Что понимается под защитным занулением электроустановок

При покупке любого вида электрооборудования стоит быть готовым к тому, что оно может выйти из строя по различным причинам, в том числе связанным с проблемами в электрической части. Для того чтобы создать защиту оборудования от нестандартных режимов работы, например, перегрузки или короткого замыкания, широко используются разнообразные защитные устройства – автоматы, УЗО, пробки. Но при этом достаточно распространенными являются ситуации, когда подобное защитное оборудование не реагирует на проблемы в сети, например, при повреждении внутренней изоляции и появления на корпусе из металла увеличенного напряжения.

При возникновении подобных ситуаций важно обеспечить защиту людям, находящимся рядом с неправильно работающим оборудованием, так как очень высока вероятность того, что человек может прикоснуться к поврежденному электрооборудованию и получить удар током. Для того чтобы избежать подобного рода опасностей, широко применяется зануление, которое является альтернативой привычному многим заземлению.

Зануление – это электротехнический процесс, в рамках которого корпус электроприбора соединяется с нейтральным проводником сети или «нулем». Подобная операция позволяет при помощи зануляющего проводника создать замкнутый контур. Особенность работы такого метода в том, что при появлении на корпусе электроприбора напряжения, возникает короткое замыкание, приводящее к срабатыванию автоматов на щитке и отключению подачи электроэнергии. Но следует знать, что существует целый ряд рисков, связанных с занулением, которые обязательно необходимо учесть перед тем, как создать подобный контур:

  • Если в зануляющем контуре возникает КЗ, то его ток должен быть не менее показателя, при котором сработает автомат. Если же ток является ниже тока срабатывания УЗО, то риск получения электротравм возрастает в несколько раз;
  • В тех случаях, если отключение в автоматическом режиме не сработает, то все электроприборы, которые подсоединены к защитной схеме, будут подвержены воздействую напряжения. Подобная ситуация в большинстве случаев приведет к тому, что приборы выйдут из строя, а человек, который в этот момент может прикоснуться к металлическим корпусам, получит удар током;
  • Зануление функционирует до тех пор, пока нейтральный (нулевой) провод находится в рабочем состоянии, если он отгорит или в процессе монтажа неопытный электрик перепутает фазу и ноль, то на металлический корпус прибора подастся напряжение, и он станет опасен.

Отличия зануления и заземления

Несмотря на то, что заземление и зануление предназначены для защиты человека от поражения электротоком, они работают по несколько различным принципам. В электросетях, в которых используется зануление, производится отключение от сети оборудования с напряжением на корпусе. Ключевыми отличиями можно считать:

  • Защита при использовании заземления реализуется снижением напряжения при помощи прикосновения;
  • При занулении защита происходит благодаря отключению оборудования от сети электропитания.

В зависимости от того, какая система заземления используется в электроустановках, защита может быть реализована и традиционным заземлением, и занулением. В электрооборудовании до 1 кВ могут использоваться несколько систем заземления — TN-C, TN-S, TN-C-S, TT, IT. Зануление применяется только в тех электросистемах, в которых имеются проводники типа PEN, PE и N – это сети с глухо заземленной нейстралью (TN-C, TN-S и TN-C-S).

Нет заземления в квартире? Как защититься (два способа) #энерголикбез

Особенности защитного зануления

Важно помнить, что защитное зануление находит широкое применение в электроустановках промышленного назначения и на производстве, так как имеется возможность создания отдельно взятых электрических подсистем. При этом зануление на промышленных предприятиях производится опытными электриками, имеющими соответствующие допуски. Не стоит использовать зануление условиях дома, так как бытовые электрические сети н предназначены для постоянных коротких замыканий и срабатывания автоматов – это может привести к нарушению целостности изоляции и непосредственно проводников (они могут отгореть).

  • Винипласт
  • Гетинакс
  • Доставка товаров из Китая
  • Изолента
  • Изофлекс 191
  • Капролон
  • КИФЭ слюдопласт
  • Лак МЛ-92
  • Лакоткань
  • Лауретсульфат натрия (SLES 70%)
  • Лента киперная
  • Лента ЛСКЛ-155
  • Лента ЛЭТСАР
  • Лента слюдинитовая
  • Лента смоляная
  • Лента стеклобандажная ЛСБЭ
  • Лента стеклянная ЛЭС
  • Лента тафтяная
  • Лента ФУМ
  • Миканиты
  • Оргстекло
  • Пластикат 57-40
  • Пленка полиимидная ПМ-А
  • Пленка ПЭТ-Э
  • Пленкосинтокартон ПСК
  • Пленкоэлектрокартон ПЭК
  • Полиацеталь ПОМ
  • Полиуретан
  • Полиэтилен PE-1000
  • Провод БПВЛ
  • Провод ПВ-3 (ПУГВ)
  • Стеклолакоткань
  • Стекломиканит гибкий
  • Стеклопластик UPM-203 (полный аналог Durostone)
  • Стеклотекстолит
  • Стеклотекстолит фольгированный FR-4
  • Стеклоткань
  • Текстолит
  • Трубка ТВ-40
  • Трубка ТКР
  • Трубка ТЛВ
  • Трубка ТУТ
  • Трубка фторопластовая Ф-4Д
  • Фторолакоткань Ф-4Д
  • Фторопласт
  • Шнуры электроизоляционные
  • Электрокартон
  • Эмалированный провод
  • Эмаль ГФ-92 ХС

