БП для автолюбителя из компьютерного БП powerman iw-p300a2-0
Всем привет! Это моя первая статья, здесь и сейчас. Попросили меня, сделать зарядное устройство для свинцовых АКБ, и чтобы можно было не только заряжать батареи но и, питать различные нагрузки, ну в общем универсальный блок для автолюбителя.Делать с нуля, навено, ума не хватило бы и «лень» всегда рядом. Поэтому решено было переделать компьютерный блок питания. Сам блок, для переделки, мне дали, и им оказался powerman iw-p300a2-0 и вот его схема.
Временем раньше, был опыт переделки блоков, в которых была установлена универсальная управляющая микрохема lm494(ka7500) но в этом, оказалась другая а именно iw1688. Как выяснилось позже — это аналог sg6105 адаптированный именно для компьютерных БП. Поискав готовое решение в сети, нашёл но.. Но мне не нравилось например как организована защита, или как сделано ограничение тока, к тому-же хотелось что-то вляпать ,извратится и придумать своё. Напряжение хотелось сделать чтобы регулировалось от 7-ми вольт. Решил что напряжение буду снимать с 12-ти вольтовой обмотки. Отпаял всё лишнее, обманул выводы защиты (о них позже), и припаял минимальную нагрузку, резистор,которого не было в заводской схеме. Припаял переменный резистор для изменения выходного напряжения и, начал регулировать напряжение. Когда напряжение опускалось до нужного мне уровня, 7 вольт, блок начинал слегка попискивать и шипеть ШшШшШш. Кстати, дроссель я оставил без изменений, а выходной конденсатор заменил на 2200 Мкф Х 35 Вольт. Пробовал подбирать сопротивление R43 и ёмкость C30 не помогало. Пробовал подбирать сопротивление R64 и ёмкость C8 но, тоже не помогало,блок всё шипел. Навалил кучу резисторов и, шипение пропало — блок стал работать стабильно при значении тока 0,3 А. Хотелось, чтобы максимальное напряжение, отдаваемое блоком, равнялось 20 Вольт и подумал, как же сильно будет греться минимальная нагрузка, резюки — при этих 20 вольтах. Не много подумав, сделал стабилизатор тока, на выпаянной из этого же блока микросхеме 7905. пс.Сначала будут рассмотрены отдельные куски схемы.
Ну вот согласитесь, это же не обычно, так усложнять какую — то минимальную нагрузку. Если пошла такая пьянка, ещё подкинул кондёров и дроссель к стабилизатору тока — нагрузочке. Думаю что если будут пульсации на выходе, то они — защитят микросхему. А может, они там нафиг не нужны ? ну не ставьте.
А дальше выдумывалось как надёжную защиту организовать. В результате пришло такое решение.
Как Вы видите, некоторые резисторы, с точным процентом отклонения. На самом же деле, эти проценты тут не важны, а резюки были взяты из этого же блока, с сохранением оригинального обозначения. Похоже я жутко люблю экономить резисторы и не только. Сначала про обман микросхемы — контроллера. На pin 3 (V5) микросхемы iw1688 я подал напряжение 5 вольт, с дежурного источника +5VSB. На pin 2 (V33) был сделал делитель, на резисторах 9к1 и 18к и запитан от +5VSB. На pin 7 (V12) было подано наряжение от источника питания транзисторов раскачки, (примерно 12,5 в.) через резистор R2, и установлен стабилитрон. Вывод 6 (NVP) контроллера был просто подключен к общей (земле). На pin 5 (UVAC) остались подключены только резистор R17 и конденсатор C23. Далее про защиты. Известно из текста выше, что напряжение, будет регулироваться от 7 до 20 вольт. Захотелось сделать защиту от превышения напряжения на выходе, и сделал, я герой. При привышении напряжения на выходе примерно до уровня 22 вольта, ток потечёт через резистор R1 и стабилитрон 18V на pin 2 (V33), и контроллер прекратит подачу импульсов, заблокируется. Стабилитрон 5,6V установлен с целью защиты pin-а 2 (V33) от сверх напряжений со знаком «+». Защита от короткого замыкания и от переполюсовки организована тоже на выводе 2 (V33). Ситуация 1: Если выходные клеммы блока питания окажутся замкнуты, то на выводе 2 (V33) напряжение станет примерно 0,7 вольт, и контроллер заблокируется. Ситуация 2: Если при подсоединении АКБ на зарядку случайно перепутать полярность, то, на выводе 2 (V33) потенциал со знаком «+» сменится на «-» и контроллер заблокируется. А зачем установлен диод D2, спросите Вы, ведь и стабилитрона 18V хватило бы для этих целей. Известно, что сопротивление диода в прямом включении меньше сопротивления стабилитрона, а значит, и падение напряжения на диоде будет меньше, чем на стабилитроне. Это и сподвигло поставить D2. Диод D1, установлен для защиты pin 2 (V33) от перенапряжения со знаком «-«, при неправильном подключении АКБ. Изменён номинал резистора R6 с 2,1к. на 2,7к. и теперь, аварийная защита по мощности — сработает при 20в. 12а. Разумеется защита на pin 4 (OPP) сработает и при переполюсовке АКБ.
