Электрический ток сейчас используют в каждом здании, зная характеристики тока в электросети дома, следует всегда помнить, что он опасен для жизни.
Электрический ток являет собой эффект направленного движения электрических зарядов (в газах — ионы и электроны, в металлах — электроны), под воздействием электрического поля.
Движение положительных зарядов по полю эквивалентно движению отрицательных зарядов против поля.
Обычно за направление электрического берут направление положительного заряда.
Далее мы рассмотрим такие характеристики тока, как:
- мощность тока;
- напряжение тока;
- сила тока;
- сопротивление тока.
Мощность тока.
Мощностью электрического тока называют отношение произведенной током работы ко времени, в течение которого была выполнена это работа.
Мощность, которую развивает электрический ток на участке цепи, прямо пропорциональна величине тока и напряжению на данном участке. Мощность (электрическая и механическая) измеряется в Ваттах (Вт).
Мощность тока не зависит от времени протекания электрического тока в цепи, а определяется как произведение напряжения на силу тока.
Работа и мощность тока
При прохождении тока в цепи электрическое поле совершает работу по перемещению заряда. В этом случае работу электрического поля называют работой электрического тока.
При прохождении заряда (q) по участку цепи электрическое поле будет совершать работу: (A=qcdot U), где (U) — напряжение электрического поля, (A) — работа, совершаемая силами электрического поля по перемещению заряда (q) из одной точки в другую.
Для выражения любой из этих величин можно использовать приведённый ниже рисунок.
Рис. (1). Зависимость между работой, напряжением и зарядом
Количество заряда, прошедшее по участку цепи, пропорционально силе тока и времени прохождения заряда: q = I ⋅ t .
Работа электрического тока на участке цепи пропорциональна напряжению на её концах и количеству заряда, проходящего по этому участку: A = U ⋅ q .
Работа электрического тока на участке цепи пропорциональна силе тока, времени прохождения заряда и напряжению на концах участка цепи: A = U ⋅ I ⋅ t .
Чтобы выразить любую из величин из данной формулы, можно воспользоваться рисунком.
Рис. (2). Зависимость между работой, силой тока и временем прохождения заряда
Единицы измерения величин:
работа электрического тока ([A]=1) Дж;
напряжение на участке цепи ([U]=1) В;
сила тока, проходящего по участку ([I]=1) А;
время прохождения заряда (тока) ([t]=1) с.
Для измерения работы электрического тока нужны вольтметр, амперметр и часы. Например, для определения работы, которую совершает электрический ток, проходя по спирали лампы накаливания, необходимо собрать цепь, изображённую на рисунке. Вольтметром измеряется напряжение на лампе, амперметром — сила тока в ней. А при помощи часов (секундомера) засекается время горения лампы.
МОЩНОСТЬ ТОКА электрического 8 класс физика Перышкин
Рис. (3). Схема и часы для измерения
I = 1 , 2 А U = 5 В t = 1 , 5 мин = 90 с А = U ⋅ I ⋅ t = 5 ⋅ 1 , 2 ⋅ 90 = 540 Дж
Обрати внимание!
Работа чаще всего выражается в килоджоулях или мегаджоулях.
(1) кДж = 1000 Дж или (1) Дж = (0,001) кДж;
(1) МДж = 1000000 Дж или (1) Дж = (0,000001) МДж.
Для потребителей электрической энергии существуют приборы, позволяющие в пределах ошибки измерения получать числовые данные о ее расходе в единицу времени.
Рис. (4). Электросчетчик
Механическая мощность численно равна работе, совершённой телом в единицу времени: N = А t . Чтобы найти мощность электрического тока, надо поступить точно также, т.е. работу тока, A = U ⋅ I ⋅ t , разделить на время.
Мощность электрического тока обозначают буквой (Р):
P = A t = U ⋅ I ⋅ t t = U ⋅ I . Таким образом:
Мощность электрического тока равна произведению напряжения на силу тока: P = U ⋅ I .
Из этой формулы можно определить и другие физические величины.
Для удобства можно использовать приведённый ниже рисунок.
Рис. (5). Зависимость между мощностью, напряжением и силой тока
За единицу мощности принят ватт: (1) Вт = (1) Дж/с.
