Что такое частота тока

В данной статье я объясню суть переменного тока, его основные характеристики, такие как амплитуда, частота и фаза, а также расскажу о форме переменного тока и его преимуществах и применении.

Переменный ток: определение, свойства и применение – лекция по электротехнике обновлено: 5 ноября, 2023 автором: Научные Статьи.Ру

Помощь в написании работы

Добро пожаловать на лекцию по электротехнике! Сегодня мы будем говорить о переменном токе – одном из основных видов электрического тока. Переменный ток является основой для работы множества электрических устройств и систем, и его понимание является важным для всех, кто изучает электротехнику.

Мы рассмотрим основные характеристики переменного тока, такие как амплитуда, частота и фаза, а также изучим его форму и преимущества перед постоянным током. Надеюсь, что после этой лекции вы сможете лучше понять и применять переменный ток в своей практической деятельности.

Нужна помощь в написании работы?

Мы — биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Какие токи бывают

Для питания электрических устройств и электротехники необходима энергия. Постоянный и переменный токи являются способом передачи энергии из одной точки в другую с использованием проводников.

Важно! Основное различие между ними заключается в характере движения заряженных частиц. Постоянный ток течет равномерно в одном направлении, в то время, как переменный постоянно изменяет направление с заданной скоростью или частотой. Основным следствием этого является полярность напряжения.

Постоянный

Постоянный ток характеризуется неизменным показателем полярности заряженных частиц. Поскольку постоянный ток сохраняет постоянную полярность, важно обращать внимание на то, как подключается устройством – неверное подключение устройства к сети с большой долей вероятности выедет его из строя. Хорошим примером являются устройства с автономным питанием от аккумуляторов – на них всегда наносятся обозначения для их корректного подключения. В противном случае, техника просто не заработает, так как не получит электропитания.

Важно! При использовании постоянного тока, показатель напряжения может сильно разниться, в зависимости от используемого устройства. Типовые значения номинального напряжения автономных источников питания составляют 1.5V, 3.7V, 6V, 9V,12V, 24V и т.д.

Вам это будет интересно Применение полевых транзисторов

⚡️#3 Переменный и постоянный ток. Частота тока. В розетке есть + и — !

Переменный

С переменным током полярность постоянно переключается между положительным и отрицательным значениями. При подобной характеристике силового поля напряжение будет постоянно меняться, а полярность в таком случае не оказывает никакого влияния на работоспособность сети. Именно поэтому, любое бытовое электрическое устройство можно включать в сеть, не задумываясь о положении вилки в розетке, то есть, о соблюдении корректной полярности.

Основной причиной широкого распространения переменного тока является относительная легкость и эффективность в увеличении, либо уменьшении напряжения. Это достигается с помощью трансформаторов, а количество изменений количественных показателей определяется числом обмоток.

Важно! Такая же трансформация допускается и для постоянной величины, но это явление не является эффективным для его применения на практике. Также, это является еще одной, дополнительной причиной, по которой в бытовой сети используется именно переменный ток.

Несмотря на то, что более низкие напряжения легче генерировать, высокие показатели несут меньшие потери при их передаче на расстояния. Поэтому перед подачей потребителям переменное напряжение повышается до нескольких сотен киловольт. Но, как только электричество достигает своего пункта назначения, оно снижается до 110 или 220 вольт. Дело в том, что переменный показатель имеет два установленных стандартных напряжения, которые используются во всем мире: 220В и 110В. Частота в электротехнике играет определяющее значение, и устройства, рассчитанные под напряжение в 110В, не станут работать от сети в 220В.

Какие есть фазы в токе

Многофазным может быть только переменный ток. Всего существует 3 разных фазы, и все они смещены на 120 градусов относительно друг друга. Каждая электростанция выдает по 4 провода: 3 фазовых и один для заземления, который является общим для всех трех. Электростанция вырабатывает три разные фазы переменного тока одновременно, и эти три фазы смещены строго под определённым углом.