Защитное зануление в электроустановках

Занулением называется электрическое соединение металлических нетоковедущих частей электроустановок с заземленной нейтралью вторичной обмотки трехфазного понижающего трансформатора или генератора, с заземленным выводом источника однофазного тока, с заземленной средней точкой в сетях постоянного тока.

Принцип действия зануления основан на возникновении короткого замыкания при пробое фазы на нетоковедущую часть часть прибора или устройства, что приводит к срабатыванию системы защиты (автоматического выключателя или перегоранию плавких предохранителей).

Зануление — основная мера защиты при косвенном прикосновении в электроустановках до 1 кВ с глухозаземленной нейтралью. Поскольку нейтраль заземлена, зануление можно рассматривать как специфическую разновидность заземления.

Нулевым защитным проводником называется проводник, соединяющий зануляемые части (корпуса, конструкции, кожухи и т.п.) с заземленной нейтралью источника питания (трансформатора, генератора). Подробнее смотрите здесь: Защитные проводники в электроустановках (PE-проводники).

В сетях 380/220 В в соответствии с требованиями ПУЭ применяется заземление нейтралей (нулевых точек) трансформаторов или генераторов.

Рассмотрим вначале сеть 380 В с заземленной нейтралью. Такая сеть изображена на рис. 1.

Если человек прикоснется к проводнику этой сети, то под воздействием фазного напряжения образуется цепь поражения, которая замыкается через тело человека, обувь, пол, землю, заземление нейтрали (см. стрелки). Та же цепь образуется, если человек прикоснется к корпусу с поврежденной изоляцией. Однако просто выполнить заземление корпуса электроприемника нельзя.

Прикосновение к проводнику в сети с заземленной нейтралью

Рис. 1. Прикосновение к проводнику в сети с заземленной нейтралью

Заземление электроприемника в сети с заземленной нейтралью

Рис. 2. Заземление электроприемника в сети с заземленной нейтралью

Чтобы это понять, допустим, что такое заземление все же выполнено (рис. 2) и на установке произошло замыкание на корпус двигателя. Ток замыкания будет протекать через два заземлителя — электроприемника Rз и нейтрали Rо (см. стрелки).

По закону Ома фазное напряжение сети Uф распределится между заземлителями Rз и Ro пропорционально их величинам, т. е. чем больше сопротивление заземлителя, тем больше будет падение напряжения в нем.

Если, например, сопротивление Rо = 1 ом, Rз = 4 ом и U ф = 220 В, то падение напряжения распределится так: на сопротивлении Rз будем иметь 176 В, а на сопротивлении Rо будем иметь = 44 В.

Таким образом, между корпусом электродвигателя и землей возникает достаточно опасное напряжение. Человек, прикоснувшийся к корпусу, может быть поражен электрическим током. Если будет иметь место обратное соотношение сопротивлений, т. е. Rо будет больше, чем Rз, опасное напряжение может возникнуть между землей и корпусами оборудования, установленного возле трансформатора и имеющими общее заземление с его нейтралью.

Зануление электроприемника в сети с заземленной нейтралью

Рис. 3 . Зануление электроприемника в сети с заземленной нейтралью

По указанной причине в установках с заземленной нейтралью напряжением 380/220 В применяется система заземления иного вида: все металлические корпуса и конструкции связываются электрически с заземленной нейтралью трансформатора через нулевой провод сети или специальный зануляющий проводник (рис. 3). Благодаря этому любое замыкание на корпус превращается в короткое замыкание, и аварийный участок отключается предохранителем или автоматическим выключателем. Такая система заземления и называется занулением .

Таким образом, обеспечение безопасности при занулении достигается путем отключения участка сети, в котором произошло замыкание на корпус.

Защитное действие зануления заключается в автоматическом отключении участка цепи с поврежденной изоляцией и одновременно — в снижении потенциала корпуса на время от момента замыкания до момента отключения. После прикосновения человека к корпусу не отключившегося, по какой-либо причине, электроприемника в схеме появится ветвь тока через тело человека.

Кроме того, если в этой линии установлено УЗО, то оно так же срабатывает, но не от большой величины силы тока, а потому, что сила тока в фазном проводе становится неравна силе тока в нулевом рабочем проводе, так как большая часть тока имеет место в цепи защитного зануления мимо УЗО. Если на этой линии установлены и УЗО и автоматический выключатель, то сработают либо они оба, либо что-то одно, в зависимости от их быстродействия и величины тока замыкания.