Блок питания на 12 вольт по дешману. Как включить компьютерный блок питания без компьютера
Следующая схема, это защита — исключительно от неправильного подключения АКБ.
При неправильном подключении АКБ, ток потечёт через предохранитель и через диодный полумост шоттки, в результате чего, сгорит предохранитель. Кстати, при переполюсовке АКБ, быстрее сработает защита на pin 4 (OPP) судя по datasheet на аналог sg6105 . Ну а потом, за ней, соответственно сгорит и fuse.
Следующая схема, это индикация состояния и управления (off/on).
Красный светодиод светится когда выключено (standby mode), а зелёный светодиод светится когда включено (normal mode). Нижнее положение переключателя на схеме, соответствует выключенному состоянию, а верхнее положение включенному. Транзистор кт315б можно было не ставить, тогда, схема получилась бы такой.
В этом бы случае, тёк ток по pin 10 (PG) примерно 15 ма. зазря, в выключенном состоянии блока. По этому и установлен транзистор. В схеме видно, что резисторы светодиодов, имеют разное сопротивление. Это сделано для того, чтобы яркость диодов визуально была одинакова.
Следующая схема, это показометр напряжения и тока.
Роль показометра напряжения и тока выполняет, всего один прибор отечественного производства М 4206. Прибор разбирал и маркером нарисовал дополнительные циферки.
Выбор измерения напряжения или тока выполняется переключателем. Роль шунта, выполняет серебряная проволока (см. стояк на фото). Такая проволока практически не греется, но всё же, дрейф тока при I out = 10A может достигать примерно 0,5 А.
Теперь можно взглянуть на полную схему.
Регулятор тока выполнен по простой схеме, на микросхеме LM358 U2.2 и в объяснении принципа работы, думаю не нуждается. Вентилятор охлаждения имеет две скорости, и итенсивность вращения, зависит от силы тока отдаваемой блоком. На транзисторе S9015 собран простой стабилизатор напряжения, обеспечивающий вентилятору малое вращение. На микросхеме LM358 U2.1 собран компаратор с гистерезисом. При срабатывании компаратора, откроется транзистор S9014, и вентилятор станет вращатся на максимальных оборотах. Шунт, используется не только для амперметра, но и как датчик тока, для регулятора тока и компаратора вентилятора. Наверно единственный драгоценный металл в блоке питания — это серебряный шунт. Плату, для регулятора тока и компаратора вентилятора, немного доработав, я использовал из этого же блока. На ней размещены LM358 и резисторы обвески.
Чуть не забыл про технические характеристики:
U out min.= 7V
U out max.= 20V
I out min.= 1,23A
I out max.= 10A
FAN full speed при I out = 0,9A
FAN low speed при I out = 0,72A
Выходное напряжение, может быть и ниже 7 вольт, при работе блока, в режиме стабилизации тока.
