Что не пропускает ток

Материалы, не пропускающие через них электричество, называются изоляторами. Пластик — хороший изолятор.

Материалы, которые не пропускают электрический ток, известны как. Материалы, которые не позволяют протекать через них электрическому току, известны как изоляторы. Такие материалы, как стекло, резина, дерево, пластмассы, являются примерами изоляторов.

Что не пропускает тепло?

Тогда есть материалы под названием «изоляторы«которые не позволяют легко проходить энергии. Эти материалы включают пластик, пробку, дерево, пенополистирол и резину. Таким образом, теплоизоляторы хороши для поддержания постоянного уровня тепла — горячего или холодного. Одним из примеров отличного изолятора является термос.

Проводимость. Проводимость это мера легкости, с которой электрический заряд или тепло могут проходить через материал. Проводник — это материал, который оказывает очень небольшое сопротивление потоку электрического тока или тепловой энергии.

Диэлектрики

Вещества, которые не содержат свободных заряженных частиц, называются диэлектриками. Они не проводят электрический ток ни при каких условиях. Это связано с особенностями их атомной структуры.

К диэлектрикам относятся:

  • Стекло
  • Керамика
  • Резина
  • Пластмассы
  • Древесина

Их атомы образуют прочные химические связи, удерживающие все электроны. Поэтому электрический ток через них пройти не может. Эти материалы широко используются в качестве изоляторов в электротехнике.

Неоновая жидкость

что не проводит электрический ток химия

С точки зрения химии, неспособность некоторых веществ проводить электрический ток обусловлена отсутствием свободных ионов в их составе. Это характерно для неэлектролитов.

К неэлектролитам относятся:

  • Молекулярные соединения (сахара, спирты)
  • Газообразные вещества (кислород, азот)

При растворении или плавлении они не распадаются на ионы, поэтому не могут проводить электрический ток.

Диэлектрики

Если среда содержит очень мало свободных зарядов (или не содержит их вообще), такая среда не может проводить электрический ток и является непроводником (диэлектриком, изолятором).

В отличие от кристаллов проводников, кристаллы диэлектрика имеют такую пространственную структуру, что внешние электроны не могут далеко удалиться от ионов. В результате даже при приложении достаточно большого внешнего электрического поля ток в диэлектрике не возникает. Типичными примерами непроводников является стекло или пластмассы.

Как Убивает Ток?

Жидкости-диэлектрики – это жидкости, в которых нет растворенных примесей, а молекулы этих жидкостей сами по себе ионами не являются, например, дистиллированная вода.

Газы в нормальных условиях, как уже было сказано выше, содержат очень мало заряженных частиц, и являются хорошими изоляторами. Примером может являться обычный воздух.

Граница между проводниками и непроводниками достаточно условна. Кроме того, существуют вещества, занимающие промежуточное положение, они называются полупроводниками. В таких веществах количество свободных зарядов не так велико, как в металлах, однако, значительно больше, чем в диэлектриках. К типичным полупроводникам относится кремний.

Опыт с электроскопом

Простейшим прибором для обнаружения электрического заряда является электроскоп. Своё название устройство получило от греческого слова skopeo — наблюдать. Первый прибор был создан физиком Уильямом Гильбертом в 1600 году. Его принцип действия основан на способности разноимённых зарядов притягиваться, а одноимённых — отталкиваться. Простейший электроскоп состоит из металлического стержня, на конце которого закреплён проводящий электричество шар. С обратной стороны через скобу прикреплены два лепестка из тонкой бумаги. Стержень установлен в прозрачный сосуд.

Для проведения опыта понадобится выполнить следующее:

Опыт с электроскопом

  1. Диэлектрик, например, эбонитовую палочку, поднести к шару на расстояние 3−5 миллиметров от его поверхности. При этом можно будет наблюдать, как лепесточки разойдутся на определённый угол. Произойдёт это из-за того, что возникнет электрическое поле, которое разъединит по знакам носители заряда. В результате на лепестки перейдут одноимённые частицы, что и заставит их отталкиваться друг от друга. Если палочку отвести произойдёт выравнивание, заряды равномерно распределятся, и устройство придёт в первоначальное состояние.
  2. Этот опыт можно повторить с другим диэлектриком, например, стеклянной палочкой. Если её поднести к шару, то на нём будут собираться электроны, а на лепестках соберётся положительный заряд. Как только палочка будет убрана, разделение зарядов пропадёт.
  3. Теперь диэлектриком можно коснуться шара. Лепестки разойдутся на определённый угол. После того как непроводник будет убран, заряд на шаре останется. Разрядить устройство, возможно, просто коснувшись шара рукой.