Так же как не всякое заземление обеспечивает безопасность, не всякое зануление пригодно для обеспечения безопасности. Зануление должно быть выполнено так, чтобы ток короткого замыкания в аварийном участке достигал значения, достаточного для расплавления плавкой вставки ближайшего предохранителя или отключения автомата. Для этого сопротивление цепи короткого замыкания должно быть достаточно малым.

Если отключения не произойдет, то ток замыкания будет длительно протекать по цепи и по отношению к земле возникнет напряжение не только на поврежденном корпусе, но и на всех зануленных корпусах (так как они электрически связаны). Это напряжение равно по величине произведению тока замыкания на сопротивление нулевого провода сети или зануляющего проводника и может оказаться значительным по величине и, следовательно, опасным особенно в местах где отсутствует выравнивание потенциалов. Чтобы предупредить подобную опасность, необходимо точно выполнять требования ПУЭ к устройству зануления .

Защитное действие зануления обеспечивается надежным срабатыванием максимальной токовой защиты на быстрое отключение участка сети с поврежденной изоляцией. По ПУЭ время автоматического отключения поврежденной линии для сети 220/380В не должно превышать 0,4 с.

Для этого необходимо, чтобы ток короткого замыкания в цепи фаза — нуль отвечал условию I к > k Iно м , где k — коэффициент надежности , Iном — номинальный ток уставки отключающего аппарата (плавкий предохранитель, автомат ический выключатель ).

Коэффициент надежности k согласно ПУЭ должен быть не менее: 3 — для плавких предохранителей или автоматов с тепловым расцепителем (тепловое реле) для нормальных помещений и 4 — 6 — для взрывоопасных помещений , 1,4 — для автомат ических выключателей с электромагнитным расцепителем во всех помещениях.

Сопротивление растеканию заземляющего устройства нейтрали Ro (рабочее заземление) должно быть не более 2, 4 и 8 Ом соответственно при номинальных напряжениях 660, 380 и 220 В электроустановки трехфазного тока.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Не пропустите обновления, подпишитесь на наши соцсети:

Что такое зануление и для чего оно нужно?

В настоящее время существует несколько различных систем электроснабжения потребителей напряжением до 1000 В, однако в России основной в данном случае является система с глухозаземленной нейтралью. Именно такая система используется в каждом нашем доме.

При кажущейся сложности названия все предельно просто. В такой системе нейтральная точка трансформатора на подстанции имеет непосредственное соединение с землей. Основной мерой защиты от случайного попадания под напряжения в данном случае служит защитное зануление, то есть специальное соединение любой металлической части бытового электроприбора с нейтралью трансформатора.

Поскольку, как и было отмечено выше, в таких системах нейтраль глухо соединена с землей то по сути своей защитное зануление не что иное, как одна из разновидностей заземления.

розетка с заземляющим контактом

В каждой нашей домашней розетке при правильно выполненной в доме электропроводке имеется заземляющий контакт. Именно через него при включении электроприбора мы соединяем его корпус с нейтральной точкой трансформатора.

Суть работы защитного заземления заключается в следующем. Нормативные документы регламентируют допустимое время отключение поврежденной линии при коротком замыкании не более 0,4 секунд. Именно за это время, как считается, человек имеет все шансы остаться в живых при попадании под напряжение.

При выполнении защитного зануления значительно снижается сопротивление петли «фаза-ноль» и обеспечивается достаточное значение тока короткого замыкания для срабатывания аппарата защиты (предохранитель или автоматический выключатель) за время не более 0,4 секунд.

Защитное зануление

При отсутствии защитного зануления, или как его еще в быту называют «заземления» ток короткого замыкания за счет высокого сопротивления может оказаться недостаточным для срабатывания защиты и поврежденный бытовой прибор может надолго оказаться под опасным для человека напряжении.

Выполняется защитное зануление в соответствии с требованиями действующих Правил Устройства Электроустановок (ПУЭ). Как правило для этого используется третья жила провода, либо отдельно проложенный медный проводник сечением не менее 4 мм.кв.

Кроме того, в сетях с глухозаземленной нейтралью категорически запрещается выполнять заземление бытовых приборов на отдельный контур заземления, не связанный с нейтральной точкой трансформатора. Например, просто соединив заземляющий контакт розетки с самостоятельно вбитым под окном металлическим стержнем.

Защитное зануление

Защитное зануление

То же самое и касается попыток «заземления» на систему отопления или водоснабжения квартиры. В этом случае ток короткого замыкания может оказаться достаточно низким за счет того, что земля и дополнительный контур заземления (как правило самодельного производства) имеют значительно большее сопротивление нежели специальный нулевой защитный проводник.

В целом можно сказать, защитное зануление играет огромную роль в обеспечении электробезопасности вашего дома, а качеству и правильности его выполнения следует уделять максимум внимания.

