Что называют электрическим напряжением

Что называют электрическим напряжением

То есть электрическое поле должно было «протащить» электроны через нагрузку, и энергия, которая при этом израсходовалась, характеризуется величиной, называемой электрическим напряжением. Эта же энергия потратилась на какое-то изменение состояния вещества нагрузки. Энергия, как мы знаем, не пропадает в никуда и не появляется из ниоткуда. Об этом гласит Закон сохранения энергии. То есть, если ток потратил энергию на прохождение через нагрузку, эту энергию приобрела нагрузка и, например, нагрелась.

То есть, приходим к определению: напряжение электрического тока – это величина, показывающая, какую работу совершило поле при перемещении заряда от одной точки до другой. Напряжение в разных участках цепи будет различным. Напряжение на участке пустого провода будет совсем небольшим, а напряжение на участке с какой-либо нагрузкой будет гораздо большим, и зависеть величина напряжения будет от величины работы, произведенной током. Измеряют напряжение в вольтах (1 В). Для определения напряжения существует формула:

где U — напряжение, A – работа, совершенная током по перемещению заряда q на некий участок цепи.

Напряжение на полюсах источника тока

Что касается напряжения на участке цепи – все понятно. А что же тогда означает напряжение на полюсах источника тока? В данном случае это напряжение означает потенциальную величину энергии, которую может источник придать току. Это как давление воды в трубах. Эта величина энергии, которая будет израсходована, если к источнику подключить некую нагрузку. Поэтому, чем большее напряжение у источника тока, тем большую работу может совершить ток.

В отличие от проводников, в диэлектриках нет свободных зарядов. Все заряды являются

связанными : электроны принадлежат своим атомам, а ионы твёрдых диэлектриков колеблются

вблизи узлов кристаллической решётки.

Соответственно, при помещении диэлектрика в электрическое поле не возникает направлен-ного движения зарядов

. Поэтому для диэлектриков не проходят наши доказательства свойств

проводников — ведь все эти рассуждения опирались на возможность появления тока. И дей-ствительно, ни одно из четырёх свойств проводников, сформулированных в предыдущей статье,

не распростаняется на диэлектрики.

1. Напряжённость электрического поля внутри диэлектрика может быть не равна нулю.

2. Объёмная плотность заряда в диэлектрике может быть отличной от нуля.

3. Линии напряжённости могут быть не перпендикулярны поверхности диэлектрика.

4. Различные точки диэлектрика могут иметь разный потенциал. Стало быть, говорить о

«потенциале диэлектрика» не приходится.

Поляризация диэлектриков — явление, связанное с ограниченным смещением связанных зарядов в диэлектрике или поворотом электрических диполей, обычно под воздействием внешнего электрического поля, иногда под действием других внешних сил или спонтанно.

Поляризацию диэлектриков характеризует вектор электрической поляризации. Физический смысл вектора электрической поляризации — это дипольный момент, отнесенный к единице объема диэлектрика. Иногда вектор поляризации коротко называют просто поляризацией.

Что такое электрическое напряжение?

  • Вектор поляризации применим для описания макроскопического состояния поляризации не только обычных диэлектриков, но и сегнетоэлектриков, и, в принципе, любых сред, обладающих сходными свойствами. Он применим не только для описания индуцированной поляризации, но и спонтанной поляризации (у сегнетоэлектриков).

Поляризация — состояние диэлектрика, которое характеризуется наличием электрического дипольного момента у любого (или почти любого) элемента его объема. Различают поляризацию, наведенную в диэлектрике под действием внешнего электрического поля, и спонтанную (самопроизвольную) поляризацию, которая возникает в сегнетоэлектриках в отсутствие внешнего поля. В некоторых случаях поляризация диэлектрика (сегнетоэлектрика) происходит под действием механических напряжений, сил трения или вследствие изменения температуры. Поляризация не изменяет суммарного заряда в любом макроскопическом объеме внутри однородного диэлектрика. Однако она сопровождается появлением на его поверхности связанных электрических зарядов с некоторой поверхностной плотностью σ. Эти связанные заряды создают в диэлектрике дополнительное макроскопическое поле c напряжённостью Что называют электрическим напряжением, направленное против внешнего поля с напряжённостью . В результате напряжённость поля внутри диэлектрика будет выражаться равенством: В зависимости от механизма поляризации, поляризацию диэлектриков можно подразделить на следующие типы:

