Тиристор это простыми словами

Тиристор — полупроводниковое устройство для передачи сигнала в электрических сетях. В отличие от транзисторов и электронных ключей, тиристор обеспечивает постоянное соединение, которое не зависит от силы управляющего тока и не прекращается при его отсутствии.

В конструкции тиристора присутствуют три контакта: управляющий электрод, катод и анод. Анод подключается к источнику питания через плюс и помечается светодиодным датчиком, катод присоединяется к минусу. Управляющий ток регулируется с помощью резистора, а отключение происходит только вручную или после снижения напряжения до определенных показателей.

Для каждого типа тиристоров характерны свои показатели минимально и максимально допустимого тока и напряжения, при котором прибор переходит в закрытое состояние.

Какие бывают тиристоры

Тиристоры отличаются по конструкции, материалу изготовления, техническим характеристикам. Изначально эти устройства направлены на то, чтобы выдерживать высокое напряжение, поэтому некоторые модели оснащены теплоотводом для предотвращения перегрева.

  • диодные тиристоры, проводящие ток только в одном или в двух направлениях;
  • низковольтные тиристоры для установки в системах низкого напряжения;
  • силовые тиристоры, используемые при низких частотах вкупе с высоким током и напряжением;
  • тиристорные модули — стартеры для плавного пуска электрооборудования, представляющие собой комбинацию из двух тиристоров.

Где применяются тиристоры

Назначение и применение тиристоров очень обширно. Они используются в разнообразных схемах, где важно поддерживать стабильную работу при перепадах напряжения и обеспечивать автоматический пуск.

  • для монтажа сигнализаций;
  • в системах освещения, полива и других схемах, которые предполагают режим автозапуска;
  • в автомобильных, промышленных и других двигателях;
  • в преобразователях, усилителях, инверторах;
  • в электрооборудовании.

Тиристоры благодаря особенностям своей конструкции позволяют наладить бесперебойную работу автоматики, сделать сеть стабильной, обеспечить надежное соединение и мягкий пуск. Эти устройства компактны, отличаются простой установкой и эксплуатацией с низким риском поломок, высокой производительностью и долговечностью.

В нашем каталоге вы найдете разные типы тиристоров: низковольтные, силовые, тиристорные модули и другие. Проконсультироваться по поводу выбора модели или заказать товар можно по телефону вверху страницы. Звонок по России бесплатный.

Принцип работы тиристора

Принцип работы тиристора схож с принципом работы динистора, достаточно подробно описанным в статье «Динисторы. Принцип действия и применение». Поэтому мы не будем повторяться, лишь выделим принципиальное отличие между этими двумя приборами. Упрощенная структура тиристора и схема его включения показаны на рис. 2. Как видно из рис. 1, главным отличием тиристора от динистора является наличие управляющего электрода УЭ, чаще его обозначают символом G. При подаче на электрод УЭ положительного относительно катода импульса p-n-переход p3-n4 смещается в прямом направлении, и через него начинает протекать ток. Затем процессы в тиристоре развиваются по такому же сценарию, как и в динисторе. Отметим, что напряжение Е (рис. 2) должно быть ниже нормируемого напряжения тиристора.

Как работает тиристор?

Рис. 2. Упрощенные схемы устройства и включения тиристора

После отпирания тиристора напряжение на управляющем электроде следует снизить до нулевого уровня. Запирание тиристора происходит, когда ток тиристора становится ниже тока удержания IH. На рис. 3 приведена вольт-амперная характеристика тиристора. На ней отмечены значения тока управляющего электрода, при которых происходит включение (открытие) тиристора.

Рис. 3. Вольт-амперная характеристика тиристора

Между токами соблюдается следующее соотношение: IУПР.СПР > IУПР2 > IУПР1. Чем больше ток управления, тем меньше должно быть напряжение анода для включения тиристора. При токе управления IУПР.СПР на вольт-амперной характеристике тиристора отсутствуют участки с отрицательным сопротивлением, поэтому этот ток управления называется током спрямления. Производители тиристоров указывают его в документации. Там же приводится минимальная длительность импульса тока управления.

Перечислим основные параметры тиристора, которые указывают в документации производители:

  • максимально допустимый ток в прямом направлении IT(AV);
  • повторяющееся пиковое напряжение в прямом направлении VDRM;
  • повторяющееся пиковое напряжение в обратном направленииVPRM;
  • импульсный ток ITSM;
  • I 2 t;
  • максимальная скорость изменения приложенного напряжения dV/dt;
  • максимальная скорость изменения прямого тока di/dt;
  • ток удержания IH.

