочки, с которых снимаются короткие импульсы по фронту и спаду входного сигнала, по этим импульсам сигнал восстанавливается. Такой способ прохождения емкостного барьера не подходит для медленноменяющихся (низкочастотных) сигналов. Производитель решает эту проблему дублированием каналов — «нижняя половина» схемы является высокочастотным каналом и предназначается для сигналов от 100 Кбит/сек.
Сигналы с частотой ниже 100 Кбит/сек обрабатываются на «верхней половине» схемы. Входной сигнал подвергается предварительной ШИМ-модуляции с большой тактовой частотой, модулированный сигнал подается на изоляционный барьер, по импульсам с RC-цепочек сигнал восстанавливается и в дальнейшем демодулируется.
Схема принятия решения на выходе изолированного канала «решает» с какой «половины» следует подавать сигнал на выход микросхемы.
Как видно на схеме канала изолятора Texas Instruments, и в низкочастотном, и в высокочастотном каналах используется дифференциальная передача сигнала. Напомню читателю её суть.
Дифференциальная передача — это простой и действенный способ защиты от синфазных помех. Входной сигнал на стороне передатчика «разделяется» на два инверсных друг-другу сигнала V+ и V-, на которые синфазные помехи разной природы влияют одинаково. Приемник осуществляет вычитание сигналов и в результате помеха Vсп исключается.
Дифференциальная передача также используется в цифровых изоляторах от Silicon Labs. Эти микросхемы имеют более простую и надежную структуру. Для прохождения через емкостный барьер входной сигнал подвергается высокочастотной OOK (On-Off Keying) модуляции. Другими словами, «единица» информационного сигнала кодируется наличием высокочастотного сигнала, а «ноль» — отсутствием высокочастотного сигнала. Модулированный сигнал проходит без искажений через пару емкостей и восстанавливается на стороне передатчика.
Цифровые изоляторы Silicon Labs превосходят микросхемы ADUM-ы по большинству ключевых характеристик. Микросхемы от TI обеспечивают примерно такое же качество работы как Silicon Labs, но в отдельных случаях уступают в точности передачи сигнала.
Гальваническая развязка для спутниковых антенн
Одним из основных элементов волноводного тракта спутниковых антенн выступает гальваническая развязка, устраняющая проблему изоляции друг от друга низкого и высокого напряжения цепей управления.
Гальваническая развязка (гальваноразвязка или гальваническая изоляция) представляет собой трансляцию энергии или сигнала между электроцепями без присутствия между ними непосредственного электрического контакта. При таком типе взаимодействия электрические потенциалы разделенных друг с другом цепей могут различаться.
Разновидности гальванических развязок
Организация системы осуществляется за счет следующих технических решений:
Трансформаторные развязки
Используются для передачи как мощности, так и сигнала с использованием силового трансформатора, который обеспечивает передачу высокой мощности. Информация передается при помощи высокочастотных и импульсных сверхкомпактных трансформаторов.
Недостаток подобной гальваноразвязки для трансляции информационного сигнала — невозможность прямой передачи через трансформатор сигналов постоянного тока, а также сигналов, меняющихся медленно. Для решения проблемы чаще всего используется их модуляция с последующей демодуляцией.
Оптоэлектронные развязки
Основаны на действии блоков гальванической изоляции, выполненных на базе узлов оптоэлектронного типа, основой которых выступают оптроны (оптопары) — световые излучатели, работающие совместно с фотоприемниками.
Данный тип передачи сигнала осуществляется при помощи оптического излучения и транслирует только информационные сигналы, так как через оптоэлектронные развязки передача мощности затруднена, технически нецелесообразна, однако они выступают наиболее востребованным видом информационных развязок.
Принцип работы заключается во взаимодействии какого-либо светоизлучателя (например, светодиода) и фотодетектора. Оптический сигнал транслируется на гальванически изолированный участок с дальнейшей обратной трансформацией излучения в электрический сигнал.
Преимуществами оптронной гальваноразвязки по сравнению с трансформаторной выступают меньшая стоимость, компактность, способность передачи связи в широком диапазоне, возможность трансляции чистых сигналов на больших частотах. Недостаток — существенно выраженная нелинейность канала во время трансляции сигнала, а также неравномерный коэффициент передачи, изменяющийся от 10 до 30%.
Конденсаторные развязки
Система используется только для передачи информационных сигналов, поскольку она может считаться гальванической лишь условно из-за соединения цепей через емкостную связь конденсатора.
Сигнал чаще всего транслируется через конденсаторный мост несимметричного типа, имеющий различные передающие коэффициенты емкостных делителей напряжения, расположенных в плечах моста, или при помощи двух конденсаторов, имеющих типовую емкость 1пФ.
Главное преимущество метода — простота, недостаток — необходимость дополнительного использования модулятора/демодулятора.
6. Гальваническая развязка
Гальваническая развязка (изоляция) цепей является радикальным решением большинства проблем, связанных с заземлением, и ее применение фактически стало стандартом в системах промышленной автоматизации.
