Какую роль выполняют конденсаторы в технике

Какую роль выполняют конденсаторы в технике

В современной технике конденсаторы находят себе исключительно широкое и разностороннее применение, прежде всего в области электроники. Основные области применения и назначение конденсаторов приведены ниже. Рассмотрим их подробнее.

1. В радиотехнической и телевизионной аппаратуре — для создания колебательных контуров, их настройки, блокировки, разделения цепей с различной частотой, в фильтрах выпрямителей и т. д.

2. В радиолокационной технике — для получения импульсов большой мощности, формирования импульсов и т. д.

3. В телефонии и телеграфии — для разделения цепей постоянного и переменного токов, разделения токов различной частоты, искрогашения в контактах, симметрирования кабельных линий и т. д.

4. В автоматике и телемеханике — для создания датчиков на емкостном принципе, разделения цепей постоянного и пульсирующего токов, искрогашения в контактах, в схемах тиратронных генераторов импульсов и т. д.

5. В технике счетно-решающих устройств — в специальных запоминающих устройствах и т. д.

6. В электроизмерительной технике — для создания образцов емкости, получения переменной емкости (магазины емкости и лабораторные переменные конденсаторы), создания измерительных приборов на емкостном принципе и т. д.

7. В лазерной технике — для получения мощных импульсов.

В современной электроэнергетике конденсатор находит себе также весьма разнообразное и ответственное применение:

— Для улучшения коэффициента мощности промышленных установок (косинусные или шунтовые конденсаторы).

— Для продольной емкостной компенсации дальних линий передач и для регулирования напряжения в распределительных сетях.

— Для емкостного отбора энергии от линий передач высокого напряжения и для подключения к линиям передачи специальной аппаратуры связи и защитной аппаратуры (конденсаторы связи).

— Для защиты от перенапряжений.

— Для применения в схемах генераторов импульсов напряжения (ГИН) и генераторов мощных импульсов тока (ГИТ), используемых при испытаниях электротехнической аппаратуры.

— Для электрической сварки разрядом.

— Для пуска конденсаторных электродвигателей (пусковые конденсаторы) и для создания нужного сдвига фаз в дополнительной обмотке этих двигателей.

— В устройствах освещения люминесцентными лампами.

— Для подавления радиопомех, создаваемых электрическими машинами и подвижным составом электрифицированного транспорта.

Кроме электроники и электроэнергетики, конденсаторы применяют и в других, неэлектротехнических областях техники и промышленности для следующих основных целей:

1. В металлопромышленности — в высокочастотных установках для плавки и термической обработки металлов, в электроэрозионных (электроискровых) установках, для магнитоимпульсной обработки металлов и т. д.

2. В добывающей промышленности (угольной, металлорудной и т. п.) — в рудничном транспорте на конденсаторных электровозах нормальной и повышенной частоты (бесконтактных), в электровзрывных устройствах, в устройствах с использованием электрогидравлического эффекта и т, д.

ЗАЧЕМ НА МОТОРЕ КОНДЕНСАТОРЫ

3. В автотракторной технике — в схемах зажигания для искрогашения в контактах и для подавления радиопомех.

4. В медицинской технике — в рентгеновской аппаратуре, в устройствах электротерапии и т. д.

5. В технике использования атомной энергии для мирных целей — для изготовления дозиметров, для кратковременного получения больших токов и т. д.

6. В фотографической технике — для аэрофотосъемки, получения вспышки света при обычном фотографировании и т. д.

Разнообразие областей применения обусловливает исключительно большое разнообразие типов конденсаторов, используемых в современной технике. Поэтому наряду с миниатюрными конденсаторами, имеющими вес менее грамма и размеры порядка нескольких миллиметров, можно встретить конденсаторы с весом несколько тонн и по высоте превышающие человеческий рост. Емкость современных конденсаторов может составлять от долей пикофарады до нескольких десятков и даже сотен тысяч микрофарад в единице, а номинальное рабочее напряжение может лежать в пределах от нескольких вольт до нескольких сотен киловольт.