Эти эксперименты показывают, что любой материал обладает электрическим зарядом. Но несмотря на это диэлектрик является изолятором, то есть не пропускает через свою структуру электрический ток. В то же время если он начинает проходить, то в этом случае говорят о пробое. Зависит параметр от величины напряжения и толщины электроизоляционного материала.

Существует разновидность электроскопа — электрометр. В нём вместо лепестков используется стрелка и проградуированная шкала. Поэтому с его помощью можно не только обнаружить заряд, но и определить его количественное значение.

Примеры непроводников

Из определения диэлектрика следует, что это тело, которое препятствует прохождению через себя электроэнергии. Даже с греческого dia electric переводится как «материал, плохо проводящий ток». Вот почему его можно просто назвать изолятором. Из наиболее ярких представителей непроводников можно перечислить следующие:

Диэлектрические материалы

  • эбонит;
  • стекло;
  • пластмассы;
  • неупорядоченные полимеры;
  • янтарь;
  • керамика;
  • резина;
  • капрон;
  • шёлк;
  • ситаллы;
  • смола;
  • воздух;
  • дерево.

Существуют и так называемые экзотические диэлектрики. Они обладают свойствами, делающими их использование нетривиальным. Например, электреты. Это непроводники, у которых поляризация существует и при отсутствии внешнего поля. По сути, они аналоги постоянного магнита. Если проводник при электромагнитном воздействии намагничивается, то обычный диэлектрик поляризуется. Электрет же находится в таком состоянии постоянно. А это значит, что вещество вокруг себя создаёт электрическое поле. Это свойство используют в микрофонах, генераторах, электрометрах.

Ещё одним видом интересного непроводника является сегнетоэлектрик. Это диэлектрик, у которого диэлектрическая проницаемость аномально высокая: E > 10 3 . Правда, этот параметр у такого типа веществ сильно зависит от напряжённости поляризующего поля и температуры. Его граничное значение, при котором пропадают свойства сегнетоэлектриков, называют температурой Кюри. К ярким представителям этого класса можно отнести: сегнетовую соль (KnaC4H4O6 * 4H2O), титанат бария (BaTiO3).

В природе бывают также и диэлектрики, у которых поляризация появляется без всякого воздействия внешнего механического поля при механической деформации.

Титанат бария

К ним относится: сегнетовая соль, титанат бария, кварц. Если по кристаллу таких диэлектриков просто ударить, то на гранях вещества появятся электрические заряды. В результате можно будет даже получить искру. Это свойство используется в устройствах автоматического поджига, например, газовых горелках, зажигалках.

Стоит отметить и изоляторы Мота. Это вещества с кристаллической решёткой, которые вопреки теории физики проводников являются изоляторами. Эффект возможен из-за того, что сила межэлектродного взаимодействия намного больше энергии зарядов. Такими свойствами обладают многие редкоземельные металлы, например купрат.

Классификация диэлектрических материалов

Выбор того или иного изоляционного материала зависит от мощности тока, протекающего по проводникам оборудования. Существует несколько критериев для классификации диэлектриков, но наиболее важными являются два – агрегатное состояние и происхождение. Для изоляции шнуров бытовых электроприборов используют твердые изоляторы, трансформаторов и прочего высокомощного оборудования – жидкие и газообразные.

Классификация по агрегатному состоянию

По агрегатному состоянию выделяют три типа диэлектрических материалов – твердые, жидкие и газообразные.

Твердые диэлектрики

Электроизоляционные материалы данного типа считаются наиболее распространенными и популярными, используются практически во всех сферах, где присутствует оборудование с токоведущими частями. Их качество зависит от некоторых химических свойств, при этом диэлектрическая проницаемость может быть совершенно разной – 10-50 000 (безразмерная величина).