Для осуществления гальванической развязки необходимо выполнить подачу энергии в изолированную часть цепи и обмен с ней сигналами. Подача энергии выполняется с помощью развязывающего трансформатора (в DC-DC или AC-DC преобразователях) или с помощью автономных источником питания: гальванических батарей и аккумуляторов. Передача сигнала осуществляется через оптроны и трансформаторы, элементы с магнитной связью, конденсаторы или оптоволокно.
Основная идея гальванической развязки заключается в том, что в электрической цепи полностью устраняется путь, по которому возможна передача кондуктивной помехи.
Гальваническая изоляция позволяет решить следующие проблемы:
- исключает появление паразитных токов по шине земли, вызванных разностью потенциалов отдаленных друг от друга земель, и тем самым снижает индуктивные наводки, вызванные этими токами;
- уменьшает практически до нуля напряжение синфазной помехи на входе дифференциального приемника аналогового сигнала (например, на рис. 3.73 синфазное напряжение на термопаре относительно Земли не влияет на дифференциальный сигнал на входе модуля ввода);
- защищает входные и выходные цепи модулей ввода и вывода от пробоя большим синфазным напряжением (например, на рис. 3.73 синфазное напряжение на термопаре относительно Земли может быть как угодно большим, если оно не превышает напряжение пробоя изоляции).
Для применения гальванической развязки система автоматизации делится на автономные изолированные подсистемы, обмен информацией между которыми выполняется с помощью элементов гальванической развязки. Каждая подсистема имеет свою локальную землю и локальный источник питания. Подсистемы заземляют только для обеспечения электробезопасности и локальной защиты от помех.
Основным недостатком цепей с гальванической развязкой является повышенный уровень помех от DC- DC преобразователя, который, однако, для низкочастотных схем можно сделать достаточно малым с помощью цифровой и аналоговой фильтрации. На высоких частотах емкость подсистемы на землю, а также проходная емкость элементов гальванической изоляции являются фактором, ограничивающим достоинства гальванически изолированных систем. Емкость на землю можно уменьшить, применяя оптический кабель и уменьшая геометрические размеры изолированной системы.
При использовании гальванически развязанных цепей понятие «напряжение изоляции» часто трактуется неправильно. В частности, если напряжение изоляции модуля ввода составляет 3 кВ, это не означает, что его входы могут находиться под таким высоким напряжением в рабочих условиях. В зарубежной литературе для описания характеристик изоляции используют три стандарта: UL1577, VDE0884 и IEC61010-01, но в описаниях устройств гальванической развязки не всегда даются на них ссылки. Поэтому понятие «напряжение изоляции» трактуется в отечественных описаниях зарубежных приборов неоднозначно. Главное различие состоит в том, что в одних случаях речь идет о напряжении, которое может быть приложено к изоляции неограниченно долго (рабочее напряжение изоляции), в других случаях речь идет об испытательном напряжении (напряжение изоляции), которое прикладывается к образцу в течение от 1 мин. до нескольких микросекунд. Испытательное напряжение может в 10 раз превышать рабочее и предназначено для ускоренных испытаний в процессе производства, поскольку напряжение, при котором наступает пробой, зависит от длительности тестового импульса.
табл. 3.26 показывает связь между рабочим и испытательным (тестовым) напряжением по стандарту IEC61010-01. Как видно из таблицы, такие понятия, как рабочее напряжение, постоянное, среднеквадратическое или пиковое значение тестового напряжения могут отличаться очень сильно.
Электрическая прочность изоляции отечественных средств автоматизации испытывается по ГОСТ 51350 или ГОСТ Р МЭК 60950-2002 синусоидальным напряжением с частотой 50 Гц в течение 60 сек при напряжении, указываемом в руководстве по эксплуатации как «напряжение изоляции». Например, при испытательном напряжении изоляции 2300 В рабочее напряжение изоляции составляет всего 300 В (табл. 3.26).
Табл. 3.26. Зависимость между рабочим и тестовым напряжением
Рабочее напряжение,
В
Воздушный зазор, мм
Испытательное напряжение, В
Пиковое напряжение импульса,
50 мкс
Действующее значение, 50/60 Гц,
1 мин.
Постоянное напряжение или пиковое значение напряжения 50/60 Гц, макс.,
1 мин.
Что такое гальванически изолированные контакты и зачем они нужны?
Гальваническая изоляция (развязка) – это схема изоляции цепей разных электрических устройств, при которой отсутствует сквозное протекание тока между этими устройствами, но передается информационный сигнал. Это действенный метод разрыва контуров заземления, предотвращающий протекание нежелательного тока между двумя устройствами с общим проводом заземления. Гальваническая развязка также помогает обеспечить безопасность, не давая случайному току пройти в землю через тело человека.
Для передачи сигналов в гальванически изолированных системах используются емкость, индукция, электромагнитные волны, оптика, акустические или механические средства. В реле давления «EXTRA® Акваконтроль» серии РДЭ-К реализована гальваническая развязка с применением электромагнитного реле.
Такое исполнение позволяет использовать реле этой серии для управления устройствами УПП и УЗН «EXTRA® Акваконтроль» без адаптера АПП. Реле РДЭ-К также можно применять для управления вторичными устройствами автоматики, если нужна гальваническая развязка либо для управления приборами, которые питаются от постоянного напряжения 12, 24 или 48 В.