Почему три фазы? Почему не одна, две или четыре? В 1-фазных и 2-фазных источниках питания имеет место явление, когда синусоида пересекает нулевую отметку 120 раз в секунду. При трехфазном питании в любой текущий момент одна из трех фаз приближается к пику. Таким образом, мощные 3-фазные двигатели (используемые в промышленности) и другие устройства, такие, как 3-фазное сварочное оборудование, имеют равномерную выходную мощность.

Вам это будет интересно Светильник ДРЛ 400

Важно! Четыре фазы существенно не улучшат ситуацию, но зато добавят четвертый провод, что повысит сложность многих работ и обслуживания, поэтому 3 фазы – это общепринятое и оптимальное значение.

Трехфазный

Трехфазная электроэнергия является распространенным методом генерации, передачи и распределения электроэнергии переменного показателя. Это тип многофазной системы и наиболее распространенный метод, используемый электрическими сетями во всем мире для передачи энергии. Он также используется для питания больших двигателей и при возникновении тяжелых нагрузок.

Трехфазная цепь, как правило, более экономична, чем эквивалентная двухпроводная однофазная при том же напряжённости линии и заземлении, поскольку для передачи заданного количества электрической энергии используется меньше материала проводника.

Интересный факт: Многофазные энергосистемы были изобретены Галилео Феррари, Михаилом Доливо-Добровольским, Йонасом Венстремом, Джоном Хопкинсоном и Николой Теслой ещё в конце 1880-х годов, и основные принципы работы применяются вплоть до сегодняшнего дня.

Двухфазный

Двухфазная электрическая мощность была единственной доступной системой распределения электроэнергии переменного тока в начале 20-го века. В то время использовались две цепи, причем фазы напряжения отличались на четверть цикла, то есть, на 90°. Обычно в схемах применялись четыре провода, по два на каждую фазу. Реже применялись три провода с общим сердечником, но большего диаметра. Некоторые двухфазные генераторы прошлых лет имели две полные роторные сборки с физически смещенными обмотками для обеспечения двухфазной мощности.

На сегодняшний день двухфазный тое приобрёл широкое распространение в быту, так как каждый потребитель – житель квартиры или частного дома имеет определённое количество точек подключения бытовых приборов малой мощности.

Важно! При стандартной работе наиболее распространённых домашних приборов двухфазная электрическая цепь в полном объёме удовлетворяет потребности владельцев жилой недвижимости.

Турбогенераторные установки на Ниагарском водопаде, построенные в 1895 году, были крупнейшими в мире на то время и представляли собой именно двухфазные машины. Однако, в конечном итоге, трёхфазные системы заменили безнадёжно устаревшие и малоэффективные оригинальные агрегаты для генерации и передачи энергии. В настоящее время в мире осталось мало промышленных двухфазных распределительных систем, например, в Филадельфии, штат Пенсильвания.

Вам это будет интересно Описание установленной и расчетной мощности

Фаза переменного тока.

Угол поворота радиуса-вектора в любое данное мгновение относительно его начального положения называется фазой переменного тока. Фаза характеризует величину ЭДС (или тока) в данное мгновение или, как говорят, мгновенное значение ЭДС, ее направление в цепи и направление ее изменения; фаза пока­зывает, убывает ли ЭДС или возрастает.

Фаза переменного тока

Рисунок 3. Фаза переменного тока.

Полный оборот радиуса-вектора равен 360°. С началом но­вого оборота радиуса-вектора изменение ЭДС происходит в том же порядке, что и в течение первого оборота. Следова­тельно, все фазы ЭДС будут повторяться в прежнем поряд­ке. Например, фаза ЭДС при повороте радиуса-вектора на угол в 370° будет такой же, как и при повороте на 10°. В обо­их этих случаях радиус-вектор занимает одинаковое положе­ние, и, следовательно, мгновенные значения ЭДС будут в обоих этих случаях одинаковыми по фазе.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Частота электрического тока – определение, физический смысл

Переменный ток имеет ряд важных характеристик, влияющих на его физические свойства. Одним из таких параметров является частота переменного тока. Если говорить с точки зрения физики, то частота – это некая величина, обратная периоду колебания тока. Если проще – то это количество полных циклов изменения ЭДС, произошедших за одну секунду.

