Магнитное поле – особая форма материи, существующая вокруг движущихся электрических зарядов – токов.
Источниками магнитного поля являются постоянные магниты, проводники с током. Обнаружить магнитное поле можно по действию на магнитную стрелку, проводник с током и движущиеся заряженные частицы.
Для исследования магнитного поля используют замкнутый плоский контур с током (рамку с током).
Впервые поворот магнитной стрелки около проводника, по которому протекает ток, обнаружил в 1820 году Эрстед. Ампер наблюдал взаимодействие проводников, по которым протекал ток: если токи в проводниках текут в одном направлении, то проводники притягиваются, если токи в проводниках текут в противоположных направлениях, то они отталкиваются.
Свойства магнитного поля:
- магнитное поле материально;
- источник и индикатор поля – электрический ток;
- магнитное поле является вихревым – его силовые линии (линии магнитной индукции) замкнутые;
- величина поля убывает с расстоянием от источника поля.
Важно!
Магнитное поле не является потенциальным. Его работа на замкнутой траектории может быть не равна нулю.
Магнитным взаимодействием называют притяжение или отталкивание электрически нейтральных проводников при пропускании через них электрического тока.
Магнитное взаимодействие движущихся электрических зарядов объясняется так: всякий движущийся электрический заряд создает в пространстве магнитное поле, которое действует на движущиеся заряженные частицы.
Силовая характеристика магнитного поля – вектор магнитной индукции ( vec ) . Модуль вектора магнитной индукции равен отношению максимального значения силы, действующей со стороны магнитного поля на проводник с током, к силе тока в проводнике ( I ) и его длине ( l ) :
Обозначение – ( vec ) , единица измерения в СИ – тесла (Тл).
1 Тл – это индукция такого магнитного поля, в котором на каждый метр длины проводника при силе тока 1 А действует максимальная сила 1 Н.
Направление вектора магнитной индукции совпадает с направлением от южного полюса к северному полюсу магнитной стрелки (направление, которое указывает северный полюс магнитной стрелки), свободно установившейся в магнитном поле.
Направление вектора магнитной индукции можно определить по правилу буравчика:
если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением вектора магнитной индукции.
Для определения магнитной индукции нескольких полей используется принцип суперпозиции:
магнитная индукция результирующего поля, созданного несколькими источниками, равна векторной сумме магнитных индукций полей, создаваемых каждым источником в отдельности:
Правило рук 👋 КАК ЛЕГКО определять НАПРАВЛЕНИЕ ЛИНИЙ МАГНИТНОГО ПОЛЯ??
Поле, в каждой точке которого вектор магнитной индукции одинаков по величине и направлению, называется однородным.
Наглядно магнитное поле изображают в виде магнитных линий или линий магнитной индукции. Линия магнитной индукции – это воображаемая линия, в любой точке которой вектор магнитной индукции направлен по касательной к ней.
Свойства магнитных линий:
- магнитные линии непрерывны;
- магнитные линии замкнуты (т.е. в природе не существует магнитных зарядов, аналогичных электрическим зарядам);
- магнитные линии имеют направление, связанное с направлением тока.
Густота расположения позволяет судить о величине поля: чем гуще расположены линии, тем сильнее поле.
На плоский замкнутый контур с током, помещенный в однородное магнитное поле, действует момент сил ( M ) :
где ( I ) – сила тока в проводнике, ( S ) – площадь поверхности, охватываемая контуром, ( B ) – модуль вектора магнитной индукции, ( alpha ) – угол между перпендикуляром к плоскости контура и вектором магнитной индукции.
Тогда для модуля вектора магнитной индукции можно записать формулу:
где максимальный момент сил соответствует углу ( alpha ) = 90°.
В этом случае линии магнитной индукции лежат в плоскости рамки, и ее положение равновесия является неустойчивым. Устойчивым будет положение рамки с током в случае, когда плоскость рамки перпендикулярна линиям магнитной индукции.
Взаимодействие магнитов
Постоянные магниты – это тела, длительное время сохраняющие намагниченность, то есть создающие магнитное поле.