  • Электронная — смещение электронных оболочек атомов под действием внешнего электрического поля. Самая быстрая поляризация (до 10 −15 с). Не связана с потерями.
  • Ионная — смещение узлов кристаллической структуры под действием внешнего электрического поля, причем смещение на величину, меньшую, чем величина постоянной решетки. Время протекания 10 −13 с, без потерь.
  • Дипольная (Ориентационная) — протекает с потерями на преодоление сил связи и внутреннего трения. Связана с ориентацией диполей во внешнем электрическом поле.
  • Электронно-релаксационная — ориентация дефектных электронов во внешнем электрическом поле.
  • Ионно-релаксационная — смещение ионов, слабо закрепленных в узлах кристаллической структуры, либо находящихся в междуузлие.
  • Структурная — ориентация примесей и неоднородных макроскопических включений в диэлектрике. Самый медленный тип.
  • Самопроизвольная (спонтанная) — благодаря этому типу поляризации у диэлектриков, у которых он наблюдается, поляризация проявляет существенно нелинейные свойства даже при малых значениях внешнего поля, наблюдается явление гистерезиса. Такие диэлектрики (сегнетоэлектрики) отличаются очень высокими значениями диэлектрической проницаемости (от 900 до 7500 у некоторых видов конденсаторной керамики). Введение спонтанной поляризации, как правило, увеличивает тангенс угла потерь материала (до 10 −2 )
  • Резонансная — ориентация частиц, собственные частоты которых совпадают с частотами внешнего электрического поля.
  • Миграционная поляризация обусловлена наличием в материале слоев с различной проводимостью, образованию объемных зарядов, особенно при высоких градиентах напряжения, имеет большие потери и является поляризацией замедленного действия.

Поляризация диэлектриков (за исключением резонансной) максимальна в статических электрических полях. В переменных полях, в связи с наличием инерции электронов, ионов и электрических диполей, вектор электрической поляризации зависит от частоты.

Электрическое напряжение

Идеи, Концепции, учения, методы исследования

Электри́ческое напряже́ние между точками 1 и 2, скалярная физическая величина, численно равная суммарной работе электрических и сторонних сил при перемещении единичного положительного электрического заряда из точки 1 в точку 2 электрической цепи:
U 12 = ∫ 1 2 ⁣ ( E + E ∗ ) d l = ∫ 1 2 ⁣ E d l + ∫ 1 2 E ∗ d l , ( 1 ) _= int_^!(E+E^*)dl = int_^!E:dl+int_^E^*dl, quad (1) U 12 ​ = ∫ 1 2 ​ ( E + E ∗ ) d l = ∫ 1 2 ​ E d l + ∫ 1 2 ​ E ∗ d l , ( 1 ) где E E E – напряжённость электростатического поля ; E ∗ E^* E ∗ – напряжённость поля сторонних сил, численно равная сторонней силе, действующей на единичный положительный заряд; d l dl d l – вектор, модуль которого равен длине d l dl d l линии, соединяющей точки 1 и 2, направленный вдоль неё от точки 1 к точке 2. К сторонним силам относят силы, отличные от сил электростатического поля. Сторонние силы могут иметь различную физическую природу: механическую, химическую, электромагнитную и др. Так, например, в гальванических элементах , батареях и аккумуляторах – это химические силы – силы молекулярного взаимодействия. К сторонним силам относятся и силы, действующие со стороны вихревого электрического поля (описывается уравнениями Максвелла ).