Что такое зануление и как его выполняют?

Зануление — это защитное заземление в системах TN, то есть ТN-C, ТN-S, ТN-C-S. Согласно ГОСТ 30331.1-2013, защитное заземление — это заземление, выполняемое с целью обеспечения электрической безопасности.

Электроустановки многоквартирных и индивидуальных жилых домов, как правило, выполняют с типом заземления системы TN-C-S. Система TN-C-S подразумевает зануление (см. рисунок 1 ниже).

Система TN-C-S трехфазная четырехпроводная

В стандартах и документах МЭК, а также в подготовленных на их основе национальных стандартах используют термин «защитное заземление», которым обозначают соединение открытых проводящих частей с защитными проводниками, имеющими в системах TN-C, TN-S, TN-С-S электрический контакт с заземлёнными частями источников питания, находящимися под напряжением.

Указанное соединение упомянуто в определении термина «тип заземления системы» в п. 20.75 ГОСТ 30331.1:

«Комплексная характеристика системы распределения электроэнергии, устанавливающая наличие или отсутствие заземления частей источника питания, находящихся под напряжением, наличие заземления открытых проводящих частей электроустановки или электрооборудования, наличие и способ выполнения электрического соединения между заземленными частями источника питания, находящимися под напряжением, и указанными открытыми проводящими частями».

Способы выполнения этого соединения перечислены в п. 312.2 ГОСТ 30331.1 при расшифровке буквенных обозначений, используемых в обозначениях типов заземления системы. Здесь, в частности, сказано:

«Вторая буква указывает … на наличие электрического соединения между открытыми проводящими частями и заземленной частью источника питания, находящейся под напряжением: …

N – открытые проводящие части имеют непосредственное соединение с заземленной частью источника питания, находящейся под напряжением, выполненное с помощью PEN-, PEM-, PEL-проводников или защитных проводников (PE).

Зануление не является не является мерой защиты, а представляет собой лишь элемент меры защиты «автоматическое отключение питания».

Тем не менее в ПУЭ 7 дано другое определение, которое содержит грубые ошибки (на базе анализа нормативной документации, которую провел Харечко Ю.В.):

«Защитное зануление в электроустановках напряжением до 1 кВ − это преднамеренное соединение открытых проводящих частей с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с заземленной точкой источника в сетях постоянного тока, выполняемое в целях электробезопасности» (определение согласно п. 1.7.31 ПУЭ 7 и ГОСТ 12.1.009-2017)

В процитированном определении допущены грубые ошибки.

  • Во-первых, в определении упомянуты однофазный ток и трёхфазный ток, которых не существует. Однофазным и трёхфазным могут быть электрические системы, сети, цепи и электрическое оборудование.
  • Во-вторых, в названии термина упомянуты электроустановки напряжением до 1 кВ, а в определении указаны сети постоянного тока. Низковольтные электрические системы, сети, цепи и электрическое оборудование постоянного тока могут иметь напряжение до 1500 В.
  • В-третьих, в определении указана точка источника в сетях постоянного тока. Однако у источников питания заземляют части, находящиеся под напряжением, а не точки.

Термин «зануление» до сих пор применяют в национальных и межгосударственных стандартах. Например, его используют в требованиях ГОСТ 12.1.030–81, ГОСТ 12.1.009-2017 и других.

Термин «зануление» не применяют в стандартах и документах Международной электротехнической комиссии, на основе которых разрабатывают национальные нормативные документы.

Как выполняют зануление?

Зануление в системах TN, как и заземление в системах TT и IT, выполняют посредством присоединения открытых проводящих частей к защитным проводникам, создавая пути для протекания токов замыкания на землю. Зануление не может отключить электрическую цепь. Для отключения электрических цепей при замыканиях на землю и при выполнении зануления, и при выполнении заземления применяют защитные устройства.

Заключение. Термин «защитное зануление» следует исключить из ПУЭ и требований национальных и межгосударственных стандартов. В главе 1.7 ПУЭ следовало бы надлежащим образом определить типы заземления системы TN-C, TN-S, TN-С-S (как это определено в ГОСТ 30331.1-2013), посредством которых более точно идентифицируют присоединение открытых проводящих частей низковольтной электроустановки к заземлённой части источника питания, находящейся под напряжением.

