Резистор из чего состоит

Конструкция резистора учитывает назначение резистора дан­ного типа, условия эксплуатации, особенности используемых мате­риалов.

Рис. 8. Осевые и радиальные тапы выводов непроволочных резисторов

Конструктивно непрово­лочный резистор, чаще всего, представляет собой изделие, состоящее из неразъемно со­единенных основания, с укреп­ленным на нем резистивным элементом и электрическими выводами, которые могут иметь осевое или радиальное (рис. 8.8) расположение.

По способу защиты от внешних воздействий резисторы под­разделяются на неизолированные (не допускают касания своим кор­пусом металлических частей РЭС), изолированные (имеют изоляци­онное покрытие и допускают касание корпуса), герметизированные (имеют защитный герметичный корпус из прессованного компаунда), вакуумные (резистивный элемент помещен в стеклянную колбу).

Для металлопленочных резисторов в качестве материалов резистивного элемента применяют металлы и сплавы толщиной несколько микрометров. Углеродистые и бороуглеродистые рези­сторы имеют в качестве резистивного элемента пленку пиролитического углерода или борорганических соединений. К толстопленочным материалам резистивных элементов относятся керметы (спеченная композиция порошков керамики и сплавов металлов), сажа с наполни­телями, проводящие пластмассы, получаемые специальной термообработкой.

Материалами резистивного элемента композиционных рези­сторов является гетерогенная смесь проводящего вещества (например, графита или сажи) с органическими или неорганическими связующими смолами (например, эпоксидными, кремнийорганическими), наполнителем, пластификатором и отвердителем. Таким способом удается изготавливать композиционные резисторы с элек­трическим сопротивлением от долей ома до нескольких тераом. Не­достатками композиционных резисторов следует считать заметную зависимость электрического сопротивления от приложенного напря­жения и рассеиваемой мощности, а также значительный уровень собственных шумов из-за зернистости структуры резистивного эле­мента. Эта же особенность является причиной постепенного изме­нения электрического сопротивления (старения) при длительной нагрузке.

Проволочные постоянные ре­зисторы имеют наиболее простую конструкцию (рис. 9), включающую проволочный резистивный элемент, керамическую основу, электрические выводы и покрытие (глазурованная эмаль).

Рис. 9. Типовые конструкции постоянных проволочных ре­зисторов общего применения

В проволочных резисторах при­меняется проволока из сплавов с вы­соким удельным сопротивлением, до­статочной механической прочностью, термостойкостью, технологич­ностью (способностью протягиваться в проволоку диаметром поряд­ка сотых долей миллиметра). Наиболее часто в производстве про­волочных резисторов используются сплавы: манганин (Сu 86%; Mn 12%; Ni 2%), нихром (Ni 60%; Сr 15%; Fe 25%), константан (Сu 60%; Ni 40%).

Резистор — как это работает ?

Существенным достоинством проволочных резисторов явля­ется стабильность ТКС в широком диапазоне температур, хотя име­ет место заметный разброс начальных значений ТКС в партии рези­сторов.

Сплавы с высоким удельным сопротивлением из-за окисной пленки на поверхности проволоки плохо поддаются пайке и поэтому соединение с выводами производится сваркой. Места сварки оказы­ваются хрупкими и, вследствие пористости, подверженными разру­шению от коррозии во время эксплуатации РЭС. что требует специ­альных мер защиты.

Проволочные резисторы характеризуются относительно высо­кой стоимостью, значительной собственной индуктивностью и емко­стью. Кроме того, в нагретом контакте константана с медными выво­дами возникает заметный уровень термоЭДС. что препятствует ис­пользованию таких проволочных резисторов в измерительных цепях.

Резисторы переменного электрического сопротивления предна­значены для регулирования тока во время эксплуатации РЭС (много­кратное изменение сопротивления) или для относительно редкого изменения сопротивления (при настройке и профилактике РЭС).

Рис. 10. Конструкция переменного непроволочного резистора

Конструкция переменных непроволочных резисторов об­щего назначения (рис. 10) включает резистивный элемент, укрепленный на основании, ось с’ поводком и контактной щеткой, резьбовую втулку с крепежной гайкой и защитный кожух. Последний электрически соединен с корпусом блока через втулку и предназначен для электрического экранирования и защиты от пыли. К сожалению, защита не является герметичной. У движковых перемен­ных непроволочных резисторов отсутствуют пылезащита и оболочка эк­ранирования.