Известно, что переменный ток заставляет электроны двигаться в проводнике сначала в одну сторону, потом – в обратную. Полный путь «туда-обратно» они совершают за некий промежуток времени, называемый периодом переменного тока. частота же является количеством таких колебаний за 1 секунду.

Васильев Дмитрий Петрович

Васильев Дмитрий Петрович
Профессор электротехники СПбГПУ
Задать вопрос

В качестве единицы измерения частоты во всем мире принят 1 Гц (в честь немецкого ученого Г.Герца), который соответствует 1 периоду колебания за 1 секунду.

В республиках бывшего СССР стандартной считается частота тока в 50 Гц.

Это значит, что синусоида тока движется в течение 1 секунды 50 раз в одном направлении, и 50 – в обратном, 100 раз проходя чрез нулевое значение. Получается, что обычная лама накаливания, включенная в сеть с такой частотой, будет затухать и вспыхивать примерно 100 раз за секунду, однако мы этого не замечаем в силу особенностей своего зрения.

Частота электрического тока 1

Для измерения частоты переменного тока применяют приборы, называемые частотомерами. Частотомеры используют несколько основных способов измерения, а именно:

Методы измерения частоты электрического тока
Метод дискретного счета;
Метод перезаряда конденсатора;
Резонансный метод измерения частот.
Метод сравнения частот; в качестве:

Метод дискретного счета основывается на подсчете импульсов необходимой частоты за конкретный промежуток времени. Его наиболее часто используют цифровые частотомеры, и именно благодаря этому простому методу можно получить довольно точные данные.

Частота электрического тока 2

Более подробно о частоте переменного тока Вы можете узнать из видео:

Метод перезаряда конденсатора тоже не несет в себе сложных вычислений. В этом случае среднее значение силы тока перезаряда пропорционально соотносится с частотой, и измеряется при помощи магнитоэлектрического амперметра. Шкала прибора, в таком случае, градуируется в Герцах.

Погрешность подобных частотомеров находится в пределах 2%, и поэтому такие измерения вполне пригодны для бытового использования.

Резонансный способ измерения базируется на электрическом резонансе, возникающем в контуре с подстраиваемыми элементами. Частота, которую необходимо измерить, определяется по специальной шкале самого механизма подстройки.

Абрамян Евгений Павлович

Абрамян Евгений Павлович
Доцент кафедры электротехники СПбГПУ
Задать вопрос

Такой метод дает очень низкую погрешность, однако применяется только для частот больше 50 кГц.

Метод сравнения частот применяется в осциллографах, и основан на смешении эталонной частоты с измеряемой. При этом возникают биения определенной частоты. Когда же частота этих биений достигает нуля, то измеряемая частота становится равной эталонной. Далее, по полученной на экране фигуре с применением формул можно рассчитать искомую частоту электрического тока.

Ещё одно интересное видео о частоте переменного тока:

Понравилась статья? Поделиться с друзьями:

Вам также может быть интересно
Электротехника 0

При построении систем радиосвязи важнейшую роль играют энергетические расчеты радиолиний, или, как говорят, анализ

Электротехника 0

С энергетической точки зрения электромагнитная волна может рассматриваться как процесс переноса энергии от источника

Электротехника 0

Так, полностью характеризующий этот процесс, вектор напряженности электрического поля в общем случае описывается тремя

hol hod 4

Электротехника 0

Что такое холостой ход (ХХ) трансформатора? Величина потерь силового трансформатора состоит из так называемых

garm 1

Электротехника 0

Наличие гармонических колебаний в электросети – это результат искажения Наличие гармонических колебаний в электросети – это

volt

Электротехника 0

Что такое напряжение в 1 вольт? Напряжение электрического тока – это величина, характеризующая разность

1111

Электротехника 0

Формулировка «единица силы тока» была впервые употреблена французским математиком и физиком А. Ампером при

mosh1

Электротехника 0

Первое упоминание об электричестве встречается в опытах древнегреческого философа Фалеса. Именно он первым обнаружил,

освещение 2

Электротехника 0
Свет – один из элементов, использующихся для создания некого своеобразия в любом помещении. Его

Собственные нужды подстанций 2

Электротехника 0

На электростанциях и подстанциях 35-220 кВ и более для питания электроэнергией вспомогательных приборов, агрегатов

Частотомеры

Электротехника 2

Одним из основных параметров периодических и пульсирующих токов выступает частота, определяющая количество периодических колебаний

Зависимость тока и частоты

Электротехника 0

Частота электрического тока выступает одним из параметров качества электроэнергии и основной характеристикой режима энергосистемы.