Основные области использования конденсаторов

В разных цепях конденсаторы выполняют различные задачи. Чаще всего они встречаются в телевизорах и радиотехнической аппаратуре. Здесь они создают колебательные контуры, отвечают за их настройки и блокировки. Благодаря этим компонентам происходит разделение цепей, имеющих разную частоту.

В радиолокационных приборах конденсаторы применяются для формирования и увеличения импульсов. Измерительные устройства комплектуются ими для получения переменной емкости. В средствах автоматики указанные компоненты играют роль датчиков, базирующихся на емкостном принципе. Лазерное оборудование благодаря таким деталям создает мощные импульсы. Используются они не только в электронике и электротехнике, но и в металлопромышленности, медицине, добывающей отрасли и т. д.

Параметры выбора конденсаторов

На сайте https://www.radioelementy.ru/catalog/kondensatory/ купить конденсаторы можно пленочные, керамические, металлобумажные, танталовые, алюминиевые, низковольтные и высоковольтные. Главные параметры их выбора:

  • емкость, номинальное напряжение;
  • плотность энергии;
  • полярность.

Емкость определяет максимальный объем накапливаемой энергии. Она привязывается к габаритам компонентов. Плотность энергии показывает ее величину на единицу массы либо объема. По номинальному напряжению можно узнать, при каких рабочих параметрах конденсатор сохраняет свои первоначальные характеристики. Полярность показывает способ включения компонента в цепь. Неправильное подключение деталей чревато их повреждением или к искажению емкости. Узнать основные характеристики конденсаторов можно по маркировке.

Наиболее широкое применение получили металлобумажные детали. Электролитические аналоги обладают отличными характеристиками, но при их использовании существует высокий риск утечек и взрывов. Алюминиевые комплектующие функционируют корректно лишь на малых частотах. Танталовые конденсаторы способны выдерживать значительные внешние нагрузки, отличаются компактными размерами. Полимерные типы не подвержены вздутию, обладают большим импульсным током. Пленочные модификации функционируют исправно при высоком напряжении, но имеют незначительную емкость.

Как устроен электрический конденсатор

В школе тебе рассказывали, что конденсатор — это такая штуковина, которая состоит из двух пластин и пустоты между ними. Пластины эти называли обкладками конденсатора и к ним подключали проводки, чтобы подать напряжение на конденсатор. Так вот современные конденсаторы не сильно отличаются. Они все также имеют обкладки и между обкладками находится диэлектрик. Благодаря наличию диэлектрика улучшаются харктеристики конденсатора. Например, его ёмкость.

В современных конденсаторах используются разные виды диэлектриков (об этом ниже), которые запихиваются между обкладок конденсаторов самыми изощренными способами для достижения опредлённых характеристик.

Принцип работы

Общий принцип работы достаточно прост: подали напряжение — заряд накопился. Физические процессы, которые при этом происходят сейчас тебя не сильно должны интересовать, но если захочешь, то можешь об этом прочитать в любой книге по физике в разделе электростатики.

Конденсатор в цепи постоянного тока

Если поместить наш конденсатор в электрическую цепь (рис. ниже), включить последовательно с ним амперметр и подать в цепь постоянный ток, то стрелка амперметра кратковременно дёрнется, а затем замрет и будет показывать 0А — отсутствие тока в цепи. Что случилось?

Какую роль выполняют конденсаторы в технике

Будем считать, что до того, как был подан ток в цепь, конденсатор был пуст (разряжен), а когда подали ток, то он очень быстро стал заряжаться, а когда зарядился (эл. поле между обкладками конденсатора уравновесило источник питания), то ток прекратился (здесь график заряда конденсатора).

Именно поэтому говорят, что конденсатор не пропускает постоянный ток. На самом деле пропускает, но очень короткое время, которое можно посчитать по формуле t = 3*R*C (Время зарядки конденсатора до объёма 95% от номинального. R- сопротивление цепи, C — ёмкость конденсатора) Так конденсатор ведёт себя в цепи постоянного тока. Совсем иначе он себя ведёт в цепи переменного!