Ток IT(AV) определяется как средний ток синусоидальной полуволны частотой 50 Гц. Обычно VDRM =VPRM, именно эти величины напряжения нормирует производитель. Например, у 1200-В тиристора значения VDRM = VPRM = 1200 В. Производители гарантируют, что при этих значениях напряжения VPRM и VDRM не произойдет ни обратного пробоя тиристора, ни его ложного включения.

Импульсный ток ITSM это средний ток синусоидальной полуволны частотой 50 Гц при напряжении 0,6VPRM. Величина I 2 t позволяет определить значение всплесков тока, когда форма импульса отлична от синусоидальной полуволны, а длительность импульса заметно меньше 10 мс.

Ограничение скорости нарастания прикладываемого напряжения dV/dt определяется паразитными емкостями p-n-переходов. Если скорость нарастания напряжения превысит заданную производителем, возможно ложное включение тиристора. Ограничение скорости нарастания тока di/dt необходимо для защиты тиристора от локального перегрева в момент включения.

Примеры использования тиристора

Тиристоры нашли применение во многих устройствах, и существует множество схем их использования — от простейших регуляторов мощности (диммеров) до сложных многофазных реверсивных регулируемых выпрямителей.

Рис. 4. Схема простейшего регулятора мощности

Схема простейшего регулятора мощности показана на рис. 4. По мере заряда конденсатора С1 возрастает напряжение на управляющем электроде и, следовательно, его ток, что и приводит к включению тиристора. Схема подкупает своей простотой, но может использоваться лишь при небольшой нагрузке. При плавном нарастании напряжения управляющего электрода включение тиристора произойдет при малом токе управления (рис. 3), что приведет к дополнительной потере мощности на тиристоре.

Рис. 5. Структурная схема двухполупериодного регулирования мощности с СИФУ

Рис. 6. Временная диаграмма работы схемы двухполупериодного регулирования мощности с СИФУ

Поэтому для управления тиристорами используют специальную систему импульсно-фазового управления (СИФУ), формирующую импульсы управления с крутым фронтом. Структурная схема двухполупериодного регулирования мощности с СИФУ и временная диаграмма работы показаны на рис. 5 и 6 соответственно. Импульс управления поступает на тиристор в конце интервала времени Т1. В данном случае Т1=Т2, угол открытия тиристора отсчитывается от точки перехода напряжения через 0 и в данном случае составляет 90°.

Рис. 7. Схема двухполупериодного выпрямителя и временная диаграмма его работы

Пожалуй, наиболее распространено применение тиристоров в управляемых выпрямителях. На рис. 7 показаны схема двухполупериодного выпрямителя и временная диаграмма его работы. Предполагается, что мост работает на активно-индуктивную нагрузку, постоянная времени которой существенно превышает длительность периода сетевого напряжения, поэтому токи через тиристоры и ток сети I1 имеют прямоугольную форму.

Обратный диод VD0 образует контур протекания тока нагрузки при выключенных тиристорах. Выходное напряжение зависит от угла управления тиристорами α следующим образом:

Рис. 8. Трехфазная выпрямительная схема с нулевым проводом (выпрямитель Ларионова)

На рис. 8 показаны трехфазная выпрямительная схема с нулевым проводом (выпрямитель Ларионова) и графики выпрямленного напряжения и тока. Так же, как и в предыдущем случае, предполагается, что постоянная времени нагрузки значительно превышает длительность периода сетевого напряжения. Среднее выпрямленное напряжение на нагрузке вычисляется из следующего соотношения:

где U2 — действующее напряжение на вторичной обмотке.

Рис. 9. Трехфазная мостовая реверсивная выпрямительная схема

Трехфазная мостовая реверсивная выпрямительная схема показана на рис. 9. Мостовые выпрямители работают в этой схеме поочередно. Обратные диоды в реверсивной схеме, разумеется, отсутствуют, поэтому переключение мостов возможно только в случае уменьшения тока нагрузки до нуля. В противном случае произойдет короткое замыкание.

Общие параметры тиристоров

1. Напряжение включения — это минимальное анодное напряжение, при котором тиристор переходит во включенное состояние.
2. Прямое напряжение — это прямое падение напряжения при максимальном токе анода.
3. Обратное напряжение — это максимально допустимое напряжение на тиристоре в закрытом состоянии.
4. Максимально допустимый прямой ток — это максимальный ток в открытом состоянии.
5. Обратный ток — ток при максимальной обратном напряжении.
6. Максимальный ток управления электрода
7. Время задержки включения/выключения
8. Максимально допустимая рассеиваемая мощность

Таким образом, в тиристоре существует положительная обратная связь по току — увеличение тока через один эмиттерный переход приводит к увеличению тока через другой эмиттерный переход.
Тиристор — не полностью управляющий ключ. То есть перейдя в открытое состояние, он остается в нем даже если прекращать подавать сигнал на управляющий переход, если подается ток выше некоторой величины, то есть ток удержания.