Рис. 11. Функциональные характеристики переменных резисторов: а — линейная; б — логарифмическая; в — обратнологарифмическая

Функциональная характеристика переменного непроволочного резистора отражает зависимость электрического сопротивления меж­ду подвижным контактом (контактной щеткой поводка) и одним из не­подвижных контактов подковообразного резистивного элемента от угла поворота оси резистора с поводком. Чаще других используются резисторы с линейной зависимостью (рис. 8.11, кривая а). Резисторы с логарифмической зависимостью (рис. 11 кривая 6) характеризу­ются постоянным приростом (константа к) сопротивления R на еди­ницу угла поворота ,где -начальное сопротивление.

Рис. 12. Внешний вид некоторых типов полупроводниковых резисторов:

а — терморезистор: б — варистор; б-фоторезистор

Переменные непроволоч­ные резисторы с обратнологарифмической зависимостью име­ют характерный начальный уча­сток при малых углах поворота:

В реальных переменных непроволочных резисторах функ­циональные зависимости сопро­тивления от угла поворота не имеют столь плавного изменения (пунктирные линии), поскольку, из-за особенностей технологиче­ского процесса их производства, осуществляется сопряжение от­дельных участков резистивного слоя с отличающимися сопротивле­ниями.

В процессе перемещения подвижного контакта переменного резистора возникают шумы, уровень которых составляет единицы милливольт на вольт. По мере износа резистивного элемента шумы возрастают и могут достигнуть 10. 100 мВ/В.

Полупроводниковые резисторы, предназначенные для спе­цифического применения (терморезисторы, фоторезисторы и варисторы), имеют в своем составе в качестве материалов резистивного элемента сложные композиции веществ, исходными составляющими которых являются оксидные полупроводники вида: Mn3O4;Co3O4; СuО;СоО; NiO; CdS; CdSe; PbS.

Полупроводниковые терморезисторы (термисторы) значи­тельно изменяют свое электрическое сопротивление (линейно или нелинейно) при изменении температуры их корпуса (рис. 12, а). Они используются, в основном, в качестве термочувствительных элементов систем управления и контроля. Важнейшими характери­стиками терморезисторов являются: коэффициент энергетической чувствительности (тепловую мощность, которую необходимо под­вести для изменения его электрического сопротивления на 1%): по­стоянная времени (интервал времени, в течение которого темпера­тура терморезистора повышается до +63°С при перенесении его из воздушной среды с температурой 0°С в воздушную среду с темпера­турой +100°С); максимальная рабочая температура.

Терморезисторы имеют обозначение ММТ (медно-марганцевые), КМТ (кобальто-марганцевые) и СТ (сопротивление термо­чувствительное).

Фоторезисторы — светочувствительные компоненты РЭС, (Рис. 12, в) в которых электрическая проводимость полупроводни­кового материала изменяется под воздействием электромагнитного излучения (от инфракрасного до ультрафиолетового). Основное применение фоторезисторов в составе РЭС — датчики светового по­тока. Важнейшими характеристиками фоторезисторов являются: темновое сопротивление (сопротивление в отсутствие внешнего облучения); темновой ток (ток при рабочем напряжении в отсутст­вие внешнего облучения); кратность изменений сопротивления (отношение сопротивлений при воздействии и отсутствии облуче­ния); постоянной времени (интервал времени нарастания и спада тока при воздействии прямоугольного импульса облучения); блина волны максимальной чувствительности.

Варисторы — полупроводниковые резисторы (рис. 12, б) с ярко выраженной нелинейной зависимостью электрического со­противления от приложенного напряжения. Они используются в це­пях стабилизации напряжений и токов, защиты от перенапряжений, в преобразователях частоты и напряжений, для регулировки в сис­темах автоматического управления, измерителях и др. Основными характеристиками варисторов являются: коэффициент нелинейно­сти (отношение статического сопротивления в рабочей точке к ди­намическому сопротивлению в этой же точке); допустимая мощ­ность рассеяний; рабочие ток и напряжение.

Углеродные композиционные резисторы

Углеродный композит в проигрывателе

Их часто называют «старыми» резисторами. Они широко применялись в 1960-х, но с появлением других типов резисторов и благодаря достаточно большой себестоимости, их использование сейчас ограничено. Они состоят из смеси керамического порошка с углеродом, связанных при помощи смолы. Углерод хорошо проводит ток, и чем больше его в смеси, тем меньше сопротивление. Провода присоединяются с концов. Они покрываются краской или пластиком, служащими изоляцией, а сопротивление и допуск обозначаются цветными полосками.