По настройке, скажу да, требуется. Ну во первых, требуется чательный подбор сопротивлений резисторов обвязки LM358 для получения, необходимых Вам, выходных характеристик блока. Во вторых, для устранения возможного возбуждения блока, может потребоваться, подбор резисторов R64,R43 и конденсаторов C8,C30. По такой методике, можно переделать любой компьютерный блок питания, содержащий IW1688 или SG6105. Удачи.
А вот видеоролик с демонстрацией работы блока в нём музыка тоже самоделка.
Распиновка выходов блока питания компьютера
Цветовой стандарт, в принципе, един. И эта схема цветовых подключений на 99 процентов подойдет и вам. Может что-то добавиться или удалиться, но конечно все не критично.
Переделка началась
Что нам понадобиться?
- — Клеммы винтовые.
- — Резисторы мощностью 10 Вт и сопротивлением 10 Ом (можно попробовать 20 Ом). Мы будем использовать составные из двух пятиватных резисторов.
- — Трубка термоусадочная.
- — Пара светодиодов с гасящими резисторами на 330 Ом.
- — Переключатели. Один для сети, второй для управления
Тут все просто, так что не бойтесь. Первое что нужно сделать, так это разобрать между собой и соединить провода по цветам. Затем, согласно схемы подключить светодиоды. Первый слева будет индицировать наличие питания на выходе после включения. А второй справа будет гореть всегда, пока сетевое напряжение присутствует на блоке.
Подключить переключатель. Он будет запускать основную схему, замыканием зеленого провода на общий. И выключать блок при размыкании.
Также, в зависимости от марки блока, вам понадобится повесить нагрузочный резистор на 5-20 Ом между общим выходом и плюсом пять вольт, иначе блок может не запуститься из-за встроенной защиты. Так же если не заработает, будьте готовы повесить такие резисторы на все напряжения: «+3,3», «+12». Но обычно хватает одного резистора на выход 5 Вольт.
Начнем
Снимаем верхнюю крышку кожуха.
Откусываем разъемы питания, идущие к материнской плате компьютера и другим устройствам.
Распутываем провода по цветам.
Сверлим отверстия в задней стенке под клеммы. Для точности сначала проходим тонким сверлом, а затем толстым под размер клеммы.
Будьте осторожны, не насыпьте металлическую стружку на плату блока питания.
Вставляем клеммы и затягиваем.
Складываем черные провода, это будет общий, и зачищаем. Затем залуживаем паяльником, одеваем термоусадочную трубку. Припаиваем к клемме и надев трубку на спайку – обдуваем термофеном.
Так делаем со всеми проводами. Которые не планируете использовать – откусите под корень у платы.
Также сверлим отверстия по тумблер и светодиоды.
Устанавливаем и фиксируем горячим клеем светодиоды. Припаиваем по схеме.
Нагрузочные резисторы ставим на монтажную платы и привинчиваем винтами.
Закрываем крышку. Включаем и проверяем ваш новый лабораторный блок питания.
Не лишним будет замерить выходное напряжение на выходе каждой клеммы. Чтобы быть уверенным, что ваш старый блок питания вполне работоспособен и выходные напряжения не вышли за пределы допустимых.
Как вы могли заметить, я использовал два переключателя – один есть в схеме, и он запускает работу блока. А второй, который побольше, двухполюсный – коммутирует входное напряжение 220 В на вход блока. Его можно не ставить.
Так что друзья, собирайте свой блок и пользуйтесь на здоровье.
Блок питания в гараж своими руками из компьютерного БП
Всем привет.
Понадобился мне отдельный блок питания в гараж, чтобы не юзать аккумулятор автомобильный. Постоянно, что-то ковыряю, проверяю, изучаю. И торчать раком возле машины не удобно. Поэтому решил заиметь блок питания на 12В от розетки.