Из формулы P = U ⋅ I следует, что
(1) ватт = (1) вольт ∙ (1) ампер, или (1) Вт = (1) В ∙ А.
Обрати внимание!
Используют также единицы мощности, кратные ватту: гектоватт (гВт), киловатт (кВт), мегаватт (МВт).
(1) гВт = (100) Вт или (1) Вт = (0,01) гВт;
(1) кВт = (1000) Вт или (1) Вт = (0,001) кВт;
(1) МВт = (1 000 000) Вт или (1) Вт = (0,000001) МВт.
Измерим силу тока в цепи с помощью амперметра, а напряжение на участке — с помощью вольтметра.
Рис. (6). Схема
Так как мощность тока прямо пропорциональна напряжению и силе тока, протекающего через лампочку, то перемножим их значения:
I = 1 , 2 А U = 5 В P = U ⋅ I = 5 ⋅ 1 , 2 = 6 Вт .
Ваттметры измеряют мощность электрического тока, протекающего через прибор. По своему назначению и техническим характеристикам ваттметры разнообразны.
В зависимости от сферы применения у них различаются пределы измерения.
Аналоговый ваттметр
Аналоговый ваттметр
Аналоговый ваттметр
Цифровой ваттметр
Рис. (7). Приборы для измерения
Подключим к цепи по очереди две лампочки накаливания, сначала одну, затем другую и измерим силу тока в каждой из них. Она будет разной.
Рис. (8). Лампы различной мощности в цепи
Сила тока в лампочке мощностью (25) ватт будет составлять (0,1) А. Лампочка мощностью (100) ватт потребляет ток в четыре раза больше — (0,4) А. Напряжение в этом эксперименте неизменно и равно (220) В. Легко можно заметить, что лампочка в (100) ватт светится гораздо ярче, чем (25)-ваттовая лампочка. Это происходит оттого, что её мощность больше. Лампочка, мощность которой в (4) раза больше, потребляет в (4) раза больше тока. Значит:
Обрати внимание!
Мощность прямо пропорциональна силе тока.
Что произойдёт, если одну и ту же лампочку подсоединить к источникам различного напряжения? В данном случае используется напряжение (110) В и (220) В.
Рис. (8). Лампа, подключенная к источнику тока с различным напряжением
Можно заметить, что при большем напряжении лампочка светится ярче, значит, в этом случае её мощность будет больше. Следовательно:
Обрати внимание!
Мощность зависит от напряжения.
Рассчитаем мощность лампочки в каждом случае:
I = 0 , 2 А U = 110 В P = U ⋅ I = 110 ⋅ 0 , 2 = 22 Вт | I = 0,4 А U = 220 В P = U ⋅ I = 220 ⋅ 0,4 = 88 Вт . |
Можно сделать вывод о том, что при увеличении напряжения в (2) раза мощность увеличивается в (4) раза.
Не следует путать эту мощность с номинальной мощностью лампы (мощность, на которую рассчитана лампа). Номинальная мощность лампы (а соответственно, ток через нить накала и её расчётное сопротивление) указывается только для номинального напряжения лампы (указано на баллоне, цоколе или упаковке).
![]() | ![]() | ![]() |
Электрическая мощность
Электри́ческая мо́щность, работа, совершаемая электрическим током в единицу времени. В цепях постоянного тока электрическая мощность равна произведению электрического напряжения U (в вольтах) и силы тока I (в амперах).
В цепях переменного тока различают мгновенную, активную, реактивную и полную мощности. Мгновенная электрическая мощность равна произведению мгновенных значений U и I. Активная электрическая мощность – среднее за период значение мгновенной мощности переменного тока; характеризует скорость преобразования электрической энергии в другие виды энергии (например, тепловую , световую , механическую ). В цепях однофазного (синусоидального) тока активная электрическая мощность P = UI ∙ cos φ, для трёхфазного тока P = √3 ∙ UI ∙ cos φ; U и I – действующие (среднеквадратические за период) значения напряжения и силы тока, φ – угол сдвига фаз между I и U. Активная электрическая мощность может быть выражена через I или U и активное сопротивление электрической цепи r либо её проводимость G по формуле: P = I²r = U²G. В любой электрической цепи активная электрическая мощность равна сумме активных мощностей отдельных участков цепи. Единица активной электрической мощности – ватт . Реактивная электрическая мощность характеризует скорость накопления энергии в конденсаторах и катушках индуктивности , а также обмен энергией между отдельными участками электрической цепи (в частности, между генератором и приёмником). В цепях синусоидального тока реактивная электрическая мощность участка Q = UI ∙ sin φ. Единица реактивной мощности – вар . Полная (кажущаяся) электрическая мощность характеризует мощность, отдаваемую в цепь источником переменного тока. Для цепей синусоидального тока полная мощность связана с активной и реактивной электрическими мощностями соотношением: S = √(P² + Q²) = UI. Единица полной электрической мощности – вольт-ампер (В·А). Для цепей несинусоидального тока электрическая мощность равна сумме средних мощностей отдельных гармоник .