Конденсатор в цепи переменного тока

Что такое переменный ток? Это когда электроны «бегут» сначала туда, потом назад. Т.е. направление их движения все время меняется. Тогда, если по цепи с конденсатором побежит переменный ток, то на каждой его обкладке будет скапливаться то «+» заряд, то «-«. Т.е. фактически будет протекать переменный ток. А это значит, что переменный ток «беспрепятственно» проходит через конденсатор.

Весь этот процесс можно смоделировать с помощью метода гидравлических аналогий. На картинке ниже аналог цепи переменного тока. Поршень толкает жидкость то вперёд, то назад. Это заставляет крутится крыльчатку вперёд-назад. Получается как бы переменный поток жидкости (читаем переменный ток).

Гидравлическая модель цепи переменного тока

Давай теперь поместим между источником силы (поршнем) и крыльчаткой меодель конденсатора в виде мембраны и проанализируем, что изменится.

Гидравлическая модель конденсатора в цепи переменного тока

Похоже, что ничего не изменится. Как жидкость совершала колебательные движения, так она их и совершает, как из-за этого колебалась крыльчатка, так и будет колебаться. А значит наша мембрана не является препятствием для переменного потока. Также будет и для электронного конденсатора.

Дело в том, что хоть электроны, которые бегут поцепи и не пересекают диэлектрик (мембрану) между обкладками конденсатора, но за пределами конденсатора их движение колебательное (туда-сюда), т.е. протекает переменный ток. Эх!

Таким образом конденсатор пропускает переменный ток и задерживает постоянный. Это очень удобно, когда требуется убрать постоянную составляющую в сигнале, например, на выходе/входе аудиоусилителя или, когда требуется посмотреть только переменную часть сигнала (пульсации на выходе источника постоянного напряжения).

Блокировка постоянной составляющей сигнала с помощью конденсатора

НАЗНАЧЕНИЕ И ИСПОЛЬЗОВАНИЕ КОНДЕНСАТОРОВ

В настоящее время их используют практически во всех радиотехнических и различных электронных схемах.
В электроцепи переменного тока они могут выступать в качестве ёмкостного сопротивления. К примеру, при подключении конденсатора и лампочки к батарейке (постоянный ток), лампочка светиться не будет. Если же подключить такую цепь к источнику переменного тока, лампочка будет светиться, причем интенсивность света будет напрямую зависеть от величины ёмкости используемого конденсатора. Благодаря этим особенностям, они сегодня повсеместно применяются в цепях в качестве фильтров, подавляющих высокочастотные и низкочастотные помехи.

Конденсаторы также используются в различных электромагнитных ускорителях, фотовспышках и лазерах, благодаря способности накапливать большой электрический заряд и быстро передавать его другим элементам сети с низким сопротивлением, за счет чего создается мощный импульс.

Во вторичных источниках электрического питания их применяют для сглаживания пульсаций при выпрямлении напряжения.

Способность сохранять заряд длительное время дает возможность использовать их для хранения информации.

Использование резистора или генератора тока в цепи с конденсатором позволяет увеличить время заряда и разряда ёмкости устройства, благодаря чему эти схемы можно использовать для создания времязадающих цепей, не предъявляющих высоких требований к временной стабильности.

В светильниках применяется для компенсации реактивной мощности.

Реактивная мощность в электрической сети

Электрическая энергия, вырабатываемая генераторами электростанций, характеризуется их активной и реактивной мощностью. Активная мощность потребляется электроприемниками, преобразуясь в тепловую, механическую и другие виды энергии. Реактивная мощность характеризует электроэнергию, преобразуемую в энергию электрических и магнитных полей. В электрической сети и ее электроприемниках происходит процесс обмена энергией между электрическими и магнитными полями. Устройства, которые целенаправленно участвуют в этом процессе, называют источниками реактивной мощности(ИРМ). Такими устройствами могут быть не только генераторы электрических станций, но и синхронные компенсаторы, реакторы, конденсаторы, реактивной мощностью которых управляют по определенному закону регулирования с помощью специальных средств.