Закон Джоуля Ленца портреты ученых

Электротехника 0

Закон Джоуля – Ленца – закон физики, определяющий количественную меру теплового действия электрического тока.

Электротехника 0

Как образуется электрический ток? Электрический ток появляется в веществе при условии наличия свободных (несвязанных)

Электрическое <a href=

Электротехника 0

Под электрическим напряжением понимают работу, совершаемую электрическим полем для перемещения заряда напряженностью в 1

Щелочные аккумуляторы 1

Электротехника 1

Своё название щелочные аккумуляторы получили от вида электролита, необходимого для их работы. Основными разновидностями

Электрические частотные фильтры 1

Электротехника 0

Электрический частотный фильтр необходим в цепи для пропуска лишь желаемого диапазона частот, сигналов в

Амперметр 1

Электротехника 1

Определение Амперметр подключается последовательно, с тем участком электроцепи, где предполагается измерять ток. Так как

Что такое частота

Производство электроэнергии в подавляющем большинстве ситуаций называют контролируемым. Эту работу проделывают генераторы, преобразующие механическую энергию ротора турбины в электрическую. Как показано на схеме, на поверхности ротора имеется обмотка из медной проволоки, поэтому он представляет собой непрерывно вращающийся электромагнит.

Схематическое изображение генератора

Схематическое изображение генератора

Во время вращения ротора, созданное вокруг него магнитное поле, наводит электрический ток. Его направление периодически изменяется на противоположное, поскольку месторасположение полюсов электромагнита чередуется после каждого оборота ротора. Соответственно, ток тоже меняет своё направление два раза за цикл вращения.

Следствием и мерой скорости этих изменений является частота, которая измеряется количеством изменений месторасположения полюсов в секунду. Единица частоты получила наименование герц и обозначается двумя буквами — Гц. Таким образом, можно сказать, что генератор, который снабжён парой магнитных полюсов, вращающихся с угловой скоростью 3000 мин -1 , будет производить ток частотой 50 Гц.

Мощность переменного тока изменяется по синусоидальному закону с чередованием положительных и отрицательных полюсов. При переходе каждого цикла из положительной области в отрицательную происходит соответствующее перемещение электронов. В конечном счете, эти циклы создают электрический нагрев или рассеивание мощности. Независимо от направления движения тока (т. е., положительного или отрицательного), если силы тока (напряжения) достаточно для удовлетворения требований электрического устройства, оно будет работать.

Синусоида переменного тока

Синусоида переменного тока

Таким образом, количество полных циклов за секунду, когда переменный ток переходит от положительного полюса к отрицательному, называется частотой, а сам временной отрезок называется периодом. С точки зрения электрического тока частотой принято считать количество повторений синусоиды, а другими словами — это полное колебание, состоящее из положительной и отрицательной составляющих. Следовательно, частота и период связаны между собой обратно пропорциональной зависимостью:

Определение частоты

Определение частоты

Частота и период переменного тока варьируются в зависимости от страны, причём не обязательно привязываются к местному стандарту напряжения. Например, в США, Канаде и других странах со стандартным линейным напряжением 110…120 В эталоном частоты является 60 Гц. В большинстве стран, где значения переменного напряжения равняются 220…240 В (в том числе и в нашей стране), за стандартную частоту принято 50 Гц, однако Южная Корея, Филиппины и многие страны Карибского бассейна используют 220…240 В с частотой 60 Гц. А есть ещё и Япония, где напряжение в сети достигает 100 В, но стандартная частота переменного тока в разных районах составляет 50 и 60 Гц.

