Зачем нужен переменный ток

Переменный и постоянный ток: в чем разница, история развития, применение

Детей учат, что пальцы в розетку совать нельзя! А почему? Потому что будет плохо. С более подробным объяснением часто бывают проблемы: какое-то там напряжение, ток, что-то куда-то течет. Чтобы вы в будущем могли сами объяснить своим детям, что к чему, мы сейчас объясним вам. Эта статья про переменный и постоянный токи, их отличия, применение и историю электричества вообще. Науку нужно делать интересной, и мы скромно пытаемся этим заниматься по мере сил.

Например: какой ток у нас в розетках? Переменный, конечно! Напряжением 220 Вольт и частотой 50 Герц. А сеть, по которой передается ток — трехфазная. Кстати, если при словах «фаза» и «ноль» вы впадаете в ступор, почитайте что это такое, и день будет прожит вдвойне не зря! Но не будем забегать вперед. Обо всем по порядку.

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

Краткая история электричества

Кто изобрел электричество? А никто! Люди постепенно понимали, что это такое и как им пользоваться.

Все началось в 7 веке до нашей эры, в один солнечный (а может и дождливый, кто знает) день. Тогда греческий философ Фалес заметил, что, если потереть янтарь о шерсть, он будет притягивать легкие предметы.

Потом были Александр Македонский, войны, христианство, падение Римской империи, войны, падение Византии, войны, средневековье, крестовые походы, эпидемии, инквизиция и снова войны. Как вы поняли, людям было не до какого-то там электричества и натертых шерстью эбонитовых палочек.

В каком году изобрели слово «электричество»? 1600 году английский естествоиспытатель Уильям Гилберт решил написать труд «О магните, магнитных телах и о большом магните — Земле». Именно тогда и появился термин «электричество».

Через сто пятьдесят лет, в 1747 году Бенджамин Франклин, которого мы все очень любим, создал первую теорию электричества. Он рассматривал это явление как флюид или нематериальную жидкость.

Именно Франклин ввел понятие положительного и отрицательного зарядов (до этого разделяли стеклянное и смоляное электричество), изобрел молниеотвод и доказал, что молния имеет электрическую природу.

Бенджамина любят все, ведь его портрет есть на каждой стодолларовой купюре. Помимо работы в точных науках, он был видным политическим деятелем. Но вопреки распространенному заблуждению, Франклин не был президентом США.

Дальше пойдет перечисление важных для истории электричества открытий.

1785 год – Кулон выясняет, с какой силой противоположные заряды притягиваются, а одноименные отталкиваются.

1791 год – Луиджи Гальвани случайно заметил, что лапки мертвой лягушки сокращаются под действием электричества.

Переменный ток

Принцип работы батарейки основан на гальванических элементах. Но кто создал первый гальванический элемент? Основываясь на открытии Гальвани, другой итальянский физик Алессандро Вольта в 1800 году создает столб Вольта – прототип современной батарейки.

На раскопках рядом с Багдадом нашли батарейку возрастом больше двух тысяч лет. Какой древний айфон с ее помощью подзаряжали — остается загадкой. Зато известно точно, что батарейка уже «села». Этот случай как бы говорит: может быть, люди знали об электричестве намного раньше, но потом что-то пошло не так.

Уже в 19 веке Эрстед, Ампер, Ом, Томсон и Максвелл совершили настоящую революцию. Был открыт электромагнетизм, ЭДС индукции, электрические и магнитные явления связали в единую систему и описали фундаментальными уравнениями.

Кстати! Если у вас нет времени, чтобы самостоятельно разбираться со всем этим, для наших читателей сейчас действует скидка 10% на любой вид работы

20 век принес квантовую электродинамику и теорию слабых взаимодействий, а также электромобили и повсеместные линии электропередач. Кстати, знаменитый электромобиль Тесла работает на постоянном токе.

Тесла. Работает на постоянном токе

Конечно, это очень краткая история электричества, и мы не упомянули очень много имен, которые повлияли на прогресс в этой области. Иначе пришлось бы написать целый многотомный справочник.