Так как электростатическое поле потенциально, то первый интеграл в формуле (1) не зависит от пути интегрирования, соединяющего точки 1 и 2; он равен разности потенциалов в точках 1 и 2: Второй интеграл в формуле (1) называют электродвижущей силой (эдс) ε 12 ε_ ε 12 ​ на участке 1–2: ε 12 = ∫ 1 2 E ∗ d l . varepsilon_=int_^E^*dl . ε 12 ​ = ∫ 1 2 ​ E ∗ d l . Значение эдс зависит от пути интегрирования между точками 1 и 2. Таким образом, электрическое напряжение равно:

U 12 = φ 1 − φ 2 + ε 12 ( 2 ) U_=varphi_1-varphi_2+varepsilon_quad (2) U 12 ​ = φ 1 ​ − φ 2 ​ + ε 12 ​ ( 2 ) и в общем случае также зависит от пути интегрирования между точками 1 и 2. Как видно из формулы (2), для участков электрической цепи, не содержащих эдс, электрическое напряжение равно разности потенциалов в точках 1 и 2. Если на участке электрической цепи от точки 1 к точке 2 протекает электрический ток силой I I I , то электрическое напряжение определяется по закону Ома : U 12 = I R U_=IR U 12 ​ = I R , где R R R – электрическое сопротивление участка электрической цепи между точками 1 и 2. Под электрическим напряжением на зажимах гальванического элемента, батареи или аккумулятора понимают не величину U 12 U_ U 12 ​ , определяемую формулами (1) или (2), а модуль разности потенциалов ∣ φ 1 − φ 2 ∣ |φ_1-φ_2| ∣ φ 1 ​ − φ 2 ​ ∣ (он равен эдс ε 12 ε_ ε 12 ​ в случае, когда сила тока равна нулю – цепь разомкнута).

Термин «электрическое напряжение» применяют при описании процессов в электрических цепях не только постоянного , но и переменного тока. В случае переменного тока электрическое напряжение характеризуется действующим (эффективным) значением

U эфф = U 12 2 ( t ) ‾ , U_ = sqrt<overline(t)>>, U эфф ​ = U 12 2 ​ ( t ) ​

​ , где черта сверху означает усреднение по периоду колебаний .

Электрическое напряжение измеряют с помощью вольтметров постоянного и переменного тока. Единица измерения электрического напряжения в Международной системе единиц СИ (SI) – вольт (В).

Опубликовано 13 июня 2023 г. в 16:45 (GMT+3). Последнее обновление 13 июня 2023 г. в 16:45 (GMT+3). Связаться с редакцией

Ваш браузер не поддерживается

Интернет-сервис Студворк построен на передовых, современных технологиях и не может гарантировать полную поддержку текущего браузера.

Chrome

Установить новый браузер

    Google Chrome

Yandex browser

Скачать
Яндекс Браузер

Opera

Скачать
Opera

Firefox

Скачать
Firefox

Edge

Скачать
Microsoft Edge

Нажимая на эту кнопку, вы соглашаетесь с тем, что сайт в вашем браузере может отображаться некорректно. Связаться с техподдержкой

Работаем по будням с 8.00 до 18.00 по МСК

Электрическое напряжение

Напряжение — это физическая величина, характеризующая электрическое поле.

Обозначается электрическое напряжение буквой $U$.

Давайте рассмотрим опыт, который наглядно нам покажет, как же эта величина может описать нам электрическое поле.

Соберем электрическую цепь, состоящую из ключа, источника тока, электрической лампы и амперметра. За источник тока возьмем небольшую батарейку (гальванический элемент), а электрическую лампу возьмем от карманного фонарика (рисунок 2).

А теперь соберем похожую цепь. Заменим лампочку от фонарика большой лампой для освещения помещений. Батарейку тоже заменим. Теперь источником тока у нас является городская осветительная сеть (рисунок 3).

Взгляните на показания амперметров в этих двух цепях. Они одинаковы!

Сила тока в цепях одинакова, но ведь большая лампа дает намного больше света и тепла, чем маленькая лампочка от фонарика. Вот здесь и появляется наша новая величина — напряжение.