Сопротивление таких резисторов можно перманентно изменить, подвергнув их высокой влажности, высокому напряжению или перегреву. Допуск составляет 5% или более. Это просто твёрдый цилиндр с хорошими высокочастотными характеристиками. Также они хорошо переносят перегрев, несмотря на свой малый размер, и всё ещё используются в блоках питания и сварочных контроллерах.

Однако их возраст не остановил меня от использования мешка таких резисторов, купленных мною в комиссионке с целью изготовления различных сопротивлений, которые были нужны мне для моего проекта муз. проигрывателя 555. На фото как раз моя поделка.

Углеродно-плёночные резисторы

Производятся нанесением слоя чистого углерода на керамический цилиндр и последующего удаления углерода с целью формирования спирали. Итог покрывается кремнием. Толщина слоя и ширина оставшегося углерода управляют сопротивлением, а допуск таких резисторов бывает от 2%, лучше, чем у предыдущих. Благодаря чистому углероду сопротивление меньше меняется с температурой.

Температурный коэффициент сопротивления углеродно-плёночных резисторов составляет от 200 до 500 ppm/C – миллионных долей на градус Цельсия. 200 ppm/C значит, что с каждым градусом сопротивление не изменится больше, чем на 200 Ом на каждый МОм общего сопротивления. В процентах это можно выразить как 0,02%/C. Если температура изменится на 80 С, при показателе 200 ppm/C сопротивление резистора поменяется на 1,6%, или на 16 кОм.

Такие резисторы выпускаются номиналом от 1 Ом до 10 кОм, мощностью от 1/16 Вт до 5 Вт и выдерживают напряжения в несколько киловольт. Обычно используются в высоковольтных блоках питания, рентгеновских аппаратах, лазерах и радарах.

Устройство и принцип работы

Конструкция постоянных резисторов довольно простая. Они состоят из керамической трубки, поверх которой намотана проволока или нанесена резистивная плёнка с определённым сопротивлением. На концы трубки вставлены металлические колпачки с припаянными выводами для поверхностного монтажа. Для защиты слоя используется лакокрасочное покрытие.

Устройство таких элементов можно понять из рисунка 2 ниже.

В большинстве моделей такая конструкция традиционно сохраняется, но сегодня существуют различные виды сопротивлений с использованием резистивного материала, устройство которых немного отличается от конструкции описанной выше.

Строение резистора

Современную электронную аппаратуру наполняют платы, начинённые миниатюрными деталями. Поскольку тенденция к уменьшению размеров электронных приборов сохраняется, то требования к уменьшению габаритов коснулись и резисторов. Для этих целей идеально подходят непроволочные сопротивления. Они просты в изготовлении, а их номинальные мощности хорошо согласуются с параметрами маломощных цепей.

Казалось бы, что эра проволочных резисторов постепенно уходит в прошлое. Однако это не так. Спрос на проволочные сопротивления остаётся в тех сферах, где транзисторы с металлоплёночным или с композитным резистивным слоем не справляются с мощностями электрических цепей.

Для непроволочных резисторов используются следующие резистивные материалы:

  • нихром;
  • манганин;
  • константан;
  • никелин;
  • оксиды металлов;
  • металлодиэлектрики;
  • углерод и другие материалы.

Перечисленные вещества обладают высокими показателями удельного сопротивления. Это позволяет изготавливать электронные компоненты с очень маленькими корпусами, сохраняя при этом значения номинальных величин.

Размеры и формы корпусов, проволочных выводов современных резисторов соответствуют стандартам, разработанным для автоматической сборки печатных плат. С целью надёжного соединения выводов способом пайки, выводы деталей проходят процесс лужения.

Конструкция регулировочных (рис. 3) и подстроечных резисторов (рис.4) немного сложнее. Эти переменные транзисторы состоят из кольцевой резистивной пластины, по которой скользит бегунок. Перемещаясь по кругу, подвижный контакт изменяет расстояние между точками на резистивном слое, что приводит к изменению сопротивления.

Регулировочные резисторы Подстроечные резисторы

Принцип действия.

Работа резистора основана на действии закона Ома: I = U/R , где I – сила тока, U – напряжение, R – сопротивление на участке цепи. Из формулы видно как зависят от величины сопротивления параметры тока и напряжения.

Подбирая резисторы соответствующего номинала, можно изменять на участках цепей величины тока и напряжения. Например, увеличивая сопротивление последовательно включённого резистора на участке цепи, можно пропорционально уменьшить силу тока.