Твердые изоляторы бывают полярными, неполярными и сегнетоэлектрическими. Главное отличие трех разновидностей – принцип поляризации. Основными свойствами данных материалов являются химическая стойкость, трекингостойкость и дендритостойкость. От химической стойкости зависят возможности диэлектрика противостоять воздействию агрессивной среды – кислотам, щелочам, активным жидкостям. Трекингостойкость влияет на защиту от электрической дуги, дендритостойкость – от появления дендритов.

Твердые неорганические диэлектрики

Керамические изоляторы эксплуатируют как линейные и проходные диэлектрики в составе подстанций. Для защиты бытовых электрических приборов могут применяться текстолиты, полимеры и бумажные изделия, промышленного оборудования – лаки, картон и различные компаунды.

Сочетая несколько разных материалов, производителям диэлектриков удается получить особые свойства изделия. Благодаря этому повышается устойчивость к нагреву, воздействию влаги, экстремально низких температур и даже радиации.

Наличие нагревостойкости говорит о том, что изолятор способен выдерживать высокие температуры, но в каждом отдельном случае максимальная планка будет разной (она может достигать и 200, и 700 град. Цельсия). К числу таковых относятся стеклотекстолитовые, органосиликатные и некоторые полимерные материалы. Фторопластовые диэлектрики устойчивы к воздействию влаги, могут эксплуатироваться в тропиках. Вообще фторопласт не только гидрофобен, но еще и негигроскопичен.

Если в состав электротехнического оборудования включены атомные элементы, то важно использовать изоляцию, устойчивую к радиоактивному фону. На помощь приходят неорганические пленки, часть полимеров, стеклотекстолиты и различные слюдинитовые изделия.

Изделия из слюды

К морозостойким диэлектрикам относятся компоненты, сохраняющие свои удельные свойства при температуре до -90 град. Цельсия. Наконец, в электроприборах, эксплуатируемых в космосе, применяются изоляционные материалы с повышенной вакуумной плотностью (например, керамика).

Жидкие диэлектрики

Диэлектрики в подобном агрегатном состоянии зачастую эксплуатируются в промышленном электрооборудовании. Наиболее ярким примером являются трансформаторы, для безопасной работы которых требуется специальное масло. К числу жидких диэлектриков можно отнести сжиженный газ, парафиновое или вазелиновое масло, спреи, дистиллированную воду, которая была очищена от солей и других примесей.

Жидкие электроизоляционные материалы описываются следующими технико-эксплуатационными характеристиками:

  • диэлектрическая проницаемость;
  • электропрочность;
  • электропроводность.

Величина физических параметров жидких диэлектриков зависит от степени их чистоты (загрязнения). Наличие твердых примесей в воде или масле приводит к существенному повышению электрической проводимости, что связано с увеличением числа свободных электронов и ионов. Жидкости очищаются разными методами, начиная от дистилляции и заканчивая ионным обменом. После выполнения данного процесса повышается электропрочность материала и снижается его электропроводность.

Виды жидких диэлектриков

Жидкие электроизоляторы можно разделить на три основные группы:

Трансформаторные масла

  1. Из нефти изготавливают трансформаторное, конденсаторное и кабельное масла.
  2. Синтетические жидкости активно применяются в промышленном приборостроении. К их числу можно отнести соединения на основе фтор- и кремнийорганики. Кремнийорганические материалы способны выдерживать сильные морозы, они относятся к числу гигроскопичных, поэтому могут применяться в малых трансформаторах. С другой стороны, стоимость таких соединений намного выше, чем у нефтяных масел.
  3. Растительные жидкости крайне редко используются при изготовлении электроизоляции. Речь идет о касторовом, льняном, конопляном и других маслах. Все перечисленные вещества считаются слабополярными диэлектриками, поэтому могут применяться только для пропитки бумажных конденсаторов или для образования пленки в электроизоляционных лаках и красках.

Газообразные диэлектрики

Самыми популярными газообразными диэлектриками считаются электротехнический газ, азот, водород и воздух. Все они могут быть разделены на две категории – естественные и искусственные. К первым относится воздух, который часто эксплуатируют в качестве диэлектрика для защиты токоведущих частей линий электрической передачи и машин.