Большинство электронных устройств могут работать, потребляя переменный ток, если его частота 50 или 60 Гц. Но, для электроприборов, использующих довольно мощные приводы, рассчитанные на конкретную частоту (холодильники, морозильники, стиральные и сушильные машины), разница в 10 Гц уже значительна. В первую очередь это касается устройств, включающихся периодически. Их электромоторам приходится вращаться то быстрее, то медленнее, что отрицательно сказывается на их долговечности. В таких случаях необходимо использовать преобразователи частоты или трансформаторы напряжения.

Внешний вид преобразователя частоты

Внешний вид преобразователя частоты

Как определяется

Существует два способа установить, чему равна частота и амплитуда переменного тока — применять специальные приборы либо воспользоваться результатами расчётов.

Измерение частоты

Для измерения частоты переменного тока используется принцип механического резонанса. Он является достаточно простым, хотя и не очень точным. Основывается на том факте, что для каждого физического объекта, обладающего упругими свойствами, существует определенное значение частоты, при которой он начинает вибрировать.

Примером подобного устройства является камертон. Если по нему ударить, он будет довольно продолжительное время вибрировать со звуком, зависящим от его длины. Чем длиннее камертон, тем ниже будет резонансная частота и наоборот.

Если представить себе ряд камертонов с постепенно увеличивающимися размерами, установленными на общем основании, то это основание станет вибрировать с частотой измеряемого напряжения или тока. Для этого устройство следует снабдить электромагнитом.

Измерения частоты тока выполняются с помощью набора «камертонов», в качестве которых используются полоски листового металла. Это устройство называется частотомером вибрирующего геркона.

Схема вибрационного частотомера

Схема вибрационного частотомера

Используя частотомер, можно наглядно увидеть, как концы всех полосок встряхиваются в зависимости от того, как меняется величина переменного напряжения, приложенного к катушке. Тот из лепестков, который будет ближе всего к резонансной частоте переменного тока, станет вибрировать наиболее интенсивно.

Особой точностью вибрационные частотомеры не отличаются, зато характеризуются простотой своего изготовления. Их применяют в небольших электроремонтных мастерских, а также в быту с целью калибровки частоты вращения двигателя.

Хотя подобный прибор будет иметь малую точность, этого нельзя сказать о самом принципе измерения. Заменив механический резонатор на электрический, можно получить частотомер на основе катушки индуктивности и параллельно включённого конденсатора. Вместе они образуют колебательный контур.

Один или оба компонента этого контура могут быть регулируемыми. В цепь включается измерительный блок, который показывает максимальную амплитуду напряжения на конденсаторе и катушке. Ручки регулировки предварительно откалибровываются, чтобы иметь возможность выставлять резонансную частоту для любого варианта настройки. Частота считывается после настройки устройства на максимальное показание шкалы измерителя.

Схема электрического частотомера

Схема электрического частотомера

Фактически частотомер реализует схему настраиваемого фильтра, после чего отсчёт показаний происходит как в мостовой схеме (она вначале балансируется для условного нулевого состояния, после чего выполняется отсчёт). До тех пор, пока катушка и/или конденсатор смогут перехватывать достаточное поле магнитного или электрического рассеивания от тестируемой цепи, устройство будет сохранять свою работоспособность.

Метод не требует прямого подключения к цепи, поэтому часто применяется в бытовых условиях. Наиболее точные результаты дают электронные частотомеры.

Внешний вид электронного частотомера

Внешний вид электронного частотомера

Расчёт частоты тока

Для расчёта требуется знать период или временной отрезок, в течение которого значение переменного тока повторяется и образует одну полную волну. Между периодом и частотой переменного тока имеется зависимость, которую отражает следующая формула:

Определение частоты электротока

Определение частоты электротока

Если известно значение циклической частоты ɷ и амплитуда А, то по схожей зависимости можно вычислить силу тока I:

Определение силы электротока

Определение силы электротока

Определение угловой частоты выполняется с помощью такого уравнения:

Формула угловой скорости

Формула угловой скорости

Научные статьи на тему «Частота (электрического тока)»