Основное свойство магнитов: притягивать тела из железа или его сплавов (например стали). Магниты бывают естественные (из магнитного железняка) и искусственные, представляющие собой намагниченные железные полосы. Области магнита, где его магнитные свойства выражены наиболее сильно, называют полюсами. У магнита два полюса: северный ( N ) и южный ( S ) .
Важно!
Вне магнита магнитные линии выходят из северного полюса и входят в южный полюс.
Разделить полюса магнита нельзя.
Объяснил существование магнитного поля у постоянных магнитов Ампер. Согласно его гипотезе внутри молекул, из которых состоит магнит, циркулируют элементарные электрические токи. Если эти токи ориентированы определенным образом, то их действия складываются и тело проявляет магнитные свойства. Если эти токи расположены беспорядочно, то их действие взаимно компенсируется и тело не проявляет магнитных свойств.
Магниты взаимодействуют: одноименные магнитные полюса отталкиваются, разноименные – притягиваются.
Как определить направление магнитного поля возбужденного вокруг проводника с током
ПРАВИЛО БУРАВЧИКА для прямого проводника с током
— служит для определения направления магнитных линий ( линий магнитной индукции)
вокруг прямого проводника с током.
Если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением линий магнитного поля тока.
Допустим, проводник с током расположен перпендикулярно плоскости листа:
1. направление эл. тока от нас ( в плоскость листа)
Согласно правилу буравчика, линии магнитного поля будут направлены по часовой стрелке.
или
2. направление эл. тока на нас ( из плоскости листа),
Тогда, согласно правилу буравчика, линии магнитного поля будут направлены против часовой стрелки.
ПРАВИЛО ПРАВОЙ РУКИ для соленоида, т.е. катушки с током
— служит для определения направления магнитных линий (линий магнитной индукции) внутри соленоида.
Если обхватить соленоид ладонью правой руки так, чтобы четыре пальца были направлены вдоль тока в витках, то отставленный большой палец покажет направление линий магнитного поля внутри соленоида.
1.Как взаимодействуют между собой 2 катушки с током?
2. Как направлены токи в проводах, если силы взаимодействия направлены так, как на рисунке?
3. Два проводника расположены параллельно друг другу. Укажите раправление тока в проводнике СД.
Жду решений на следующем уроке на «5»!
Известно, что сверхпроводники ( вещества, обладающие при определенных температурах практически нулевым электрическим сопротивлением) могут создавать очень сильные магнитные поля. Были проделаны опыты по демонстрации подобных магнитных полей. После охлаждения керамического сверхпроводника жидким азотом на его поверхность помещали небольшой магнит. Отталкивающая сила магнитного поля сверхпроводника была столь высокой, что магнит поднимался, зависал в воздухе и парил над сверхпроводником до тех пор, пока сверхпроводник, нагреваясь, не терял свои необыкновенные свойства.
Следующая страница «Обнаружение магнитного поля по его действию на проводник с током»
Назад в раздел «9 класс»
Электромагнитное поле — Класс!ная физика
Магнитное поле катушки с током.
Катушка с током — это устройство, которое позволяет создавать электромагниты. Катушка представляет собой проводник, который обмотан вокруг цилиндрического или другого подходящего для задачи магнитного материала. Когда через катушку пропускается электрический ток, то вокруг нее возникает магнитное поле.
В катушке электрический ток протекает через множество витков, создавая сложное магнитное поле, в котором на одном конце катушки силовые линии магнитного поля будут выходить наружу, а на другом конце — входить внутрь. Таким образом, на одном конце катушки будет образовываться северный полюс, а на другом — южный. Если магнит необходимо изменять, например, чтобы изменить его полярность, то можно изменить направление тока.
Правило правой руки. Определение полюсов катушки с током.
Если обхватить катушку правой рукой так, чтобы четыре пальца показали направление тока, то большой палец укажет направление на северный полюс катушки.