Применение зануления

Зануление выполняют на промышленных объектах, часто с расположенным в здании источником питания (генератором или трансформатором), для обеспечения безопасности эксплуатации электроустановок различного назначения и повышения помехоустойчивости при их работе. Согласно требованиям пункта 1.7.101 ПЭУ-7 зануление электроустановок следует выполнять: — при напряжении 380 В и выше переменного тока и 440 В и выше постоянного тока — во всех электроустановках; — при номинальных напряжениях выше 42 В, но ниже 380 В переменного тока и выше 110 В, но ниже 440 В постоянного тока — только в помещениях с повышенной опасностью, особо опасных и в наружных установках. Все электрооборудование промышленных объектов выводят на общий контур заземления и соединяют между собой металлической заземляющей шиной. Полный перечень частей, подлежащих занулению, представлен в главе 1.7 Правил устройства электроустановок (ПУЭ-7). Там же приведен список электрооборудования, преднамеренное зануление которого не требуется. Для электрозащиты объектов жилого фонда зануления практически не применяют. В новостройках заземление организованно централизованно. Современные электроприборы имеют вилку с тремя контактами. Один из контактов подключен к корпусу. Заземление для отдельно взятой квартиры состоит в присоединении к заземлителям корпусов и частей бытовых приборов. Потребность в занулении в таком случае отпадает. Дома старого жилого фонда, как правило, подключенные по системе TNC, могут и вовсе не иметь заземления. Модернизацией электросетей подобных домов должна заниматься специализированная электротехническая компания. Однако, зачастую сами жильцы таких домов прибегают к обустройству запрещенного в данном случае зануления, что является совсем не безопасным способом электрозащиты для жилого сектора. Требования к организации системы защитного зануления, как уже говорилось, определены в нормативных документах. Однако в процессе реализации данного способа защиты электросетей, нередко допускаются ошибки, препятствующие его прямому назначению. Ошибочно мнение о том, что лучше выполнять заземление на отдельный от нулевого проводника контур, ввиду отсутствия сопротивление длинного PEN-проводника от электроприбора до заземлителя подстанции. Однако на деле, сопротивление заземления оказывается гораздо большим, чем у длинного провода. При попадании фазы на заземлённый указанным способом корпус установки, ток замыкания может быть недостаточным для срабатывания автоматических средств защиты электросети. В данном случае напряжение на корпусе достигает опасной для пользователя величины. Даже при применении автоматического выключателя небольшого номинала, не удается обеспечить требуемое ПУЭ время автоматического отключения повреждённой линии от сети.

По своему назначению заземление и зануление во многом похожи – обеспечивают защиту пользователя электроустановки от поражения электрическим током. Однако способы и принцип организации такой защиты различны. Обеспечение электробезопасности сетей с использованием системы зануления подробно рассмотрено в предыдущих разделах статьи. Действие защитного заземления основано на принудительном соединении электроустановок с землей с целью снижения напряжения прикосновения до безопасной величины. Избыточный ток, поступающий на корпус электроустановки, отводится напрямую в землю (по заземляющей части). В качестве заземлителя устанавливают заземляющий контур треугольной конфигурации, сопротивление которого должно быть меньше, чем на остальных участках цепи. Отличие зануления от заземления состоит в следующем:

  • в способе обеспечения защиты электрических сетей: заземление -снижает напряжение прикосновения, зануление — отключает поврежденную электроустановку от сети, что практически исключает удар током и, с этой точки зрения, является более эффективным средством защиты для использования на промышленных предприятиях. Однако, если говорить о надежности защиты в процессе эксплуатации, то зануление уступает заземлению по причине большей вероятности повреждения целостности нулевого провода и возможного изменения сопротивления петли «фаза-нуль».
  • системами применения: заземление используют исключительно для защиты сетей с изолированной нейтралью (системы TT и IT), зануление — в сетях с глухо заземленной нейтралью TN-C, TN-S и TN-C-S, где присутствует PEN, PE или N проводники.
  • по типу обустройства: с точки зрения простоты и доступности обустройства, зануление представляет собой более сложный и трудоемкий способ защиты, требующий технических знаний и навыков для правильного определения способа и средней точки зануления. В случае защитного заземления соединяют отдельные детали токоприемника с землей, для чего достаточно применение инструкций к электроприборам.

Защитное зануление

Занулениемназывается преднамеренное электрическое соединение металлических нетоковедущих частей электроустановки с глухозаземлённой нейтралью обмотки источника тока в 3-х фазных сетях с глухозаземлённой нейтралью, которые могут оказаться под напряжением в результате пробоя изоляции фазного провода на корпус.

Проводник, обеспечивающий указанные соединения зануляемых частей с глухозаземлённой нейтралью источника называется нулевым защитным проводником.

Нулевой защитный проводник отличается от нулевого рабочего проводника, который также соединён с глухозаземлённой нейцтральной точкой источника. Он предназначен для питания рабочим током электроприёмника.

Нулевой рабочий проводник, как правило, имеет изоляцию, равноценную изоляции фазных проводников, а сечение его рассчитывается на длительное прохождение рабочего тока.

Защитное зануление применяют в 3 х фазных сетях до 1 кВ с глухозаземленной нейтралью.

Принципиальная схема зануления представлена на рис. 4.5.

Рис.4.5. Принципиальная схема защитного зануления в сети с глухозаземлённой нейтралью.

1 – корпус потребителя электроэнергии;

Rо – сопротивление заземления нейтрали источника тока;

Rт – сопротивление повторного заземления нулевого защитного проводника;

ВА – автоматический выключатель с защитой.