Характеристики электрической цепи синусоидального тока Определение 1 Электрическая цепь синусоидального.
тока – это электрическая цепь, которая находится под гармоническим воздействием (токи синусоидальной.
Параметр w, который входит в состав выражения фазы синусоидального тока называется угловой частотой и.
рассчитывается следующим образом: $w = 2пf = 2п / Т$ Где: f — частота синусоидального тока; Т — период.
силы; ji, ju, je — начальные фазы тока, напряжения и электродвижущей силы; w — угловая частота синусоидального

Автор Демьян Бондарь
Источник Справочник
Категория Электроника, электротехника, радиотехника
Статья от экспертов

ПРОБЛЕМЫ ОБЕСПЕЧЕНИЯ РЕКУПЕРАЦИИ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ ДЛЯ ПРЕОБРАЗОВАТЕЛЕЙ ЧАСТОТЫ В ГРЕБНЫХ ЭЛЕКТРИЧЕСКИХ УСТАНОВКАХ НА ПЕРЕМЕННОМ ТОКЕ

Сегодня гребные электрические установки на переменном токе вытесняют системы постоянного тока. Прежде всего, это связано с рядом преимуществ преобразователей частоты и появлением таких систем, сравнимых с гребными электрическими установками мощностей. Авторами данной статьи рассмотрен процесс рекуперации электрической энергии на переменном токе. Если в системах на постоянном токе процесс рекуперации не является проблемой, то в системах с преобразователем частоты этот процесс затруднен применением неуправляемых выпрямителей.

Автор(ы) Д.С. Данилов
А.А. Марченко
Источник Техническая эксплуатация водного транспорта: проблемы и пути развития
Научный журнал

Переменный ток

Физика

Переме́нный ток, электрический ток, изменяющийся во времени по величине и/или направлению. В общем случае к переменному току относят различные виды импульсных, пульсирующих, периодических и квазипериодических токов. Если любые значения переменного тока повторяются через равные промежутки времени, то переменный ток называется периодическим. Периодом T T T переменного тока называется наименьший промежуток времени, в котором силы тока в моменты времени t t t и t + T t + T t + T равны: i ( t ) = i ( t + T ) i(t) = i(t + T) i ( t ) = i ( t + T ) . В технике под переменным током обычно подразумевают периодический (или близкий к периодическому) ток, в котором средние за период значения силы тока и напряжения равны нулю.

В том случае, когда переменный ток меняется по направлению, одно из направлений переменного тока принимают за положительное, а противоположное – за отрицательное. Соответственно, если направление переменного тока в некоторый момент времени совпадает с положительным направлением, то значение тока также считают положительным, а для противоположного направления тока – отрицательным. В простейшем случае мгновенное значение силы переменного тока изменяется во времени по гармоническому закону (гармонический, или синусоидальный, переменный ток):

i = I m s i n ( ω t + α ) i = I_msin( omega t+α) i = I m ​ s in ( ω t + α ) ,

где I m I_m I m ​ амплитуда тока, α alpha α – начальная фаза, ω = 2 π f ω = 2πf ω = 2 π f – круговая частота, f = 1 / T f = 1/T f = 1/ T – линейная частота. Гармонический ток возникает под действием синусоидального напряжения u той же частоты:

u = U m s i n ( ω t + β ) u = U_msin(ωt+β) u = U m ​ s in ( ω t + β ) ,

где U m U_m U m ​ – амплитуда напряжения, β beta β – начальная фаза.

Для характеристики переменного тока удобно использовать действующие (или эффективные) значения тока и напряжения, которые представляют собой среднеквадратичные (за период) значения силы тока и напряжения. Для синусоидальных токов действующие значения переменного тока и напряжения равны: I = I m 2 displaystyle I= frac < sqrt[]> I = 2

​ I m ​ ​ и U = U m 2 displaystyle U= frac < sqrt[]> U = 2

​ U m ​ ​ . Большая часть приборов, используемых для измерения периодических напряжений и токов, показывает действующие значения этих величин. Произведение действующих значений тока и напряжения определяет мощность, которая расходуется на выделение теплоты или на совершение механической работы в электрической цепи .

Важной характеристикой переменного тока является его частота f. В электроэнергетических системах Российской Федерации и большинства стран мира принята стандартная частота f f f = 50 Гц, в США f f f = 60 Гц. В технике связи применяются переменные токи высокой частоты (от 100 кГц до 30 ГГц). Для специальных целей в промышленности, медицине и других отраслях науки и техники используют переменный ток самых различных частот, а также импульсные токи .