МАГНИТНОЕ ПОЛЕ
Магнитное поле, как и электрическое, является одним из видов материи. Оно возникает при движении любых заряженных частиц, а также при изменении электрического поля. Опытным путем установлено, что магнитное поле возникает вокруг проводника с током и внутри него. (В постоянном магните магнитное поле создается внутриатомным и внутримолекулярным движением, например, вращением электронов вокруг ядра.) Магнитное поле и электрический ток неразрывно связаны, т.е. магнитное поле не может существовать без электрического тока. Графически магнитное поле изображается линиями магнитной индукции (магнитными линиями), проведенными с одинаковой (при однородном поле) или разной густотой (при неоднородном). Они всегда замкнуты на себя в отличие от линий напряженности электростатического поля. За направление магнитного поля, т.е. направление линий магнитной индукции, принимается направление, которое указывает северный конец стрелки компаса, если его поднести к проводнику с током или к магниту.
На рисунке 4.1 изображено магнитное поле постоянного магнита прямоугольной формы, а на рис. 4.2 показано магнитное поле прямолинейного провода с током.
Направление линий магнитной индукции провода с током определяется по правилу буравчика: если вкручивать буравчик по направлению тока в проводе, то вращение рукоятки буравчика покажет направление линий магнитной индукции; или: если большой палец правой руки расположить по направлению тока в проводе, то направление обхвата проводника четырьмя пальцами покажет направление линий магнитной индукции.
Практический интерес представляет магнитное поле тока катушек, так как во многих электротехнических устройствах (электрических машинах, трансформаторах, электромагнитных реле и др.) магнитное поле создается токами в катушках различной формы. На рисунке 4.3 показано магнитное поле цилиндрической катушки с током. Оно подобно магнитному полю прямоугольного магнита.
Внутри катушки, где магнитные линии параллельны и густота их одинакова, магнитное поле однородное, если длина катушки значительно больше ее диаметра. Однако у краев катушки однородность нарушается. Также примером неоднородного поля может служить поле прямолинейного провода с током (см. рис. 4.2).
Способность тока возбуждать магнитное поле называется магнитодвижущей силой (МДС), или намагничивающей силой (НС). В системе СИ намагничивающая сила принимается численно равной силе тока, возбуждающего магнитное поле, и измеряется в амперах (А).
Если ток проходит по контуру или катушке с числом витков w, то МДС
Обнаружить магнитное поле можно благодаря магнитным явлениям, известным из курса физики: действие электрического тока, проходящего по проводнику, на магнитную стрелку; намагничивание тел; притяжение или отталкивание проводников с токам; явление электромагнитной индукции. В основе этих явлений лежит главное свойство магнитного поля — силовое воздействие на движущиеся заряженные частицы (ток).
Контрольные вопросы и задания
- 1. Как можно создать магнитное поле?
- 2. Как изображается магнитное поле?
- 3. Начертите магнитное поле постоянного магнита.
- 4. Как определить направление магнитных линий у прямолинейного провода с током?
- 5. Сформулируйте правило буравчика.
- 6. Начертите магнитное поле прямолинейного провода с током.
- 7. Начертите магнитное поле цилиндрической катушки с током.
- 8. Дайте определение магнитодвижущей силы.
- 9. Напишите формулу МДС и укажите единицу ее измерения.
- 10. Как можно обнаружить магнитное поле?
- 11. Какое главное свойство магнитного поля?
Магнитное поле тока
Вокруг магнитов существует магнитное поле. Чтобы обнаружить его, достаточно поместить в это поле магнитную стрелку, способную свободно поворачиваться под действием этого поля (для этого ее подвешивают на нити или устанавливают на острие). Когда мы подносим к стрелке магнит, она поворачивается в ту или иную сторону. А можно ли повернуть стрелку с помощью электрического тока?
Обратимся к опыту. Поместим над магнитной стрелкой параллельно ее оси проводник, подключенный к источнику тока (рис. 55). Замкнем цепь. Мы увидим, как стрелка отклоняется, принимая новое положение. При размыкании цепи она возвращается в прежнее положение.
Впервые действие проводника с током на магнитную стрелку было обнаружено в 1820 г. датским ученым Г. X. Эрстедом. Сам он не нашел правильного объяснения этому явлению. Это было сделано позже.