Реактивная мощность снижает эффективность использования всей энергосистемы, ее пытаются максимально снизить с помощью конденсаторных установок.

Ёмкость и напряжение конденсатора

Теперь обратим внимание на две важные характеристики конденсатора: ёмкость и номинальное напряжение.

Ёмкость конденсатора характеризует способность конденсатора накапливать заряд. Это как ёмкость банки, в которой хранится, к примеру, вода. Кстати, не зря одним из первых электрических конденсаторов была так называемая Лейденская банка. Она представляла собой обыкновенную стеклянную посуду, снаружи обмотанную фольгой. В банку была налита токопроводящая жидкость — электролит. Фольга и электролит играли роль обкладок, а стекло банки служило тем самым диэлектрическим барьером.

Ёмкость электрического конденсатора измеряют в фарадах. В схемах ёмкость обозначают латинской буквой C. Как правило, ёмкость классических конденсаторов варьируется от нескольких пикофарад (пФ) до нескольких тысяч микрофарад (мкФ). Ёмкость указывается на корпусе конденсатора. Если единицы не указаны — то это пикофарады. Микрофарады часто обозначают как uF — так как буква u внешне похожа на греческую букву мю, которую используют вместо приставки микро.

Существует и особый вид конденсаторов, называемых ионисторами (англ. supercapacitor), которые имеют ёмкость в несколько фарад! Чем больше ёмкость конденсатора, тем больше энергии в нём может храниться и тем дольше он заряжается, при прочих равных условиях.

Номинальное напряжение — второй важный параметр. Это такое напряжение, при котором конденсатор будет работать весь срок службы без критичного изменения своих параметров. Нельзя применять в 12-вольтовой цепи конденсатор на 6 вольт — он быстро выйдет из строя.

Именно эти два параметра обычно наносят на поверхность корпуса конденсатора. На фотографии ниже изображён электролитический конденсатор ёмкостью 470 мкФ и номинальным напряжением 16 Вольт.

Маркировка электролитического конденсатора

А вот на керамических конденсаторах часто указывают только ёмкость. На картинке ниже конденсатор имеет маркировку 104. Что бы это значило?

Керамические конденсаторы

Последняя цифра в этом коде — количество нулей после двухзначного числа в начале. 104 = 10 0000 пФ = 100 нФ = 0,1 мкФ

Параллельное и последовательное подключение конденсаторов

Как и в случае резисторов, конденсаторы можно составлять в цепочки. Это бывает нужно, когда в схеме необходима какая-то конкретная ёмкость, а у вас нет такого конденсатора.

Параллельное подключение

Параллельное подключение конденсаторов

В отличие от резисторов, при параллельном подключении конденсаторов их ёмкости складываются. Например, если нам нужно получить ёмкость 3000 мкФ, а у нас есть два конденсатора по 1000 мкФ, и 10 штук по 100 мкФ, смело ставим их параллельно и получаем: 1000*2+100*10 = 2000 + 1000 = 3000 мкФ

Последовательно подключение

Последовательное подключение конденсаторов

При последовательном подключении конденсаторы ведут себя как резисторы, соединённые параллельно. Например, посчитаем суммарную ёмкость двух конденсаторов на 100 мкФ, соединённых последовательно:

Последовательное подключение конденсаторов

Суммарная ёмкость Ctot = 50 мкФ.

Переменные и подстроечные конденсаторы

Переменные (регулирующие) конденсаторы предназначены для интенсивной регулировки так, как это делалось при настройке частоты вещания в старых радиоприёмниках. Это конденсаторы с воздушным диэлектриком сегодня используются редко.

Подстроечный конденсатор это переменный конденсатор малой ёмкости, который обычно используется для точной настройки режимов работы электрических схем. Обычно, подстроечный конденсатор используется однократно – в ходе процедуры настройки, или изредка.