В электротехнике (и частично в радиотехнике) обычно реализуются электрические цепи квазистационарных токов , при этом мгновенные значения переменного тока во всех участках цепи одинаковы. В многопроводных квазистационарных системах, предназначенных для передачи энергии, часто используют многофазные переменные токи – текущие по разным проводам токи с одинаковыми амплитудами, но разными фазами . Большинство цепей, содержащих сопротивления, ёмкости и индуктивности, работает в линейном режиме, когда справедлив принцип суперпозиции . При прохождении через такие цепи гармонические переменные токи не искажают своей формы, тогда как при наличии нелинейных элементов (например, сердечников в трансформаторах, нелинейных преобразователей, электронных ламп и т. п.) синусоидальные сигналы искажаются, обогащаясь высшими гармониками – сигналами на частотах, кратных основной частоте. Квазистационарные цепи с сосредоточенными параметрами могут быть составлены в виде определённой комбинации сопротивлений R R R , индуктивностей L L L и ёмкостей C C C . Если в электрической цепи протекает установившийся квазистационарный электрический ток, то напряжения на сопротивлении u R u_R u R ​ , индуктивности u L u_L u L ​ и ёмкости u C u_C u C ​ определяются соотношениями:

u R = i R uR = iR u R = i R , u L = L d i d t displaystyle u_L=L frac u L ​ = L d t d i ​ , C d u C d t = i displaystyle C frac=i C d t d u C ​ ​ = i .

Для синусоидального тока i = I m sin ⁡ ω t i = I_m sin omega t i = I m ​ sin ω t соответствующие амплитудные значения напряжений на данных элементах равны:

U R m = R I m U_=RI_m U R m ​ = R I m ​ , U L m = ω L I m U_= omega LI_m U L m ​ = ω L I m ​ , U C m = I m ω C displaystyle U_= frac < omega C>U C m ​ = ω C I m ​ ​ .

В нелинейных режимах величины R R R , L L L и C C C являются функциями протекающего тока i; в линейных режимах они либо постоянны, либо зависят в явном виде от времени (параметрические системы).

При расчёте электрических цепей гармонических переменных токов удобно использовать комплексные амплитуды напряжения и тока, а также комплексные сопротивления Z Z Z ( импеданс ), определяемые на резистивных, индуктивных и ёмкостных участках цепи соответственно как

Z R = R Z_R=R Z R ​ = R , Z L = j ω L Z_L=j omega L Z L ​ = jω L и Z C = 1 j ω C displaystyle Z_C= frac Z C ​ = jω C 1 ​ (здесь j j j – мнимая единица).

Тогда квазистационарная линейная цепь (многополюсник) может быть рассчитана по правилам Кирхгофа , т. е. в этом случае применимы методы расчётов цепей постоянного тока.

С ростом частоты, когда размер электрической цепи становится сравнимым с длиной электромагнитной волны λ = c / f lambda = c/f λ = c / f ( c c c – скорость света), квазистационарное приближение перестаёт быть справедливым, и для получения распределения переменного тока необходимо применять уравнения Максвелла . При этом протекающий по проводящей среде переменный ток распределяется по сечению не равномерно, а преимущественно в поверхностном слое. Иногда такие токи называют быстропеременными и оперируют не суммарными (интегральными) силами тока, а их объёмными плотностями. Плотность быстропеременных токов включает потенциальную и вихревую компоненты. Последняя ответственна за возбуждение вихревых электромагнитных полей. В открытых (неэкранированных) системах именно с вихревыми переменными токами связано излучение электромагнитной энергии, что используется, например, в излучателях (антеннах), где путём подбора распределений быстропеременных токов создаются требуемые угловые распределения полей излучения (диаграммы направленности).

Опубликовано 22 июня 2022 г. в 11:23 (GMT+3). Последнее обновление 22 июня 2022 г. в 11:23 (GMT+3). Связаться с редакцией

Оцените статью
TutShema
Добавить комментарий