Решил взять для этих целей компьютерный блок питания потому, что он уже можно сказать готовый. Осталось сделать так, чтобы было удобно его использовать. Ну не я первый не я последний)) сказано сделано)
Взял блок на 350Вт благо по современным меркам он уже устаревший и достался мне бесплатно. По 12В линии он выдает аж целых 23А, что равно почти 280Вт. Аж целый насос автомобильный завести хватит и не вспотеет или зажечь 5 галогеновых лампочек на 55Вт каждая. То, что нужно подумал я.
Для того, чтобы запустить блок питания без компьютера достаточно соединить 2 провода, это зеленый и черный. И все. Блок сразу заработает.
На желтом проводе появится +12В, на красном +5В, оранжевый +3,3В. Пожалуй все, что мне надо. Ах да. на фиолетовом проводе будет всегда +5В, пока блок будет воткнут в ризетку, это дежурка.
Определившись с нужными проводами все лишнее иссекаю.
Оставил так:
зеленый и черный, через выключатель буду так влючать и выключать блок (можно и на прямую их соединить без выключателя)
несколько желтых проводов, для увеличения сечения.
парочку красных, для организации линии 5В и запитки USB. Сразу скажу, кто хочет подключить USB как положено к линии 5В и заряжать свой телефон, то больше 500-800мА вы не снимите с такого юсб. Потому, что современные устройства и зарядки на столько стали умные, что нужно их подключать через специальные модули зарядки и тогда телефон будет заряжаться как положено. Мне же нужен этот порт не совсем для зарядки поэтому мне пойдет и так.
к фиолетовому проводу я подцеплю светодиод для индикации, что блок работает. А на желтый провод повешу другой светодиод для индикации наличия питания на линиях. Не спрашивайте нафига так много, ну вот есть их у меня целая куча и решил приспособить)))
В общем берем паяльник и все паяйца хорошо, как по маслу)
Самое сложное для меня было проковырять в нужных местах отверстия.
A few moments later… Спустя какое-то время блок стал приобретать законченный вид. Вывел +12В, +5В и GND на отдельные бананы.
Ну вот собственно и все. Блок готов и протестирован. Напряжения все в пределах нормы меня все устраивает.
Все ссылки на инструменты, запчасти использованные в видео будут в описании под видео. И кстати, это мой первый видос на юбубе. Старался пипец как, оцените по братски)) конструктивная критика приветствуется. Вдруг мне понравится и буду дальше снимать)) Кароче тоже опыт интересный)
Кстати скоро я буду делать блок питания, типа лабораторного, с блэк джеком и крутилками. Тоже так по простому и без сложной теории.
Как взять 12 вольт с блока питания компьютера
Как вы уже поняли, взять напряжение с блока питания компьютера достаточно просто. Вам необходимо лишь подключить устройство к желтому проводу (плюс) и черному (минус). Только будьте внимательны и не перепутайте полярность, иначе ваше устройство, скорее всего, выйдет из строя.
Опять же повторюсь, не забывайте о том, что блок питание подаст напряжение на провода только тогда, когда он будет запущен. Если вы работаете с демонтированным БП ПК, который изъят из корпуса, то необходимо запустить устройство путем замыкания проводов GND (минус) и PWR SW.
Последовательность действий по переделке БП ATX в регулируемый лабораторный.
Удаляем перемычку J13 (можно кусачками)
Удаляем диод D29 (можно просто одну ногу поднять)
Перемычка PS-ON на землю уже стоит.
Включаем ПБ только на короткое время, так как напряжение на входа будет максимальное (примерно 20-24В). Собственно это и хотим увидеть. Не забываем про выходные электролиты, расчитанные на 16В. Возможно они немного нагреются. Учитывая Ваши «вздутости», их все равно придется отправить в болото, не жалко. Повторюсь: все провода уберите, они мешают, а использоваться будут только земляные и +12В их потом назад припаяете.
Удаляем 3.3-х вольтовую часть: R32, Q5, R35, R34, IC2, C22, C21.
Удаляем 5В: сборку шоттки HS2, C17, C18, R28, можно и «типа дроссель» L5.
Удаляем -12В -5В: D13-D16, D17, C20, R30, C19, R29.