Условно резистор можно представить себе в виде узкого горлышка на участке трубки, по которой течёт некая жидкость (см. рис. 5). На выходе из горлышка давление будет ниже, чем на его входе. Примерно, то же самое происходит и с потоком заряженных частиц – чем больше сопротивление, тем слабее ток на выходе резистора.

Принцип работы

Виды

Мы уже упомянули два типа резисторов, отличающиеся по конструкции: постоянные, у которых сопротивление статичное (допускается мизерное отклонение параметров при нагреве элемента) и переменные. К последним можно добавить подвид переменных сопротивлений (полупроводниковых резисторов) – нелинейные.

Сопротивление нелинейных компонентов изменяется в широких пределах под воздействием различных факторов:

  • изменения температуры (терморезисторы);
  • яркости света (фоторезисторы);
  • изменений напряжения (варисторы);
  • деформации (тензорезисторы);
  • напряжённости электрического поля (магниторезисторы);
  • от протекающего заряда (мемристоры).

За видом резистивного материала классификация может быть следующей:

  • проволочные резисторы (рис. 6);
  • композиционные;
  • металлоплёночные (рис. 7);
  • металлооксидные (характеризуются стабильностью параметров);
  • углеродные (угольный резистор);
  • полупроводниковые, с применением резистивных полупроводниковых материалов (могут быть как линейными, так и переменными).

Проволочные резисторыПостоянные плёночные SMD компоненты

Отличие плёночных smd компонентов от композиционных деталей состоит в способах их изготовления. Композиционные детали производятся путём прессования композитных смесей, а плёночные – путём напыления на изоляционную подложку.

В интегральных монокристаллических микросхемах методом трафаретной печати или способом напыления в вакууме создают встроенные интегральные резисторы.

По назначению сопротивления подразделяются на детали общего назначения и на компоненты специального назначения:

  • прецизионные и сверхпрецизионные (высокоточные детали с допуском отклонений параметров от 0,001% до 1%);
  • высокоомные (от десятков МОм до нескольких Том);
  • высокочастотные, способные работать с частотами до сотен МГц;
  • высоковольтные, с рабочим напряжением, достигающим десятков кВ.

Можно классифицировать детали и по другим признакам, например по типу защиты от влаги или по способу монтажа: печатный либо навесной.

Основные характеристики электронных компонентов

К основным параметрам относят:

  • сопротивление номинального характера;
  • предельная рассеиваемая мощность;
  • коэффициент сопротивления (температурный);
  • технологический разброс (отличие/изменение от номинального показателя);
  • граничное рабочее напряжение;
  • предельный показатель температуры;
  • термоустойчивость;
  • влагостойкость;
  • коэффициент напряжения (связан с приложенным напряжением).

Сферы применения резисторов

Изделия применяется в электронике и радиоэлектронике. Позволяют ограничить электрический ток в электроцепи. Если резистор в электрической цепи подобран правильно, то достичь нужного показателя довольно легко. Если напряжение стабильное, то чем выше напряжение, тем ниже сила тока на выходе.

Таким образом, резисторы имеют цель преобразовать напряжение в электрический ток, а ток — в напряжение. В устройствах, предназначенных для измерения разных величин, резисторы делят напряжение, а также снижают или устраняют помехи радиохарактера.

Отображение в схемах

схема электроцепей резисторов

Если рассмотреть схемы электроцепей, то в российских и европейских вариантах будут похожие изображения — прямоугольник 4х10 миллиметров. А для обозначения показателей сопротивления используется отдельные знаки.

Принцип работы резистора

Что такое резистор, уже было рассмотрено выше. А как они функционируют?

Их работу полностью регулирует закон Ома. То есть, напряжение напрямую связано с величиной тока и показателями напряжения. Использование различных деталей дают возможность изменить указанные показатели до необходимой величины. Причина этого в том, что ток, двигаясь по цепи и попадая в резистор, снижает свою активность и продвигается медленнее далее по электрической цепи. Это и есть их принцип.

схема работы резисторов

Резистор в цепи может быть подсоединен несколькими способами. Используется параллельное и последовательное подключение. Но зачастую их компонуют вместе и получают смешанный способ соединения.

Маркировка: обозначение

Для подавляющего большинства элементной базы на радиозаводах прибегают к специальной маркировке с определенной расцветкой, но иногда берут и цифровые и буквенные обозначения. К примеру, у SMD резистивных элементов исключительно буквенная.