Мы знаем, что ток — это направленное движение заряженных частиц. Если эти частицы покоятся, то они создают вокруг себя лишь электрическое поле. Вокруг движущихся зарядов, например, электрического тока, помимо электрического поля, существует еще и магнитное. Это поле и заставляет поворачиваться магнитную стрелку, находящуюся рядом с проводником с током.
Магнитное поле существует вокруг любого проводника с током. Электрический ток поэтому можно рассматривать как источник магнитного поля. Чем больше сила тока в проводнике, тем сильнее создаваемое им магнитное поле.
Но если источником магнитного поля являются электрические токи, то почему тогда оно существует вокруг постоянных магнитов?
В 1820 г. французский ученый А. М. Ампер предположил, что магнитные свойства постоянных магнитов обусловлены множеством круговых токов, циркулирующих внутри молекул этих тел. Эти токи были названы молекулярными. Во времена Ампера природа этих токов была неизвестна. Теперь же мы знаем, что внутри атомов и молекул действительно движутся заряженные частицы — электроны, благодаря которым и возникает намагниченность тела.
Для графического изображения магнитного поля используют магнитные силовые линии.
Так называют линии, вдоль которых располагаются оси маленьких магнитных стрелок, помещенных в данное поле. Направление, указываемое северным полюсом этих стрелок, принимают за направление магнитных силовых линий.
Поместив магнитные стрелки вокруг прямолинейного проводника с током, можно увидеть картину, изображенную на рисунке 56, а. Вместо магнитных стрелок в этом опыте можно использовать железные опилки, рассыпанные по поверхности картона. В магнитном поле проводника с током они намагничиваются и, подобно магнитным стрелкам, устанавливаются вдоль силовых линий магнитного поля. Наблюдаемое расположение стрелок показывает, что силовые линии магнитного поля прямолинейного тока представляют собой окружности, охватывающие этот ток (рис. 56, б).
При изменении направления тока в проводнике изменяется и ориентация магнитных стрелок. Это означает, что направление силовых линий магнитного поля связано с направлением тока в проводнике.
Направление силовых линий магнитного поля прямолинейного тока определяется с помощью первого правила правой руки:
если обхватить проводник ладонью правой руки, направив отставленный большой палец вдоль тока, то остальные пальцы этой руки укажут направление силовых линий магнитного поля данного тока (рис. 57).
. 1. Опишите опыт, в котором наблюдается действие электрического тока на магнитную стрелку. Кто и когда впервые его осуществил? 2. Что является источником магнитного поля? 3. Как располагаются магнитные стрелки в магнитном поле прямого тока? 4. Что называют магнитными силовыми линиями? 5. Какую форму имеют силовые линии магнитного поля прямолинейного тока? 6. Сформулируйте первое правило правой руки.
Правило буравчика, правила правой и левой руки в электродинамике
В разделах физики, изучающих магнитостатику и электродинамику, существует несколько простых мнемонических правил, призванных облегчить порядок определения направлений некоторых векторов в условиях, когда направление одного вектора зависит от ориентации другого. Речь о таких векторных величинах, как магнитная индукция, направление индукционного тока, сила Лоренца и сила Ампера.
Изначально необходимо понимать, что под словом «буравчик» имеется ввиду не обязательно штопор, но винт со стандартной правой резьбой, то есть с такой резьбой, что буравчик нужно ввинчивать вращая его по часовой стрелке, (правое вращение) тогда его острие станет двигаться, по мере ввинчивания, вперед относительно плоскости вращения рукоятки (если наблюдать за происходящим со стороны рукоятки, а не со стороны острия).
Чтобы уяснить для себя практическую суть правила буравчика, сначала рассмотрим общую его применимость для векторного произведения: изобразим перемножаемые векторы так, чтобы они начинались в одной точке, после этого будем вращать первый умножаемый вектор (x) кратчайшим путем ко второму вектору (y), на который умножаем.
Тогда, если подобным образом поворачивать рукоятку буравчика, он станет ввинчиваться как раз по вектору-произведению (z). Данное мнемоническое правило удобно для определения направления вектора B магнитной индукции поля, источником которого выступает ток I.