Меняем плохие : заменить С11, С12 (желательно на бОльшую ёмкость С11 — 1000uF, C12 — 470uF).
Меняем несоответствующие компоненты: С16 (желательно на 3300uF х 35V как у меня, ну хотя бы 2200uF x 35V обязательно!) и резистор R27 — у Вас его уже нет вот и замечательно.
Советую его заменить на более мощный, например 2Вт и сопротивление взять 360-560 Ом. Смотрим на мою плату и повторяем:
Убираем всё с ног TL494 1,2,3 для этого удаляем резисторы: R49-51 (освобождаем 1-ю ногу), R52-54 (…2-ю ногу), С26, J11 (…3-ю ногу)
Не знаю почему, но R38 у меня был перерублен кем-то рекомендую Вам его тоже перерубить. Он участвует в обратной связи по напряжению и стоит параллельно R37-му.
Отделяем 15-ю и 16-ю ноги микросхемы от «всех остальных», для этого делаем 3 прореза существуюших дорожек а к 14-й ноге восстанавливаем связь перемычкой, как показано на фото.
Теперь подпаиваем шлейф от платы регулятора в точки согласно схемы, я использовал отверстия от выпаянных резисторов, но к 14-й и 15-й пришлось содрать лак и просверлить отверстия, на фото.
Жила шлейфа №7 (питание регулятора) можно взять от питания +17В ТЛ-ки, в районе перемычки, точнее от неё J10/ Просверлить отверстие в дорожку, расчистить лак и туда. Сверлить лучше со стороны печати.
Ещё посоветовал бы поменять конденсаторы высоковольтные на входе (С1, С2). У Вас они очень маленькой ёмкости и наверняка уже изрядно подсохли. Туда нормально станут 680uF x 200V. Теперь, собираем небольшую платку, на которой будут элементы регулировки. Вспомогательные файлы смотрите тут.
Схема дополнительного блока
Данный резистор будет ограничивать напряжение выдаваемое БП. Этот резистор и R60 образует делитель напряжения, который будет делить выходное напряжение и подавать его на 1 ножку.
Входы ОУ(ШИМ) на 1-й и 2-й ножках у нас служат для задачи выходного напряжения.
На 2-ю ножку приходит задача по выходному напряжению БП, поскольку на вторую ножку максимально может прийти 5 вольт (vref) то обратное напряжение должно приходить на 1-ю ножку тоже не больше 5 вольт. Для этого нам и нужен делитель напряжения из 2х резисторов, R60 и тот что мы установим с выхода БП на 1 ногу.
Как это работает: допустим переменным резистором выставили на вторую ногу ШИМ 2,5 Вольта, тогда ШИМ будет выдавать такие импульсы (повышать выходное напряжение с выхода БП) пока на 1 ногу ОУ не придёт 2,5 (вольта). Допустим если этого резистора не будет, блок питания выйдет на максимальное напряжение, потому как нет обратной связи с выхода БП. Номинал резистора 18,5 кОм.
Устанавливаем на выход БП конденсаторы и нагрузочный резистор
Нагрузочный резистор можно поставить от 470 до 600 Ом 2 Ватта. Конденсаторы по 500 мкф на напряжение 35 вольт. Конденсаторов с требуемым напряжением у меня не было, поставил по 2 последовательно по 16 вольт 1000 мкф. Припаиваем конденсаторы между 15-3 и 2-3 ногами ШИМ.
Как сделать регулируемый блок питания из компьютерного
Последовательность действий по доработке обычного компьютерного импульсного блока питания (250-600 ватт), позволяющая превратить его в мощный регулируемый, который будет выполнять функции зарядного устройства или лабораторного БП.
Не только радиолюбителям, но и просто в быту, может понадобиться мощный блок питания. Чтоб было до 10А выходного тока при максимальном напряжении до 20 и более вольт. Конечно-же, мысль сразу направляется на ненужные компьютерные блоки питания ATX. Прежде чем приступать к переделке, найдите схему на именно ваш БП.
Последовательность действий по переделке БП ATX в регулируемый лабораторный.