Основное назначение защитного зануления – устранение опасности поражения электрическим током в случае прикосновения к корпусу и другим нетоковедущим металлическим частям электроустановки, оказавшейся под напряжением вследствие замыкания на корпус за счёт быстрого отключения электроустановки от сети действием защиты.

Однако, поскольку корпус оказывается заземленным через нулевой защитный проводник, в аварийный период (с момента возникновения замыкания на корпус до отключения электроустановки от сети защитой) будет проявляться защитное свойство заземления.

Принцип действия защитного зануления основан на превращении замыкания на корпус в однофазное к.з. с целью вызвать большой ток, способный обеспечить срабатывание защиты и тем самым отключить поврежденную электроустановку от сети.

Нулевой защитный проводник в схеме защитного заземления предназначен для создания тока однофазного к.з. цепи с малым сопротивлением, чтобы этот ток был достаточным для быстрого срабатывания защиты (т.е. быстрого отключения поврежденной электроустановки от питающей сети).

Учитывая, что занулённые корпуса заземлены через нулевой защитный проводник, в аварийный период проявляются защитные свойства этого заземления — снижается напряжение на корпусе относительно земли.

Таким образом, зануление осуществляет два защитных действия: быстрое автоматическое отключение повреждённой электроустановки от питающей сети и снижение напряжения занулённых металлических нетоковедущих частей, оказавшихся под напряжением, относительно земли.

Рассмотрим на рис. 4.6 схему без нулевого защитного провода, роль которого выполняет земля (т.е. схема защитного заземления в сети с глухозаземленной нейтралью).

Рис. 4.6. К вопросу о необходимости нулевого защитного проводника в 3-х фазной сети до 1 кВ с заземлённой нейтралью.

При замыкании фазы на корпус в цепи, образовавшейся через землю будет проходить ток:

(4.3)

благодаря которому на корпусе относительно земли возникает напряжение:

(4.4)

Сопротивление обмотки трансформатора источника питания и проводов сети малы по сравнению с R0 и Rз и их в расчёт можно не принимать. Ток Iз может оказаться недостаточным, чтобы вызвать срабатывание защиты и электроустановка может не отключиться. Например, при Uф=220 В и R0 = Rз=4 Ом, ток, проходящий через землю, будет равен: , а напряжение корпуса относительно земли: Если ток срабатывания защиты больше 27,5А, то отключения не произойдет и корпус будет находиться под напряжением 110В до тех пор, пока установку не отключат вручную. Безусловно, при этом возникает угроза поражения людей электрическим током в случае прикосновения к повреждённому оборудованию. Ток через тело человека в этом случае будет равен: Чтобы устранить эту опасность необходимо обеспечить автоматическое отключение электроустановки, т.е. увеличить ток до величины Iз>Ic.з., что достигается уменьшением сопротивления цепи за счёт введения в схему защитного нулевого провода с малым сопротивлением. Согласно ПУЭ нулевой защитный проводник должен иметь проводимость не меньше половины проводимости фазного провода. В этом случае ток однофазного к.з. будет достаточным для быстрого отключения поврежденной электроустановки. Таким образом, в 3 х фазной сети до 1 кВ с заземленной нейтралью без нулевого защитного проводника невозможно обеспечить безопасность при замыкании на корпус, поэтому такую сеть применять запрещается. Заземление нейтрали предназначено для снижения до безопасного значения напряжения относительно земли нулевого защитного проводника (и всех присоединенных к нему корпусов электрооборудования) при случайном замыкании фазы на землю. В 4 х проводной сети с изолированной нейтралью при случайном замыкании фазы на землю между нулевым защитным проводом и землёй (рис. 4.7), а следовательно, между каждым зануленным корпусом и землей, возникает напряжение Uк, близкое к значению Uф. Например, при Uф=220В, Uк220В. Что является весьма опасным. Рис. 4.7. Замыкание фазы на землю в 3-х фазной четырёхпроводной сети до1 кВ с изолированной нейтралью. В сети с заземленной нейтралью (рис. 4.8) при таком повреждении будет обеспечиваться безопасность, так как при замыкании фазы на землю фазное напряжение Uф разделится пропорционально сопротивлениямRзм(сопротивления замыкания фазы на землю) иRо(сопротивление заземления нейтрали), благодаря чему напряжение между зануленным оборудованием и землейUкснизится и будет равно: (4.5)