Переменный ток

Физика

Переме́нный ток, электрический ток, изменяющийся во времени по величине и/или направлению. В общем случае к переменному току относят различные виды импульсных, пульсирующих, периодических и квазипериодических токов. Если любые значения переменного тока повторяются через равные промежутки времени, то переменный ток называется периодическим. Периодом T T T переменного тока называется наименьший промежуток времени, в котором силы тока в моменты времени t t t и t + T t + T t + T равны: i ( t ) = i ( t + T ) i(t) = i(t + T) i ( t ) = i ( t + T ) . В технике под переменным током обычно подразумевают периодический (или близкий к периодическому) ток, в котором средние за период значения силы тока и напряжения равны нулю.

В том случае, когда переменный ток меняется по направлению, одно из направлений переменного тока принимают за положительное, а противоположное – за отрицательное. Соответственно, если направление переменного тока в некоторый момент времени совпадает с положительным направлением, то значение тока также считают положительным, а для противоположного направления тока – отрицательным. В простейшем случае мгновенное значение силы переменного тока изменяется во времени по гармоническому закону (гармонический, или синусоидальный, переменный ток):

i = I m s i n ( ω t + α ) i = I_msin( omega t+α) i = I m ​ s in ( ω t + α ) ,

где I m I_m I m ​ амплитуда тока, α alpha α – начальная фаза, ω = 2 π f ω = 2πf ω = 2 π f – круговая частота, f = 1 / T f = 1/T f = 1/ T – линейная частота. Гармонический ток возникает под действием синусоидального напряжения u той же частоты:

u = U m s i n ( ω t + β ) u = U_msin(ωt+β) u = U m ​ s in ( ω t + β ) ,

где U m U_m U m ​ – амплитуда напряжения, β beta β – начальная фаза.

Для характеристики переменного тока удобно использовать действующие (или эффективные) значения тока и напряжения, которые представляют собой среднеквадратичные (за период) значения силы тока и напряжения. Для синусоидальных токов действующие значения переменного тока и напряжения равны: I = I m 2 displaystyle I= frac < sqrt[]> I = 2

​ I m ​ ​ и U = U m 2 displaystyle U= frac < sqrt[]> U = 2

​ U m ​ ​ . Большая часть приборов, используемых для измерения периодических напряжений и токов, показывает действующие значения этих величин. Произведение действующих значений тока и напряжения определяет мощность, которая расходуется на выделение теплоты или на совершение механической работы в электрической цепи .

Важной характеристикой переменного тока является его частота f. В электроэнергетических системах Российской Федерации и большинства стран мира принята стандартная частота f f f = 50 Гц, в США f f f = 60 Гц. В технике связи применяются переменные токи высокой частоты (от 100 кГц до 30 ГГц). Для специальных целей в промышленности, медицине и других отраслях науки и техники используют переменный ток самых различных частот, а также импульсные токи .

В электротехнике (и частично в радиотехнике) обычно реализуются электрические цепи квазистационарных токов , при этом мгновенные значения переменного тока во всех участках цепи одинаковы. В многопроводных квазистационарных системах, предназначенных для передачи энергии, часто используют многофазные переменные токи – текущие по разным проводам токи с одинаковыми амплитудами, но разными фазами . Большинство цепей, содержащих сопротивления, ёмкости и индуктивности, работает в линейном режиме, когда справедлив принцип суперпозиции . При прохождении через такие цепи гармонические переменные токи не искажают своей формы, тогда как при наличии нелинейных элементов (например, сердечников в трансформаторах, нелинейных преобразователей, электронных ламп и т. п.) синусоидальные сигналы искажаются, обогащаясь высшими гармониками – сигналами на частотах, кратных основной частоте. Квазистационарные цепи с сосредоточенными параметрами могут быть составлены в виде определённой комбинации сопротивлений R R R , индуктивностей L L L и ёмкостей C C C . Если в электрической цепи протекает установившийся квазистационарный электрический ток, то напряжения на сопротивлении u R u_R u R ​ , индуктивности u L u_L u L ​ и ёмкости u C u_C u C ​ определяются соотношениями:

u R = i R uR = iR u R = i R , u L = L d i d t displaystyle u_L=L frac u L ​ = L d t d i ​ , C d u C d t = i displaystyle C frac=i C d t d u C ​ ​ = i .