1. Удаляем перемычку J13 (можно кусачками)
2. Удаляем диод D29 (можно просто одну ногу поднять)
3. Перемычка PS-ON на землю уже стоит.
4. Включаем ПБ только на короткое время, так как напряжение на входа будет максимальное (примерно 20-24В). Собственно это и хотим увидеть. Не забываем про выходные электролиты, расчитанные на 16В. Возможно они немного нагреются. Учитывая Ваши «вздутости», их все равно придется отправить в болото, не жалко. Повторюсь: все провода уберите, они мешают, а использоваться будут только земляные и +12В их потом назад припаяете.
5. Удаляем 3.3-х вольтовую часть: R32, Q5, R35, R34, IC2, C22, C21.
6. Удаляем 5В: сборку шоттки HS2, C17, C18, R28, можно и «типа дроссель» L5.
7. Удаляем -12В -5В: D13-D16, D17, C20, R30, C19, R29.
8. Меняем плохие : заменить С11, С12 (желательно на бОльшую ёмкость С11 — 1000uF, C12 — 470uF).
9. Меняем несоответствующие компоненты: С16 (желательно на 3300uF х 35V как у меня, ну хотя бы 2200uF x 35V обязательно!) и резистор R27 — у Вас его уже нет вот и замечательно. Советую его заменить на более мощный, например 2Вт и сопротивление взять 360-560 Ом. Смотрим на мою плату и повторяем:
10. Убираем всё с ног TL494 1,2,3 для этого удаляем резисторы: R49-51 (освобождаем 1-ю ногу), R52-54 (. 2-ю ногу), С26, J11 (. 3-ю ногу)
11. Не знаю почему, но R38 у меня был перерублен кем-то 🙂 рекомендую Вам его тоже перерубить. Он участвует в обратной связи по напряжению и стоит параллельно R37-му.
12. Отделяем 15-ю и 16-ю ноги микросхемы от «всех остальных», для этого делаем 3 прореза существуюших дорожек а к 14-й ноге восстанавливаем связь перемычкой, как показано на фото.
13. Теперь подпаиваем шлейф от платы регулятора в точки согласно схемы, я использовал отверстия от выпаянных резисторов, но к 14-й и 15-й пришлось содрать лак и просверлить отверстия, на фото.
14. Жила шлейфа №7 (питание регулятора) можно взять от питания +17В ТЛ-ки, в районе перемычки, точнее от неё J10/ Просверлить отверстие в дорожку, расчистить лак и туда. Сверлить лучше со стороны печати.
Ещё посоветовал бы поменять конденсаторы высоковольтные на входе (С1, С2). У Вас они очень маленькой ёмкости и наверняка уже изрядно подсохли. Туда нормально станут 680uF x 200V. Теперь, собираем небольшую платку, на которой будут элементы регулировки. Вспомогательные файлы смотрите тут .
Схема дополнительного блока
Вечер ушёл в Вашу пользу 🙂 А в следующей статье я покажу пример изготовления корпуса для хорошего лабораторного БП.
Отличие компьютерных блоков питания формата AT от ATX.
Компьютерные блоки формата AT не имеют дежурного блока питания +5 (Standby) и выходных напряжений 3,3V. Поэтому при включении такого блока на его выходах +12V, +5V, -12V, -5V напряжение появляется сразу.
У блоков питания формата ATX есть дежурный источник питания на +5VSB (Standby). Он работает всегда, пока блок питания подключен к сети 220V. Чтобы на выходных каналах появились напряжения +12V, -12V, +5V, -5V, +3,3V нужно на главном выходном разъёме замкнуть зелёный и чёрный провод.
Если вы хотите, чтобы выходные напряжения появлялись сразу после включения БП, то можно установить перемычку между зелёным (Power ON) и чёрным проводом. При этом блок питания будет выходить из «спящего» режима сразу после подачи на него напряжения сети 220V.
Восстановление компьютерного блока питания.