Рис. 4.8. Замыкание фазы на землю в 3-х фазной четырёхпроводной сети до 1 кВ с заземлённой нейтралью. Как правило, сопротивление, которое оказывает грунт току замыкания фазы на землю Rзм, во много раз больше сопротивления заземления нейтралиR0. ПоэтомуUкоказывается незначительным. Например, при Uф=220В, R0 =4 Ом, Rзм=100 Ом При таком напряжении прикосновение к корпусу неопасно. Очевидно 3 х фазная четырехпроводная сеть с изолированной нетралью имеет опасность поражения электрическим током и применяться не должна. Для уменьшения опасности поражения людей электрическим током в случаях обрыва нулевого защитного проводника и замыкания фазного проводника на корпус применяют повторное заземление нулевого защитного проводника. При случайном обрыве нулевого защитного провода и замыкании фазы на корпус (за местом обрыва) отсутствие повторного заземления приведёт к тому, что напряжение относительно земли оборванного участка нулевого защитного провода и всех присоединенных к нему корпусов окажется равным фазному напряжению сети (Uф) (рис. 4.9, а). Рис. 4.9. Замыкание фазы на корпус при обрыве нулевого защитного проводника: а) в сети без повторного заземления нулевого защитного проводника; б) в сети с повторным заземлением нулевого защитного проводника. Это напряжение опасное для человека будет существовать длительно, поскольку поврежденная электроустановка не будет отключаться от защиты, а обрыв нулевого проводника трудно обнаружить, чтобы отключить вручную. Если же нулевой защитный проводник будет иметь повторное заземление, то при его обрыве сохранится цепь тока Iзчерез землю (рис. 4.9, б), а напряжение прикосновения на корпусе относительно земли за местом обрыва снизится до назначения: (4.6)

Корпуса электрооборудования, присоединенные к нулевому защитному проводнику до места обрыва также окажутся под напряжением относительно земли: Сумма Uки U0равны фазному напряжению: Uк+U0=Uф Если Rо=Rn, то корпуса, присоединенные к нулевому защитному проводу, как до, так и после обрыва, будут иметь одинаковый потенциал: Uк=U0=0,5Uф Этот случай является наименее опасным, так как при других соотношениях R0и Rn часть корпусов будет находиться под напряжением большим 0,5Uф, а другая часть корпусов под напряжением меньшим 0,5Uф. Поэтому повторное заземление значительно уменьшает опасность поражения электрическим током, возникающую при обрыве нулевого защитного проводника, но не может обеспечить условий безопасности, которые существовали до обрыва. В сети, где применяется защитное зануление, запрещается заземлять корпус электроприемника, не присоединив его к нулевому защитному проводу. Объясняется это тем, что в случае замыкания фазы на заземленный, но не присоединенный к нулевому защитному проводнику корпус электрооборудования (рис. 4.14), образуется цепь тока Iз через сопротивление заземления этого корпуса Rз и сопротивление нейтрали источника тока R0. Рис. 4.10. Схема, поясняющая недопустимость заземления и зануления разных корпусов электрооборудования в одной сети. В результате между этим корпусом и землей возникает напряжение: Uк=IзRз Одновременно возникает напряжение между нулевым защитным проводником и землей (между всеми корпусами присоединенными к нулевому защитному проводнику и землей): U0=IзR0 При Rз=Rо, Uки U0 будут одинаковыми и равными половине фазного напряжения. Например, в сети с Uф=220В напряжение между каждым корпусом и землёй будет равно 110В. Указанные напряжения могут существовать длительно, пока электроустановка не будет отключена от сети вручную, т.к. защита из‑за малого значения тока Iз может не сработать. Следует отметить, что одновременное заземление и зануление одного и того же корпуса наоборот улучшает условия безопасности, т.к. создаёт дополнительное заземление нулевого проводника. При замыканиях на корпус зануление создает цепь однофазного короткого замыкания. В результате срабатывает максимально-токовая защита (МТЗ) и аварийный участок цепи отключается от сети. Кроме того, до срабатывания ток к.з. вызывает перераспределение напряжений в сети и, как следствие, снижение напряжения аварийного корпуса относительно цепи (снижается напряжение прикосновения). Быстродействием МТЗ определяется время воздействия поражающего фактора опасности. (Чем меньше время срабатывания защиты, тем меньше опасность поражения человека при прикосновении к зануленному аварийному корпусу). При замыкании на зануленный корпус в цепи одного из фазных проводов возникает ток короткого замыкания (Iк). Этот ток определяется фазным напряжением источника питания (U), сопротивлением цепи фазного (Zф) и нулеваго (Zн) проводов: Сопротивление цепи «фаза-нуль» Zф+Zн выражается комплексными величинами. Это объясняется тем, что при протекании больших токов при надлежащем выполнении зануления Iк должен превышать Iср и тем самым обеспечить срабатывание максимальной токовой защиты и, следовательно, безопасность людей имеющих контакт с зануленным электрооборудованием. Зануление как и защитное заземление, необходимо выполнять в следующих случаях:

  • в помещениях с повышенной опасностью и особо опасных в отношении поражения электрическим током, а также вне помещений при напряжении электроустановок выше 42 В переменного и 110 В постоянного тока;
  • в помещениях без повышенной опасности при напряжении электроустановок 380 В и выше переменного и 440 В и выше постоянного тока;
  • во взрывоопасных зонах независимо от напряжения электроустановок (в том числе до 42 В переменного и до 110 В постоянного тока).