Вектор магнитной индукции. Каноническое правило буравчика
Будем вращать рукоятку буравчика так, чтобы направление его поступательного движения совпадало с направлением тока в проводнике, тогда направление вращения рукоятки совпадет с направлением вектора магнитной индукции поля, порождаемого данным током.
Применение правила буравчика для проводника с током
Некоторым удобно использовать правило буравчика в форме правила правой руки.
В первом варианте данного правила предлагается заменить направление вращения ручки буравчика на обхват кулаком правой руки так, чтобы направление четырех пальцев было ориентировано от первого умножаемого вектора ко второму вектору сомножителю. В этом случае отогнутый большой палец будет символизировать направление вектора-произведения.
Данное правило удобно для нахождения направления вектора магнитной индукции B поля, создаваемого током I, а также поля, создаваемого катушкой с током. Кроме того, данное правило применимо для определения направления ЭДС индукции в контуре.
Если правой рукой так зажать проводник в кулак, чтобы отогнутый большой палец указывал направление тока в этом проводнике, то согнутые пальцы укажут направление векторов магнитной индукции поля, данным током порождаемого. Их направление — везде будет по касательной к линиям магнитной индукции, огибающим проводник.
Для катушки с током
Если обхватить катушку правой ладонью так, чтобы четыре пальца указывали направление тока в витках, то большой палец покажет направление вектора магнитной индукции поля внутри катушки.
Для пронизываемого изменяющимся магнитным потоком контура (ЭДС индукции)
Если указать отогнутым большим пальцем правой руки направление внешнего магнитного потока через контур, если он растет, и противоположное направление, если он убывает, то согнутые пальцы, охватывающие контур, покажут направление, противоположное направлению ЭДС, индуцируемой в этом контуре.
Правило правой руки — три пальца
Во втором варианте правила правой руки предлагается отогнуть большой, указательный и средний пальцы так, чтобы они оказались взаимно перпендикулярны. В этом случае большой палец будет символизировать своим направлением первый вектор-сомножитель, указательный палец — второй вектор-сомножитель, средний палец — вектор-произведение.
Данная конфигурация пальцев помогает определить направление F — силы Ампера и силы Лоренца, действующей на проводник с током I, помещенный в магнитное поле B, либо на движущийся в данном поле положительный заряд.
Правило правой руки — прямая ладонь
Еще есть третий вариант правила правой руки, где используется распрямленная ладонь и отогнутый в сторону большой палец. Помогает определить направление индукционного тока I в проводнике, который движется в магнитном поле B под действием внешней силы F.
Расположим ладонь правой руки так, чтобы силовые линии магнитного поля входили в нее, а отогнутый большой палец был направлен в сторону движения проводника. Тогда четыре вытянутых пальца укажут направление индукционного тока в проводнике.
Правило левой руки — прямая ладонь
Существует аналогичный вариант правила левой руки — для определения направления F — силы Ампера и силы Лоренца, действующей на проводник с током I, помещенный в магнитное поле B.
Расположим ладонь левой руки так, чтобы в нее входили линии индукции магнитного поля, при этом четыре вытянутые пальца направим по току, (по направлению движения положительно заряженной частицы либо против движения отрицательно заряженной частицы) тогда отогнутый большой палец покажет направление силы Ампера или силы Лоренца.
- Грозозащита воздушных линий электропередачи напряжением до 1000 В
- Последовательное, параллельное и смешанное возбуждение в двигателях постоянного тока
- Трехфазный асинхронный двигатель: все самое главное, что нужно знать
Надеюсь, что эта статья была для вас полезной. Смотрите также другие статьи в категории Электрическая энергия в быту и на производстве » В помощь начинающим электрикам
Подписывайтесь на наш канал в Telegram: Домашняя электрика
Поделитесь этой статьей с друзьями:
Магнитный поток
Плоский контур. Явление электромагнитной индукции
Как уже неоднократно упоминалось, магнитное поле порождается электрическим током. Тогда возможна ли ситуация, когда, наоборот магнитное поле породит электрический ток?