  • полупроводниковые приборы
  • электроника для начинающих
  • электроника
  • тиристор

Тиристор

Тири́стор (греч. θυρα — дверь, вход и англ. resistor — резистор) — полупроводниковый электронный прибор , включающий 3 или 4 электронно-дырочных перехода, предназначенный для управления током. В отличие от транзисторов, тиристоры работают только в

  • 1 Принцип действия тиристора
  • 2 Разновидности тиристоров
  • 3 См. также
  • 4 Источники

Принцип действия тиристора [ ]

Тиристор имеет два силовых электрода, пропускающих рабочий ток (катод и анод) и могут иметь управляющий электрод. Тиристор может находиться в двух состояниях: закрытом и открытом. Эти состояния обладают существенно различным сопротивлением между силовыми электродами. В закрытом состоянии сопротивление велико и ток через тиристор не идёт. Открывается тиристор при достижении между силовыми электодами напряжения открывания или током на управляющем электроде. В открытом состоянии сопротивление тиристора резко падает и он проводит ток. Закрытие тиристора происходит при отключении тока или смене его знака.

Thyristors

Функционально тиристоры различаются на обладающие односторонней и двусторонней проводимостью, и также имеющие управляющий электрод и не имеющие его.

  • динистор (диодный тиристор, диод Шокли) — тиристор с односторонней проводимостью без управляющего электрода;
  • анодом (отрицательный и положительный электроды соответственно). Симметричные тиристоры (симисторы) могут управлять током в обоих направлениях.

Основные характеристики тиристоров, на которые стоит обратить внимание при покупке

  • Максимально допустимый ток. Эта величина характеризует наибольшее значение тока открытого тиристора. У мощных устройств она составляет несколько сотен ампер.
  • Максимально допускаемый обратный ток.
  • Прямое напряжение. Этот параметр тиристора равен падению напряжения при максимально возможном токе.
  • Обратное напряжение. Характеризует максимально допустимое напряжение на устройстве, находящемся в закрытом состоянии, при котором оно не утрачивает способность выполнять свои функции.
  • Напряжение включения. Это наименьшая величина, при которой возможно функционирование тиристора.
  • Минимальный ток управляющего электрода. Равен величине тока, которого достаточно для активации устройства.
  • Наибольшая допустимая рассеиваемая мощность.

Прибор можно проверить несколькими способами, один из них – использование специального самодельного тестера, собираемого по представленной ниже схеме:

Такая схема предназначена для работы при напряжении 9-12 В. Для других значений напряжения питания производят перерасчет величин R1-R3.

  • К аноду подключают положительный полюс, к катоду подводят «-».
  • На управляющий электрод с помощью кнопки SA подают сигнал к открытию устройства.
  • Если светодиод загорается до нажатия кнопки SA или не загорается после нажатия, то прибор является неработоспособным.

Виды тиристоров

Есть несколько образов тиристоров, которые можно классифицировать следующими методами:

  • по режимам контроля;
  • согласно электропроводности;
  • в соответствии с порядком работы;
  • по форме управления.

Итак, начнем с классификации тиристоров по режимам контроля. Следует сказать о том, что полупроводниковый инструмент обладает двумя выходными путями, различающиеся в своих открытиях.

Много тиристоров

Если один открывается вводом напряжения на анодный блок, то другой — на катодный. Однако, есть некоторое замечание: подают не только напряжение, но и импульс. Если импульс связывают с управляющим выходом и катодом, то устройство будет иметь такое название: “Тиристор с катодным управлением”. В противном случае — с анодным.

По электропроводности

Перейдем к другой классификации устройства. Как было сказано ранее — тиристоры (единичные) проводят ток лишь в одном направлении, то есть обратного провода не существует (это первый вид электропроводности). Однако, следует оговориться, ведь мы знаем, что наш прибор работает благодаря подачи напряжения в роли ключа (переключателя), а если использовать двойной элемент, то бишь симметричный тиристор, тогда устройство сможет проводить ток сразу в двух направлениях (это есть обратная электропроводность — 2-й вид).