Цветовые маркировки представляют собой 4…6 полосок разных цветов, которую несут определенные сведения. Первые 2 цифры являются обозначением номинального сопротивления, а 3-е, на которое множатся первые 2, в итоге демонстрируют общую величину сопротивления. 4-я свидетельствует о классе точности резистора. Если полосок больше, то изменяется исключительно 1-й показатель на одну цифру.

Маркировка резисторов

Виды резисторов по характеру изменения сопротивления

Резисторы бывают постоянными и переменными. Постоянные имеют два вывода и стабильное сопротивление, отображенное в маркировке. В переменных (регулировочных и подстроечных) резисторах этот параметр меняется в допустимых пределах, в зависимости от рабочего режима.

В переменных резюках три вывода. На схеме указывается номинал между крайними выводами. Значение сопротивления между средним выводом и крайними регулируется путем перемещения скользящего контакта (бегунка) по резистивному слою. При этом сопротивление между средним и одним из крайних выводов возрастает, а между средним и другим крайним выводами – падает. При движении «бегунка» в другую сторону эффект обратный.

Что делают подстроечные резисторы

Они созданы для периодической подстройки, поэтому подвижная система рассчитана на небольшое количество циклов перемещения – до 1000.

Регулировочные резисторы рассчитаны на многократное использование – более 5 тысяч циклов.

Типы резисторов по характеру вольтамперной характеристики

По ВАХ резисторы разделяются на линейные и нелинейные. Сопротивление линейных резюков не зависит от напряжения и тока, а сопротивление нелинейных элементов меняется, в зависимости от этих (или других) величин. Малогабаритные линейные детали типа МЛТ (металлизированные лакированные термостойкие) используются в аппаратуре связи – магнитофонах и радиоприемниках.

Примером нелинейных резисторов может служить обычная осветительная лампочка, чье сопротивление в выключенном состоянии намного меньше, чем в режиме освещения. В фоторезисторах сопротивление меняется под действием света, в терморезисторах – температуры, тензорезисторах – деформации резисторного слоя, магниторезисторах – магнитного поля.

Разделение по видам

Поскольку сопротивление — одна из самых используемых форм деталей, то и применение его очень разнообразно. В зависимости от назначения резистора его можно разделить на три категории:

  • постоянные;
  • подстроечные;
  • регулирующие.

Первая категория — постоянные резисторы — имеют заданное сопротивление и больше остальных используются в электрических схемах. Тем не менее сопротивление все равно зависит от внешних факторов. По этому признаку их квалифицируют на следующие виды:

Линейные названы так, потому что их сопротивление меняется плавно, то есть линейно, в зависимости от внешнего влияния. У нелинейных такой плавности нет. Например, если измерить сопротивление лампы накаливания в холодном состоянии, то оно будет одно, а в горячем — совсем другое, причем в 10—15 раз больше.

Если существует такое многообразие, то возникает закономерный вопрос — как понять где резистор? На самом деле резистор может выглядеть как круг, трубка или квадрат. Они выпускаются различных форм, размеров, окрасок. Порой чтобы определить, что это резистор, необходимо посмотреть электрическую принципиальную схему.

Вторая категория — подстроечные. Имеют регулирующий механизм, который плавно меняет сопротивление. Используется для точной настройки аппаратуры.

Следующая категория — регулировочные. Название здесь говорит само за себя. Они предназначены для регулировок, а значит, должны менять свое сопротивление. В отличие от постоянных, у которых два вывода, у этих имеется три вывода. Два из них подключаются к самому резистору, а третий — к подвижному контакту, который соединен с вращающимся элементом. Если подключить питание к двум выводам, то на подвижном контакте будет другое напряжение, которое будет отличаться от напряжения на выводах этого элемента.

Если подключить регулировочный (переменный) резистор последовательно с батарейкой, соединить лампочку одним выводом с минусовой клеммой батарейки, а другой с выводом подвижного контакта, то при вращении рукоятки переменного резистора будет заметно, как меняется яркость лампочки. Почему такое происходит можно понять, если разобраться что делает резистор.

Использование в электрической схеме

Использование резистора

Яркость лампочки зависит от тока, протекающего по нити накаливания — чем больше ток, тем ярче горит лампочка. По закону Ома ток можно высчитать разделив напряжение на сопротивление, значит, чем меньше сопротивление, тем больше ток. На практике работать это будет следующим образом.