Азот – отличный вариант для изоляции силовых трансформаторов и высоковольтных линий электропередач. Помимо хороших изоляционных свойств, водород способен принудительно охлаждать оборудование, поэтому зачастую применяется в высокомощных электромашинах. Для герметизированных установок подойдет электротехнический газ, при использовании которого снижается взрывоопасность любых агрегатов. Электротехнический газ часто эксплуатируется в высоковольтных выключателях, что обусловлено способностью к гашению электрической дуги.

Свойства газообразных диэлектриков при нормальном давлении

Классификация по происхождению

По происхождению диэлектрики делятся на органические и неорганические.

Органические диэлектрики

Органические электроизоляционные изделия можно разделить на естественные и синтетические. Все материалы, относящиеся к первой категории, в последнее время практически не эксплуатируются, что связано с увеличением производственных мощностей синтетических диэлектриков, стоимость которых намного ниже.

Естественными диэлектриками являются растительные масла, парафин, целлюлоза и каучук. К синтетическим материалам можно отнести пластмассы и эластомеры разных типов, применяемые в бытовых приборах и другой электротехники.

Недостатки органических диэлектриков

Неорганические диэлектрики

Электроизоляционные материалы неорганического типа бывают естественные и искусственными. Из компонентов природного происхождения можно выделить слюду с большой устойчивостью к воздействию химически активных веществ и высоких температур. Не менее популярными являются мусковит и флогопит.

Искусственные диэлектрики – стекло в чистом или разбавленном видах, фарфор и керамика. Материалам данной категории зачастую придают особые свойства, добавляя в их состав различные компоненты. Если изолятор проходной, то нужно применять полевошпатовую керамику с большим тангенсом диэлектрических потерь.

Волокнистые электроизоляционные материалы

Волокнистые диэлектрики эксплуатируются для защиты различного оборудования. К числу таковых относятся каучук, целлюлоза, различные ткани, нейлоновые и капроновые изделия, полистирол и полиамид.

Органические волокнистые диэлектрики имеют высокую гигроскопичность, поэтому практически никогда не используются без специальной пропитки. В последние годы вместо органических изоляторов применяют синтетические волокнистые изделия с ярко выраженной нагревостойкостью.

Ткань с лаковой пропиткой

В качестве примера можно выделить стеклянные волокна и асбест: первые пропитываются лаками и смолами, улучшающими гидрофобность, вторые характеризуются минимальной прочностью, поэтому в их состав добавляют хлопчатобумажные элементы. Речь идет о материалах, которые не плавятся при нагреве.

Классы нагревостойкости электроизоляционных материалов

Класс нагревостойкости диэлектриков указывается буквой латинского алфавита. Перечислим основные из них:

  • Y – максимальная температура 90 град. Цельсия. К данной категории относятся различные волокнистые изделия из хлопка, натуральных тканей и целлюлоза. Они не пропитываются и не дополняются жидкими электроизоляторами.
  • A – 105 град. Цельсия. Все материалы, перечисленные выше, и синтетический шелк, пропитываемые жидкими диэлектриками (погружаемые в них).
  • E – 120 град. Цельсия. Синтетические изделия, включая волокна, пленки и компаунды.
  • B – 130 град. Цельсия. Слюдинитовые диэлектрики, асбест и стекловолокно вкупе с органическим связующим и пропиткой.
  • F – 155 град. Цельсия. Слюдинитовые материалы, в качестве связующего звена которых выступают синтетические компоненты.
  • H – 180 град. Цельсия. Слюдинитовые диэлектрики с кремнийорганическими соединениями, выступающими в качестве связующего.
  • C – более 180 град. Цельсия. Все перечисленные выше изделия, в которых не используется связующее или применяются неорганические адгезивы.

Выбор электроизоляционных материалов зависит не только от мощностей оборудования, но и от условий его эксплуатации. Например, для высоковольтных линий электропередач должны использоваться диэлектрики с повышенной морозостойкостью и защитой от воздействия ультрафиолетовых лучей.

Таким образом, информация выше может использоваться только в качестве ознакомительных целей, а окончательное решение должен принимать профессиональный, квалифицированный специалист.

Вещество в электрическом поле

В зависимости от сопротивления материалы делят на проводники и изоляторы (диэлектрики). У проводников сопротивление материала низкое и они хорошо проводят ток, у изоляторов удельное сопротивление материала высокое и они в обычном состоянии ток пропускают плохо или не пропускают вовсе.