По режиму работы

Наконец, перейдем к рассмотрению последнего вида классификации. Выделяют три главных, которые чаще всего используется в современных, более усовершенствованных, полупроводниковых элементах:

Запираемый и незапираемый тиристор

Также есть возможность рассказать о следующих подвидах тиристора: Запирающиеся и не запирающиеся (в первом случае: «+» прикреплен к отрицательно заряженному электроду, а «-» приложен к положительно заряженному; во 2-ом случае — противоположное положение дел); Быстродейственные (способны за короткий временной отрезок, без потери коэффициента полезного действия, перейти из “закрытого” состояния в “открытое”); Электроимпульсные (с минимальными потерями проводят переходный процесс фаз).

Регулятор тиристора

Важным элементом в системе тиристора является регулятор мощности. Именно его схему мы и рассмотрим:

Схема регулятор тиристора

Данная структура выглядит достаточно просто. Наш диммер (в вышепредставленной конструкции) питается и работает благодаря наличию переменного тока в электросети, напряжение которой составляет 220 Вольт.

Перейдем к составу, регулятор мощности в данном случае включает в себя:

  1. Диод полупроводника “vd1”;
  2. Резистор “r1” переменного назначения;
  3. Резистор “r2” постоянного назначения;
  4. Емкость малой проводимости “c1”;
  5. Переключающий прибор Тиристор “vs1”.

Все величины, которые рекомендуется использовать для номинальной схемы, представлены на картинке. Кроме того, надо сказать, что в роли “vd1” (диода) можно применить либо элемент “KД-209”, либо “КУ-103В”, мощность которых больше 2-х Ватт, а напряжение не меньше 50-ти Вольт.

Данная структура управляет только одним полупериодом в сетевом процессе. В том случае, если исключить отсюда 4 элемента, кроме полупроводникового диода, тогда он сможет пропустить лишь половину волны с переменным током, а нагрузка, например, на устройства паяльника или лампы накаливания придет только около пятидесяти процентов всей силы выхода.

Способности тиристора

Тиристор способен пропустить условные, говоря простым языком, дополнительные блоки половинчатого периода, которые срезаны “vd1” элементом. Если происходит изменение местоположения резистора “r1” переменного назначения, то работа эффективности электрической системы тоже изменится (в большую или меньшую сторону, в зависимости от напряжения).

К электро-положительному выходу на конденсаторе подключен выводная управляющая трубка прибора. В том случае, когда происходит увеличение напряжения на конденсаторе, то есть величина его доходит определенного уровня, тогда он и начинает пропускать половинчатую часть “+”-го периода.

Способности тиристора

Резистор переменного назначения сможет определить скоростную способность зарядки устройства. Таким образом, чем раньше зарядка достигнет максимального значения, тем быстрее произойдет открытие тиристора и ему удастся пустить половину полупериода в полярной части.

Стоит сказать и о пассивном электронном компоненте, на который не попадает часть отрицательной полуволны, однако, это не опасно, ведь конденсатор имеет полярное свойство, что позволяет регулировать напряжение на концах элемента.

Итак, наша структура показывает следующее: диммер способен изменить значение мощности в диапазоне 50-ти и 100-та процентов (что является абсолютной нормой для “среднестатистического паяльника”).

Виды регуляторов мощности

Теперь предлагаю вам рассмотреть все виды регуляторов мощности, их достаточно много, но небольшие знания о них не помешают точно никому:

  • Диммер. Тот самый инструмент , про который шла речь в нашей структуре. Чаще всего его используют в качестве управляющего элемента мощностной нагрузки, при этом, в цепь подключается последовательно. Если мы говорим о статистике, то диммер применяется ради поправки световой яркости в различных типах ламп;
  • Автоматический регулятор мощности. Представляет из себя электронную структуру, которая позволяет изменить показания подводимой мощности (это происходит благодаря удержанию процесса включения прибора в работу на половинчатом периоде с переменным током);
  • Регулятор “Симосторной” мощности. Аналог автоматического регулятора, также используется в электроцепях с переменным током (применяется для мгновенных изменений различных параметров цепи);
  • Авто-электронный регулятор мощности. Это система, предназначенная для регулирования мощности хода и для управленческого процесса в оборотах электродвигателей;
  • “Дуговой” диммер мощности. Это элемент, имеющий ту конструкцию, которая способна обеспечить поддержку на постоянной основе определенному значению дугового горения.

Вольт-амперные характеристики тиристора (SCR)

Схема включения тиристора и его вольт-амперные характеристики приведены на рисунках ниже. Анод и катод тиристора подключены к сети питания через нагрузку. Затвор и катод тиристора питаются от источника Es, используемого для подачи тока затвора от затвора к катоду.