Связь работы тока и напряжения

Проведенные нами опыты объясняются следующим.

При одинаковой силе тока работа тока на этих участках цепи при перемещении электрического заряда, равного $1 space Кл$, различна.

Получается, что эта работа тока и определяет нашу новую физическую величину — электрическое напряжение.

Теперь мы может объяснить до конца наши опыты. Напряжение, которое создается батарейкой в первой цепи, меньше напряжение городской осветительной сети. Поэтому лампа, подключенная к сети, дает больше света и тепла. При этом сила тока в обеих цепях одинакова. Вся причина различий — в создаваемом напряжении.

Напряжение показывает, какую работу совершает электрическое поле при перемещении единичного положительного заряда из одной точки в другую.

Электрические напряжения при последовательном и параллельном соединении

У нас уже есть статья о последовательном и параллельном соединении проводников, в котором мы обсуждаем эту тему более подробно. Поэтому здесь мы рассмотрим лишь некоторые основы.

При последовательном соединении компоненты подключаются в ряд.

Электрическое напряжение в цепях с последовательным соединением

Здесь электрическое напряжение источника делится на резисторы. Этот момент также описывается вторым правилом Кирхгофа. Здесь применимо следующее:

то есть напряжение источника равно сумме электрических напряжений на отдельных резисторах. Напряжение источника по-разному распределяется по разным резисторам.

В электрической цепи с параллельным соединением компоненты расположены, соответственно, параллельно друг относительно друга. Это можно увидеть на следующей схеме.

Электрическое напряжение параллельное подключение

Здесь гораздо проще определить электрические напряжения на резисторах, так как при параллельном соединении:

Поэтому электрическое напряжение на резисторах такое же высокое, как и электрическое напряжение источника.

Измерение электрического напряжения

Приборы для измерения напряжения, также называемые вольтметрами, всегда подключаются параллельно потребителю, на котором необходимо измерить электрическое напряжение.

Одним из наиболее часто используемых вольтметров является цифровой мультиметр (DMM), поэтому мы покажем вам процедуру измерения напряжения с помощью DMM. Сначала необходимо установить тип электрического напряжения (DC — постоянный ток или AC — переменный ток).

Для постоянного тока необходимо обратить внимание на правильную полярность, т.е. подключить плюс к положительному полюсу. На следующем этапе необходимо выбрать правильный диапазон измерения. Если вы не можете оценить, насколько велика измеряемая величина, установите наибольший возможный диапазон и двигайтесь от него вниз, пока не найдете нужный. Наконец, вам нужно только «считать» электрическое напряжение прибором.

Определение электрического напряжения

Работа A, совершенная электрическим полем по перемещению электрического заряда q, равна:

где величина U называется электрическим напряжением. Если электрический заряд равняется 1 Кл (кулону), то согласно формулы (1) напряжение будет в точности равно работе по перемещению единичного заряда.

Единица измерения напряжения

Единица напряжения называется вольт. Эта физическая величина получила свое название в честь выдающегося итальянского физика Алессандро Вольта, изучавшего природу электрических явлений.

Портрет Алессандро Вольта

Алессандро Вольта первым придумал и изготовил источник постоянного тока, прототип сегодняшних “батареек”, которыми люди повсеместно пользуются в быту и на производстве. Источником зарядов были химические реакции. Свое изобретение Вольта назвал гальваническим элементом в честь своего коллеги, замечательного ученого Луиджи Гальвани.

В международной интернациональной системе единиц СИ вольт обозначается заглавной латинской буквой V, а в нашей стране для этого используется буква русского алфавита В.

Воспользовавшись формулой (1) и размерностями величин для работы (Джоуль) и заряда (Кулон), получим размерность для единицы напряжения:

На практике, для удобства, кроме вольта часто используются кратные единицы, когда напряжение либо много меньше одного вольта, либо много больше:

  • Микровольт: 1 мкВ=0,000001 В;
  • Милливольт: 1 мВ=0,001 В;
  • Киловольт: 1 кВ=1000 В.