Допустим, лампочка рассчитана на напряжение в 9 В, имеет сопротивление 70 Ом (в рабочем, горячем состоянии), батарея на 9 в и переменное сопротивление 100 Ом. Для нормальной работы ток, проходящий через лампочку, должен быть примерно 0,13 А (напряжение батареи 9 В делится на сопротивление лампочки 70 Ом). В эту цепь последовательно подсоединяется переменный резистор в 100 Ом, ток цепи составит примерно 0,05 А (напряжение батареи 9 В делится на общее сопротивление 170 Ом), — это примерно треть от требуемого тока и лампочка, следовательно, не будет гореть.

В этом случае резистор помогает плавно гасить свет. Подобный принцип используется, например, в кинотеатрах. Если батарея на 9 В, а лампочка рассчитана на 2,5 В, то для ее нормальной работы необходим делитель или гаситель напряжения. В чем суть? В цепи необходимо создать нормальный для лампочки ток.

Если используется гаситель, то к источнику тока последовательно подключаются 2 или более резистора и лампочка. Общее сопротивление выбирается с таким расчетом, чтобы ток, протекающий по цепи, соответствовал номинальному току лампочки. Допустим, имеются: источник постоянного тока 9 В, лампочка напряжением 2,5 В и номинальным током 0,12 А.

Рассчитывается сопротивление лампочки, для этого напряжение делится на ток и получается примерно 20,8 Ом. Чтобы по цепи шел ток в 0,12 А, рассчитывается общее сопротивление: 9 В делённое на 0,12 А дает 75 Ом. Вычитается сопротивление лампочки и получится 54,2 Ом — такое сопротивление необходимо добавить к лампочке.

Функции резистора

Если используется делитель, то тогда берутся два и более резистора и подключаются последовательно источнику питания. Параллельно какой-то части делителя подключается нагрузка, получается схема со смешанным подключением: источник — часть делителя — параллельно подключенные часть делителя и нагрузка — источник тока. Это только один вариант, на самом деле схем подключения множество, но всегда идет смешанное подключение.

Далее делается расчет нужного сопротивления. При параллельном подключении ток идет по двум цепям, значит, на нагрузке его будет меньше (подключенный последовательно резистор ограничивает ток). Для нормальной работы нагрузки высчитываются все токи, проходящие по делителю, а затем подбирается ограничивающий.

При последовательном подключении, чтобы отключить лампочку — нужно отключить питание, а при использовании делителя достаточно отключить цепь лампочки. Если необходимо к источнику подключить несколько нагрузок с разным напряжением, то без делителя (его еще называют делитель напряжения) не обойтись.

Подстроечный резистор.

На радиосхемах подстроечные резисторы обозначаются следующим образом:

Что такое резистор

Чтобы переменный потенциометр использовать в качестве переменного реостата, нужно соединить два вывода между собой.

Термисторы, варисторы и фоторезисторы.

Кроме реостатов и потенциометров есть и другие виды резисторов: термисторы, варисторы и фоторезисторы. Это интересно, но термисторы, в свою очередь, делятся на термисторы и позисторы. Позистор – это термистор, у которого сопротивление возрастает вместе с ростом температуры окружающей среды. У термисторов, наоборот, чем выше температура вокруг, тем меньше сопротивление. Это свойство обозначают как ТКС – тепловой коэффициент сопротивления.

Что такое резистор

В зависимости от ТКС (отрицательный он или положительный) обозначают на схеме термисторы следующим образом:

Что такое резистор

Следующий особый класс резисторов – это варисторы. Они изменяют силу сопротивления в зависимости от подаваемого на них напряжения. Ни картинке ниже вы видите, как выглядят варисторы

Что такое резистор

Зная свойства варистора, можно догадаться, что такой резистор защищает электрическую цепь от перенапряжения. На схемах варисторы обозначаются так:

Что такое резистор

В зависимости от интенсивности освещения изменяет свое сопротивление еще один вид резисторов – фоторезисторы. Причем не важно, каков источник освещения: искусственный или естественный. Их особенность еще и в том, что ток в них протекает как в одном, так и в другом направлении, то есть еще говорят, что фоторезисторы не имеют p-n перехода. Выглядят фоторезисторы так:

Что такое резистор

А на схемах изображаются так:

Что такое резистор

Сегодня невозможно изготовить ни одно, сколько-нибудь функциональное, электронное устройство без резисторов. Они используются везде: от компьютеров до систем охраны.

Оцените статью
TutShema
Добавить комментарий