Редакция технологий и техники. Первая публикация: Большая российская энциклопедия, 2012.
Опубликовано 12 июля 2023 г. в 11:43 (GMT+3). Последнее обновление 12 июля 2023 г. в 11:43 (GMT+3). Связаться с редакцией
Информация
Области знаний: Электрические цепи и сигналы
Как определить максимальную нагрузку тока
Полезная мощность показывает максимальное значение при ситуации, когда сопротивление нагрузки R сравнивается с таким же параметром внутри источника — r.
P max = E2 / 4r, где E — это движущая сила источника тока.
Для расчета предельной токовой нагрузки для электрического устройства нужно знать параметр номинальной нагрузки и напряжение переменного тока на входе. Технический паспорт прибора, руководство или эмблема содержат первый показатель.
Например, когда номинальный параметр бытовой техники (P) составляет 12 Вт, максимальная величина потребляемого тока при переменном напряжении составит для:
- 120 В – I = 12/120 = 0,100 А или 100 мА.
- 220 В – I = 12 / 220= 0,055A или 55 мА.
При необходимости, количество потребленной электроэнергии выражается через комплексную величину. С этой целью применяют базовые соотношения, импеданс используют вместо сопротивления.
Каждую современную квартиру нужно оснащать электрическими приборами. Для их подключения к сети необходимо составить принципиальную схему, где согласованно друг с другом распределятся нагрузки, подключенные к отдельным линиям. Нужно встраивать автоматический выключатель на основании ПУЭ для недопущения аварийных случаев.
Вначале уточняются параметры электропроводки. Затем проверяются по схеме группы для подключения к сети бытовых электроприборов.
Стандартные характеристики электрической мощности потребления (Вт):
- стационарный компьютер – 170-1 250;
- жидкокристаллический телевизор – 120 – 265;
- ноутбук – 40-280;
- кондиционер – 1 200 – 2 500;
- утюг – 450-1850.
Для защиты сети необходим автомат, его выбираем с учетом всех существенных факторов.
Важно уделить внимание нагрузкам, имеющим повышенные параметры реактивной энергии.
Определение мощности
Допустим, нам необходимо убрать урожай пшеницы с поля площадью 100 га. Это можно сделать вручную или с помощью комбайна. Очевидно, что пока человек обработает 1 га площади, комбайн успеет сделать намного больше. В данном случае разница между человеком и техникой — именно то, что называют мощностью. Отсюда вытекает первое определение.
Мощность в физике — это количество работы, которая совершается за единицу времени.
Рассмотрим другой пример: между точкой А и точкой Б расстояние 15 км, которое человек проходит за 3 часа, а автомобиль может проехать всего за 10 минут. Понятно, что одно и то же количество работы они сделают за разное время. Что показывает мощность в данном случае? Как быстро или с какой скоростью выполняется некая работа.
В электромеханике эта величина имеет еще одно определение.
Мощность — это скалярная физическая величина, которая характеризует мгновенную скорость передачи энергии от системы к системе или скорость преобразования, изменения, потребления энергии.
Напомним, что скалярными величинами называются те, значение которых выражается только числом (без вектора направления).
Мощность человека в зависимости от деятельности
Вид деятельности
Мощность, Вт
Бег со скоростью 9 км/ч
Плавание со скоростью 50 м/мин
Как обозначается мощность: единицы измерения
В таблице выше вы увидели обозначение в ваттах, и читая инструкции к бытовой технике, можно заметить, что среди характеристик прибора обязательно указано количество ватт. Это единица измерения механической мощности, используемая в международной системе СИ. Она обозначается буквой W или Вт.