Зануление корпусов переносных электроприёмников осуществляется специальной жилой, находящейся в одной оболочке с фазными жилами питающего кабеля и соединяющей корпус электроприёмника с нулевым защитным проводником питающей линии. Присоединять корпуса переносных электроприёмников к нулевому рабочему проводу линии недопустимо, так как в случае его обрыва все корпуса, присоединённые окажутся под фазным напряжением относительно земли. Рис. 4.11. Зануление переносного однофазного электроприёмника, включенного между фазами и нулевым рабочим проводами. а – правильно; б — неправильно Если нулевой рабочий провод линии является одновременно нулевым защитным, то присоединение к нему корпусов электрооборудования должно выполняться отдельным проводником. Запрещается использовать для жтой цели нулевой рабочий проводник, идущий в электроприёмник, т.к. при случайном его обрыве корпус окажется под фазным напряжением. Рис. 4.12. Зануление переносного однофазного электроприёмника, включенного между фазами проводом и нулевым рабочим, являющимся одновременно нулевым защитным проводником: а – правильно; б — неправильно ПУЭ нормируют максимальные значения сопротивлений заземляющих устройств:

  • в электроустановках напряжением выше 1 кВ в сетях с эффективно заземленной нейтралью сопротивление заземляющего устройствав любое время года должно быть не более 0,5 Ом.
  • в электроустановках напряжением выше 1 кВ в сетях с изолированной нейтралью должно быть R 250/I, Ом, но не более 10 Ом, где I –расчетный ток замыкания на землю, А.
  • в электроустановках напряжением до 1 кВ в сетях с глухозаземленной нейтралью сопротивление заземляющего устройства, к которым присоединены нейтрали генератора или трансформатора в любое время года должно быть не более 2, 4 и 8 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника 3-х фазного тока или 380, 220 и 127 В источника однофазного тока.
  • В электроустановках напряжением до 1 кВ в сетях с изолированной нейтралью сопротивление заземляющего устройства используемого для защитного заземления открытых проводящих частей в системе IT должно быть

R  Uпр /I, Ом

Основные отличия

Если рассматривать разницу между системой заземления и занулением, отличиями служат следующие особенности:

  • Если необходимо заземление корпуса электрооборудования от нуля, для этого необходимо сооружение специального контура. В то же время, при обустройстве цепи зануления такая необходимость отпадает.
  • Конструкция системы заземления предполагает наличие отдельного провода, который будет соединять устройство, находящееся под защитой, с ЗУ. В свою очередь, при занулении проводник прокладывается также из этой точки, но лишь до шины входа.
  • Если происходит замыкание через ноль, для обеспечения безопасности данная фаза отключается от питающей электросети. В то время как при условии заземления происходит снижение опасного напряжения до минимальных значений.

Как правило, в многоквартирных жилых зданиях условий, необходимых для обустройства заземления нет. Поэтому в большинстве случаев зануление для городских квартир является единственно возможным вариантом электрозащиты, наряду с УЗO.

Что выбрать: зануление или заземление?

Что выбрать: зануление или заземление?

Зануление является более сложной системой, организация которой требует проведение множества сопутствующих расчетов. Даже малейшая ошибка может привести к серьезным проблемам. В этом контексте заземление отличается большей безопасностью. К тому же, организовать заземление можно и самостоятельно. Для этого нужно лишь подготовить металлопрокатные изделия – к примеру, уголок, и сварочную аппаратуру, чтобы выполнить соединение частей, проводящих ток.

Чтобы сделать зануление, при проведении расчетов, важно также обладать необходимым опытом и специализированными знаниями. В частности, если в распределительном электрощите обрывается нулевой проводник, прекращает работать вся система. В сравнении с заземлением, это также является одним из минусов зануления. Помимо этого, если такой обрыв все же произойдет, это чревато ударами током. При таких условиях система зануления считается довольно небезопасной.

Резюмируя все выше сказанной, можно сделать следующие выводы:

  • Если в доме существует возможность обустройства заземляющего контура, то лучше организовать заземление, а не занулять все электрические устройства.
  • Система заземления в сравнении с занулением отличается более высокой степенью безопасности.
  • Чтобы сделать зануление, необходимо вызвать квалифицированного специалиста. Помимо всего, проводится осмотр и анализ общего состояния нулевых проводников. В случае выявления каких-либо неисправностей либо несоответствия параметров должна быть проведена замена поврежденного или не работающего проводника.

По факту, находясь непосредственно на объекте и оценивая на месте ситуацию, специалист решает, что лучше всего сделать – зануление или заземление. Если навыки работы с такими системами у мастера отсутствуют или их недостаточно, допущенные при монтаже ошибки могут привести к нежелательным последствиям.

Оцените статью
TutShema
Добавить комментарий