После манипуляций настройки регулировочный винт контрится (закрашивается), чтобы во время дальнейшей эксплуатации изделия его положение не сдвинулось от случайных механических воздействий (например, вибраций). Количество подстроек у таких конденсаторов лимитировано несколькими десятками полных поворотов.

Переменные и подстроечные конденсаторы в современной электронике применяются редко. Широко их используют только в радиотехнике. Внешний вид таких конденсаторов представлен на рисунке 1.22.

Переменные и подстроечные конденсаторы

Средства измерений ёмкости конденсаторов

Colibri. Измеритель сопротивления, ёмкости, индуктивности.

Диапазоны основных режимов измерений мультиметра Colibri представлены в таблице 1.9.

Таблица 1.9 – Диапазоны основных режимов измерений мультиметра Colibri

Параметры

Значение

Погрешность измерения

Для чего в электрических цепях используются конденсаторы

Для чего в электрических цепях используются конденсаторы

Электрические конденсаторы широко применяются в электронике и электротехнике. Рассмотрим подробно, для чего в электрических цепях используются конденсаторы.

1. Если конденсатор соединить с катушкой индуктивности или резистором, то такая цепь будет иметь собственные временные (частотные) параметры. Это позволяет создавать цепи фильтров, когда необходимо подавить или наоборот выделить конкретную частоту. Это свойство широко применяется для построения цепей обратной связи и колебательных контуров в электронике и радиотехнике.

2. Как накопитель электрической энергии, конденсатор стал неотъемлемой частью вторичных источников питания, где он заряжается выпрямленным переменным напряжением, сглаживает пульсации, и в результате можно получить почти идеальный постоянный ток.

3. Мгновенный разряд конденсатора создает импульс большой мощности, это свойство получило широкое применение в фотовспышках, импульсных лазерах с оптической накачкой, электромагнитных ускорителях, генераторах Маркса и умножителях напряжения (генератор Кокрофта-Уолтона).

Конденсаторы

4. Свойство конденсатора сохранять заряд применяется в динамической памяти DRAM, где заряженное состояние соответствует логической единице, а разряженное — логическому нулю.

5. Поскольку конденсатор в цепи переменного тока обладает реактивным сопротивлением, то применим он и в качестве ограничивающего силу тока балласта.

Электронная схема

6. Цепь, состоящая из конденсатора и резистора (RC-цепь), обладает собственной постоянной времени, поэтому в различных генераторах импульсов такие цепи служат времязадающими элементами.

7. Установки компенсации реактивной мощности также содержат конденсаторы, обеспечивающие потребитель реактивной мощностью сверх той, что подается энергосистемой в оптимальном режиме.

Компенсация реактивной мощности

8. Большая разность потенциалов между обкладками конденсатора делает возможным ускорение заряженных частиц.

9. Даже очень небольшое изменение расстояния между обкладками, или какие-нибудь изменения в диэлектрике сказываются на емкости конденсатора, так создаются измерители малых перемещений, индикаторы уровня жидкости, а также измерители влажности древесины, воздуха, и т.п.

10. В цепях релейной защиты и автоматического повторного включения, конденсаторами задается требуемая кратность срабатываний.

11. Для пуска и работы однофазных асинхронных двигателей, а также для работы трехфазных асинхронных двигателей от однофазной сети, необходимы так называемые фазосдвигающие конденсаторы. С помощью фазосдвигающих конденсаторов можно превратить трехфазный асинхронный двигатель в генератор.

Суперконденсаторы

12. Ионисторы (конденсаторы большой емкости) применяются как аккумуляторы электроэнергии в слаботочных бытовых приборах, а ионисторы значительной емкости, набирающие популярность в последние годы, приходят на замену аккумуляторам для различного транспорта.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Не пропустите обновления, подпишитесь на наши соцсети:

Оцените статью
TutShema
Добавить комментарий