Для начала пробуем включить блок питания. В большинстве случае бывшие в употреблении (б/у или «бэушные») блоки питания от ПК, как правило, рабочие, но имеют некоторые дефекты (отсутствие некоторых выходных напряжений, пониженное напряжение на одном из каналов +12, -12, +5, -5 вольт и т.п.). Даже если блок питания запустился – при этом начнёт крутить вентилятор – стоит вскрыть корпус блока питания, выгрести из него всю пыль, открутить печатную плату и осмотреть контакты на предмет непропая. Если нужно – исправить дефекты.
Перед проведением любых работ необходимо отключать блок питания от сети 220V. Также после этого не помешает принудительно разрядить высоковольтные электролитические конденсаторы входного выпрямителя (220-470 мкФ. * 250V). Сделать это можно подключив на несколько секунд резистор на 100-200 кОм параллельно контактам конденсатора. Естественно, держать пальцами резистор не стоит – иначе можно получить лёгкий удар током.
Эта операция необходима потому, что остаточный электрический заряд конденсаторов опасен (в рабочем режиме на них 200V!). При случайном касании выводов конденсаторов можно получить лёгкий электрический удар. Явление весьма неприятное.
Особое внимание стоит обратить на состояние электролитических конденсаторов выходных выпрямителей. Если они вздуты, имеют разрыв засечки, то их нужно заменить новыми.
Более подробно об устройстве компьютерных блоков питания формата AT рассказано здесь.
Чтобы блок питания выглядел более солидно можно покрасить его аэрозольной краской-спреем (продаётся в любом магазине автозапчастей).
Отличие компьютерных блоков питания формата AT от ATX.
Компьютерные блоки формата AT не имеют дежурного блока питания +5 (Standby) и выходных напряжений 3,3V. Поэтому при включении такого блока на его выходах +12V, +5V, -12V, -5V напряжение появляется сразу.
У блоков питания формата ATX есть дежурный источник питания на +5VSB (Standby). Он работает всегда, пока блок питания подключен к сети 220V. Чтобы на выходных каналах появились напряжения +12V, -12V, +5V, -5V, +3,3V нужно на главном выходном разъёме замкнуть зелёный и чёрный провод.
Если вы хотите, чтобы выходные напряжения появлялись сразу после включения БП, то можно установить перемычку между зелёным (Power ON) и чёрным проводом. При этом блок питания будет выходить из «спящего» режима сразу после подачи на него напряжения сети 220V.
Восстановление компьютерного блока питания.
Для начала пробуем включить блок питания. В большинстве случае бывшие в употреблении (б/у или «бэушные») блоки питания от ПК, как правило, рабочие, но имеют некоторые дефекты (отсутствие некоторых выходных напряжений, пониженное напряжение на одном из каналов +12, -12, +5, -5 вольт и т.п.). Даже если блок питания запустился – при этом начнёт крутить вентилятор – стоит вскрыть корпус блока питания, выгрести из него всю пыль, открутить печатную плату и осмотреть контакты на предмет непропая. Если нужно – исправить дефекты.
Перед проведением любых работ необходимо отключать блок питания от сети 220V. Также после этого не помешает принудительно разрядить высоковольтные электролитические конденсаторы входного выпрямителя (220-470 мкФ. * 250V). Сделать это можно подключив на несколько секунд резистор на 100-200 кОм параллельно контактам конденсатора. Естественно, держать пальцами резистор не стоит – иначе можно получить лёгкий удар током.
Эта операция необходима потому, что остаточный электрический заряд конденсаторов опасен (в рабочем режиме на них 200V!). При случайном касании выводов конденсаторов можно получить лёгкий электрический удар. Явление весьма неприятное.
Особое внимание стоит обратить на состояние электролитических конденсаторов выходных выпрямителей. Если они вздуты, имеют разрыв засечки, то их нужно заменить новыми.
Более подробно об устройстве компьютерных блоков питания формата AT рассказано здесь.
Чтобы блок питания выглядел более солидно можно покрасить его аэрозольной краской-спреем (продаётся в любом магазине автозапчастей).