Измерение мощности в ваттах было принято в честь шотландского ученого Джеймса Уатта — изобретателя паровой машины. Он стал одним из родоначальников английской промышленной революции.
В физике принято следующее обозначение мощности: 1 Вт = 1 Дж / 1с.
Это значит, что за 1 ватт принята мощность, необходимая для совершения работы в 1 джоуль за 1 секунду.
В каких единицах еще измеряется мощность? Ученые-астрофизики измеряют ее в эргах в секунду (эрг/сек), а в автомобилестроении до сих пор можно услышать о лошадиных силах.
Интересно, что автором этой последней единицы измерения стал все тот же шотландец Джеймс Уатт. На одной из пивоварен, где он проводил свои исследования, хозяин накачивал воду для производства с помощью лошадей. И Уатт выяснил, что 1 лошадь за секунду поднимает около 75 кг воды на высоту 1 метр. Вот так и появилось измерение в лошадиных силах. Правда, сегодня такое обозначение мощности в физике считается устаревшим.
Одна лошадиная сила — это мощность, необходимая для поднятия груза в 75 кг за 1 секунду на 1 метр.
Единицы измерения
Формула мощности тока
Чему же равна мощность электрического тока на участке цепи? Как известно, работа на участке цепи равна произведению напряжения, силы тока и времени их действия:
Подставим в формулу мощности вместо работы ее выражение через напряжение, силу тока и время:
Получается что мощность тока равна произведению напряжения на силу тока.
Поскольку сила тока, напряжение и сопротивление связаны между собой отношением I = U/R (закон Ома), то мощность электрического тока можно выразить не только через пару напряжение-сила тока, но и через пары напряжение-сопротивление и сила тока-сопротивление.
Заменим в формуле мощности I на U/R, получим:
P = U * U/R = U 2 /R
Заменим в формуле мощности U на IR, получим:
P = IR * I = I 2 R
Единицей измерения мощности является ватт (Вт). Так как мощность равна произведению силы тока (изменяемой в амперах) на напряжение (измеряемой в вольтах), то тогда
Зная мощность электрического тока, можно вычислять силу тока и напряжение в цепи:
Мощность электрического тока в цепи можно измерить с помощью амперметра и вольтметра. Измеряют показания приборов и перемножают их.
Закон Ома для цепей переменного тока
В общем, закон Ома можно применить и к цепям переменного тока . Если нагрузка индуктивная или емкостная, то также учитывается реактивное сопротивление нагрузки. Следовательно, с некоторыми изменениями закона Ома, учитывающими влияние реактивного сопротивления, его можно применять к цепям переменного тока. Из-за индуктивности и емкости в переменном токе будет значительный фазовый угол между напряжением и током. А также сопротивление переменному току называется импедансом и обозначается как Z. Таким образом, закон Ома для цепей переменного тока задается как E = IZ I = E/Z Z = E/I Где E — напряжение в цепи переменного тока, I — текущий ток, Z — импеданс. Все параметры в приведенном выше уравнении представлены в комплексной форме, которая включает фазовый угол. Подобно круговой диаграмме цепи постоянного тока, круговая диаграмма закона Ома для цепи переменного тока приведена ниже.
Пример закона Ома (цепи переменного тока)
Рассмотрим приведенную ниже схему, в которой нагрузка переменного тока (сочетание резистивной и индуктивной) подключена к источнику переменного тока 10 В, 60 Гц. Нагрузка имеет сопротивление 5 Ом и индуктивность 10 мГн.
Тогда значение импеданса нагрузки Z = R + jX L Z = 5 + j (2∏ × f × L) Z = 5+ j (2×3,14×60×10×10-3) Z = 5 + j3,76 Ом или 6,26 Ом при фазовом угле -37,016 Ток, протекающий по цепи, равен I = V/Z = 10/(5+ j3,76) = 1,597 А при фазовом угле -37,016
Для расчета параметров сети для подключения нагревателей вы можете воспользоваться данными в данной статье основными формулами, или же просто позвоните нашим специалистам компании Термоэлемент по телефону и получите полную бесплатную консультацию и помощь с выбором нужных параметров нагревателей для вашей задачи по нагреву.