Из опытов установлено, что магнитное поле действительно может порождать ток. Один из самых простых опытов, доказывающих это, заключается в следующем: замкнутый плоский контур (все точки которого лежат в одной плоскости) из проводящего ток материала подключают к амперметру (чтобы зафиксировать ток) и затем вносят его в область U-образного магнита (см. рисунок 11).
Рисунок 11 – Проводящий контур в магнитном поле (К – контур, А – амперметр)
В ходе данного опыта было выяснено:
- контур вносится в поле (в процессе движения) — амперметр фиксирует ток;
- контур покоится внутри магнита –стрелка амперметра на нуле;
- контур вынимают из области магнита — ток есть;
- изменяют положение контура (поворачивают вокруг диаметра) — ток есть.
Что же изменялось в течение опыта? Если судить по рисунку, видно, что менялось количество магнитных линий, пересекающих контур (они изображены стрелками вниз). На языке физики говорят, что изменялся магнитный поток (Ф), пронизывающий замкнутый контур.
Магнитный поток обозначается буквой Ф и измеряется в Веберах.
Он прямо пропорционален количеству линий магнитного поля, пересекающих плоскость, ограниченную контуром.
Если в эксперименте использовать кольцо большего радиуса, его бы пронизывал больший поток (большая площадь контура могла бы захватить больше магнитных линий). Поле между ветвями U-образного магнита считается однородным.
Если оставить контур прежним, но взять более мощный магнит, поток Ф тоже станет больше (при более сильном поле магнитные линии рисуются гуще).
Если повернуть контур по диаметру, площадь, которой он «захватывает» магнитные линии уменьшится, а значит и магнитный поток уменьшится.
Получается, что поток Ф тем больше, чем больше величина магнитной индукции (В)и площадь контура. Помимо этого, он зависит от того, как расположен контур в поле.
Возникновение тока в замкнутом контуре (из проводящего материала) при изменении магнитного потока Ф, пронизывающего площадь, ограниченную контуром, называется явлением электромагнитной индукции. А возникающий ток – индукционным.
Подробным изучением этого явления занимался английский ученый М.Фарадей.
Направление индукционного тока
Правило Ленца
Индукционный ток и его направление изучались опытным путем. Был придуман прибор, состоящий из узкой перемычки, на концах которой закреплены кольца из легкого металла (чаще всего из алюминия): одно — сплошное, а второе – с разрезом. Перемычка с кольцами размещена на подставке, которая позволяет ей вращаться (см. рисунок 12). В ходе опыта прямоугольный магнит перемещают рядом с металлическими кольцами:
- при приближении магнита к кольцу с разрезом, ничего не происходит;
- при попытках внести магнит в сплошное кольцо, перемычка приходит в движение и поворачивается, кольцо пытается удалиться от магнита (результат не зависит от того, каким полюсом развернут магнит к кольцу);
- если, придержав сплошное кольцо рукой, внести магнит, а затем, отпустив кольцо, попытаться удалить его из плоскости кольца – перемычка будет вращаться, а кольцо будет «догонять» магнит.
Рисунок 12 – Установка для опыта по определению направления индукционного тока
Чем объясняются данные наблюдения?
В разорванном кольце ток пойти не может, поэтому ничего не происходит.
В цельном кольце при попытках изменить магнитный поток (Ф) возникает ток, который порождает свое магнитное поле .
Если магнит пытаются приблизить к контуру-кольцу, плоскость, ограниченную кольцом, начинают пронизывать магнитные линии поля магнита . Кольцо, отталкиваясь от магнита, «сопротивляется» изменению магнитного потока, а индукционный ток в контуре порождает поле, линии которого противоположны линиям поля магнита:
.
Когда предварительно введенный в кольцо магнит пытаются достать, количество магнитных линий, пересекающих плоскость кольца, уменьшается. Индукционный ток в кольце порождает магнитное поле, линии которого будут «возмещать недостающее»: .
Русский ученый Э. Х. Ленц вывел следующее правило: индукционный ток в замкнутом контуре порождает магнитное поле, противодействующее изменению внешнего магнитного потока (Ф).