Для синусоидального тока i = I m sin ⁡ ω t i = I_m sin omega t i = I m ​ sin ω t соответствующие амплитудные значения напряжений на данных элементах равны:

U R m = R I m U_=RI_m U R m ​ = R I m ​ , U L m = ω L I m U_= omega LI_m U L m ​ = ω L I m ​ , U C m = I m ω C displaystyle U_= frac < omega C>U C m ​ = ω C I m ​ ​ .

В нелинейных режимах величины R R R , L L L и C C C являются функциями протекающего тока i; в линейных режимах они либо постоянны, либо зависят в явном виде от времени (параметрические системы).

При расчёте электрических цепей гармонических переменных токов удобно использовать комплексные амплитуды напряжения и тока, а также комплексные сопротивления Z Z Z ( импеданс ), определяемые на резистивных, индуктивных и ёмкостных участках цепи соответственно как

Z R = R Z_R=R Z R ​ = R , Z L = j ω L Z_L=j omega L Z L ​ = jω L и Z C = 1 j ω C displaystyle Z_C= frac Z C ​ = jω C 1 ​ (здесь j j j – мнимая единица).

Тогда квазистационарная линейная цепь (многополюсник) может быть рассчитана по правилам Кирхгофа , т. е. в этом случае применимы методы расчётов цепей постоянного тока.

С ростом частоты, когда размер электрической цепи становится сравнимым с длиной электромагнитной волны λ = c / f lambda = c/f λ = c / f ( c c c – скорость света), квазистационарное приближение перестаёт быть справедливым, и для получения распределения переменного тока необходимо применять уравнения Максвелла . При этом протекающий по проводящей среде переменный ток распределяется по сечению не равномерно, а преимущественно в поверхностном слое. Иногда такие токи называют быстропеременными и оперируют не суммарными (интегральными) силами тока, а их объёмными плотностями. Плотность быстропеременных токов включает потенциальную и вихревую компоненты. Последняя ответственна за возбуждение вихревых электромагнитных полей. В открытых (неэкранированных) системах именно с вихревыми переменными токами связано излучение электромагнитной энергии, что используется, например, в излучателях (антеннах), где путём подбора распределений быстропеременных токов создаются требуемые угловые распределения полей излучения (диаграммы направленности).

Опубликовано 22 июня 2022 г. в 11:23 (GMT+3). Последнее обновление 22 июня 2022 г. в 11:23 (GMT+3). Связаться с редакцией

Видео описание

Видео о том, какой ток лучше – постоянный или переменный:

Коротко о главном

Электроток представляет собой направленное движение электронов и ионов. Движущей силой им служит разность потенциалов. Применяется электричество практически везде – от моторов до микросхем.

Разделяется электрический ток на переменный и постоянный. Различаются они прежде всего тем, что полярность последнего неизменна, а первого – меняется с определенной частотой. На схемах значок постоянного тока выглядит как прямая линия или буквами DC, переменного – волнистая черта или AC.

Источники электротока классифицируются на такие виды:

  • Механические. Генераторы ГЭС, ТЭС, автономные.
  • Термические. На основе термопар.
  • Световые. Солнечные батареи.
  • Химические. АКБ, гальванические элементы.

Плюсы постоянного электротока – отсутствие реактивной мощности, аккумуляция, отсутствие опережения, минусы – сложность размыкания, трудность преобразования, усиление коррозии. Достоинства переменного электротока – передача на расстояние, легкость преобразования, подключения и отключения, недостатки – реактивная мощность, вытеснение заряда, необходимость повышения мощности при большой длине ЛЭП.

Оцените статью
TutShema
Добавить комментарий