Примеры разных величин напряжения: автомобильный аккумулятор - 12 В, электродвигатели - 380 В, ЛЭП - 500 кВ, молния - 1000 000 В

Способы измерения

С практической точки зрения важно знать не только что такое напряжение, но и чем оно измеряется. В большинстве случаев величина разности потенциалов определяется с помощью вольтметра с соответствующим пределом измерений.

Аналоговый вольтметр

Для определения напряжения в цепи применяется вольтметр
Источник iarduino.ru

При этом в зависимости от типа электрического тока есть следующие нюансы процедуры замера:

Применяется вольтметр или мультиметр с соблюдением таких правил:

  1. Перед началом работы переключатель чувствительности прибора устанавливается на нужный предел в разделе для постоянного тока – DC.
  2. Если значение разности потенциала не известно даже приблизительно, прибор настраивается на максимальную величину, а затем по мере замера переключается на нижние границы.
  3. Контакты измерителя подключаются к электроцепи в соответствии с полярностью. В противном случае, на аналоговой модели стрелка отклонится в обратную сторону, а на цифровой – измеряемой значение будет со знаком «-».

Современные цифровые приборы с дисплеем удобнее, лучше, понятнее и быстрее в управлении. Кроме того, они более точны, чем аналоговые модели, но при этом и дороже их.

В принципе правила и порядок действий при измерении в сети переменного тока такой же, за несколькими исключениями:

  1. Прибор переводится в режим измерения переменного электричества – АС.
  2. Щупы подключаются к контактам в произвольной последовательности.

Универсальное измерительное устройство – мультиметр

Замерить напряжение в электроцепи можно с помощью универсального измерительного устройства – мультиметра

Источник 220-volt.ru

Переменный ток отличается от постоянного сменой полярности или направления движения. В стандартной бытовой сети это происходит 50 раз в секунду – отсюда и его частота 50 Гц.

Мультиметр без проблем определяет разность потенциалов в заданном диапазоне значений. Конечно, далеко не всегда он может оказаться под рукой. Поэтому если у вас есть простой вольтметр, сделать замер разности потенциалов все же можно с применением следующих ухищрений:

  • В сети постоянного тока для измерений в определенном диапазоне величин потребуется подключить к схеме дополнительное наружное или внутреннее сопротивление.
  • Если предстоит серия замеров в цепях с разными границами величины потенциала, лучше заранее изготовить соответствующий набор сопротивлений.

Выставление предела измерения на мультиметре

Перед началом эксплуатации мультиметр следует правильно настроить и выбрать соответствующий предел измерения

Источник lifehacker.ru

  • В сети переменного электротока также применяется добавочное сопротивление. Как вариант, возможно подключение через трансформатор.

Переменный ток применяется повсеместно для оснащения различных объектов на большом расстоянии – от промышленности до частных домов. Постоянный используется для питания оборудования, когда путь передачи от источника до потребителя минимален. Более того, в быту большая часть электрооборудования подключается от сети через выпрямитель.

Видео-урок о том, что такое напряжение и в чем оно измеряется:

Коротко о главном

Напряжение определяется как работа электрического поля по передвижению заряда между точками с избыточным и недостаточным его значением. Электрический ток возникает при соединении контактов разной полярности. При этом электроток течет от «+» к «-».

Измеряется напряжение в вольтах, и зависит от таких главных параметров электроцепи, как сила тока, сопротивление и мощность. Вычисляется величина разности потенциала по закону Ома.

Чтобы замерить электронапряжение в сети, применяется вольтметр или универсальный измерительный прибор – мультиметр. При выполнении процедуры следует учитывать специфику настройки измерителя и особенности типа цепи – постоянной или переменной.

Напишите в комментариях, были ли случаи, когда приходилось измерять или вычислять напряжение в цепи?

  • #напряжение
  • #в чем измеряется
  • #в чем измеряется напряжение
  • Добавить в закладки
  • Скачать
Оцените статью
TutShema
Добавить комментарий