Схема включения тиристора для снятия его вольт-амперной характеристики

Вольт-амперная характеристика тиристора

Согласно представленному рисунку существует три основных режима работы тиристора (SCR): режим обратной блокировки, режим прямой блокировки и режим прямой проводимости.

Режим обратной блокировки:

В этом режиме катод становится положительным по отношению к аноду при разомкнутом переключателе S. Соединение J1 и J3 смещено в обратном направлении, а J2 — в прямом. Когда обратное напряжение прикладывается к тиристору (должно быть меньше VBR ), устройство обеспечивает высокий импеданс в обратном направлении. Следовательно, тиристор рассматривается как разомкнутый переключатель в режиме блокировки обратного хода. V BR — это напряжение обратного пробоя, при котором возникает лавина. Если напряжение превышает V BR , это может привести к повреждению тиристора.

Принцип работы тиристора в режиме обратной блокировки

Режим прямой блокировки:

Когда анод установлен положительно по отношению к катоду, затвор открыт. Говорят, что в данном случае тиристор смещен в прямом направлении, переходы J1 и J3 смещены в прямом направлении, а J2 смещены в обратном направлении, как вы можете видеть на рисунке. В этом режиме протекает небольшой ток, называемый током прямой утечки, поскольку ток прямой утечки мал и недостаточен для срабатывания тиристора. Таким образом, SCR рассматривается как разомкнутый переключатель даже в режиме прямой блокировки.

Принцип работы тиристора в режиме прямой блокировки

Режим прямой проводимости:

Когда прямое напряжение увеличивается, а цепь затвора остается открытой, на переходе J2 возникает лавина, и тиристор переходит в режим проводимости. Мы можем включить тиристор в любой момент, подав положительный импульс между затвором и катодом или подав напряжение прямого пробоя между анодом и катодом тиристора.

Методы запуска тиристора (SCR)

Существует множество способов запуска SCR, например:

  • Запуск от прямого напряжению
  • Запуск с помощью затвора
  • Запуск dv/dt
  • Температурный запуск
  • Световой триггер

Рассмотрим каждый из этих методов более подробно.

Запуск по прямому напряжению

При подаче прямого напряжения между анодом и катодом при открытой цепи затвора переход J2 смещается в обратном направлении. В результате поперек J2 происходит образование обедненного слоя. По мере увеличения прямого напряжения наступает этап, когда слой истощения исчезает, и говорят, что J2 имеет лавинный пробой . Следовательно, тиристор переходит в состояние проводимости. Напряжение, при котором возникает лавина, называется напряжением прямого пробоя V BO .

Срабатывание с помощью затвора

Это один из наиболее распространенных, надежных и эффективных способов включения тиристора (SCR). При срабатывании затвора для включения тиристора между затвором и катодом прикладывается положительное напряжение, что приводит к возникновению тока затвора, и заряд инжектируется во внутренний P-слой, и происходит прямой пробой. Чем выше ток затвора, тем ниже напряжение прямого пробоя.

Как показано на рисунке, в тиристоре имеется три соединения, теперь для включения тиристора соединение J2 должно разорваться . При использовании метода запуска затвора при подаче управляющего импульса переход J2 разрывается, переходы J1 и J2 смещаются вперед и тиристор переходит в состояние проводимости. Следовательно, это позволяет току течь через анод к катоду.

Согласно модели с двумя транзисторами, когда анод установлен положительно по отношению к катоду, т ок не будет течь через анод к катоду до тех пор, пока не сработает затвор. Когда ток протекает через вывод затвора, он открывает нижний транзистор. Поскольку нижний транзистор проводит, он включает верхний транзистор. Это своего рода внутренняя положительная обратная связь, поэтому, подав импульс на затвор один раз, тиристор остается во включенном состоянии. Когда оба транзистора открываются, ток начинает проходить через анод к катоду. Это состояние известно как прямое проведение, и именно так транзистор «фиксируется» или остается постоянно включенным. Для выключения тиристора вы не можете отключить его, просто убрав ток затвора, в этом состоянии тиристор становится независимым от тока затвора. Д ля выключения тиристора необходимо замкнуть цепь выключения.

dv/dt запуск

В обратносмещенном переходе J2 приобретает характеристики конденсатора из-за наличия заряда на переходе, что означает, что переход J2 ведет себя как емкость. Если прямое напряжение прикладывается внезапно, зарядный ток через емкость перехода Cj приведет к включению тиристора.

Зарядный ток i C определяется выражением;

Оцените статью
TutShema
Добавить комментарий