Свойства проводников и диэлектриков отличаются из-за их различного внутреннего строения.

Внутреннее строение металлов представляет собой кристаллическую решетку, в узлах которой находятся положительно заряженные ионы атомов, а между ними свободно перемещаются электроны.

Благодаря этому при воздействии внешнего электростатического поля, электроны сразу начинают своё движение.

Внутреннее строение диэлектрика очень похоже на строение металла – кристаллическая решетка с положительно заряженными ионами в узлах. Но все электроны в диэлектрике привязаны к своим ионам, в следствие чего – не могут свободно перемещаться.

К диэлектрикам относятся материалы, у которых нет свободных электронов – стекло, резина, смола и так далее. Поэтому под воздействием внешнего электрического поля заряд в диэлектрике не перемещается и во всех частях диэлектрика остается равным нулю.

Поведение проводника в электрическом поле

Когда на проводник действует внешнее электрическое поле, свободные заряды перераспределяются так, чтобы создать собственное электростатическое поле, которое полностью компенсирует внешнее поле внутри проводника. Заряды располагаются по поверхности проводника, при этом линии электростатического поля, которые они создают, всегда перпендикулярны поверхности проводника. Таким образом, по принципу суперпозиции, внутри проводника и на его поверхности напряженность электрического поля всегда равна нулю.

Потенциал всех точек проводника, находящегося в электрическом поле, всегда одинаков.

Если бы потенциал точек был отличен друг от друга, созданная разность потенциалов заставила бы электроны внутри проводника перемещаться в новое место до тех пор, пока эта разность потенциалов не стала бы равна нулю.

Тело сложной формы из проводящего материала, находящееся в электростатическом поле:

Потенциал в точках 1, 2 и 3 одинаков (varphi_ = varphi_ = varphi_) . Аналогично, если тело находится не во внешнем поле, а ему сообщен некий заряд и сам проводник является источником электростатического поля ― все точки его поверхности эквипотенциальны.

Потенциал и напряженность электрического поля сферического металлического проводника изображен ниже.

Потенциал шара внутри шара и на поверхности шара постоянен и равен φ, вне шара ― потенциал совпадает с потенциалом точечного заряда и убывает с расстоянием от шара.

Напряженность электрического поля Е, созданного шаром, равна нулю внутри шара и на поверхности шара, а вне шара ― такая же, как напряженность поля, создаваемого точечным зарядом и убывает с расстоянием от шара.

Поведение диэлектрика в электрическом поле

При изучении диэлектрика можно столкнуться с явлением поляризации — упорядоченного переориентирования молекул диэлектрика под действием внешнего электрического поля. Получается, что в одном направлении по отношению к силовым линиям поля преобладают положительно заряженные частицы, а в противоположном – отрицательно заряженные. Это вызвано с тем, что атом диэлектрика (электрический диполь) в электрическом поле делится на две части – с повышенной и пониженной концентрацией электронов. Эти заряды, аналогично металлу, создают внутри диэлектрика собственное электрическое поле таким образом, чтобы ослабить внешнее электрическое поле.

Зонная теория

Зонная теория твердых тел – это теория перемещения валентных электронов в потенциальном поле кристаллической решетки. Квантовая механика полагает, что свободные электроны могут обладать любой энергией, спектр которой непрерывен.

Электроны изолированных атомов имеют некоторую дискретную величину энергии. При объединении отдельных атомов в молекулы и образовании вещества происходит смещение электронных уровней атома. Таким образом, из энергетических уровней отдельных атомов в твёрдом теле образуются полосы зон энергетических уровней.

Верхняя заполненная зона, валентная, соответствует энергетическому уровню валентных электронов внешней оболочки. Ближайшая к ней, незаполненная, – зона проводимости. Взаимным расположением обеих зон определяются процессы, происходящие в твердом теле, и классифицируются материалы по группам: проводники, полупроводники, диэлектрики.

Зонная классификация

В проводниках зона проводимости и валентная зона совмещены. Образовавшаяся зона перекрытия позволяет электрону свободно перемещаться при получении даже небольшой энергии.

В полупроводниках зоны не перекрываются. Расстояние между ними, называемое запрещенной зоной, – менее 2.0 эВ. При нулевой температуре в зоне проводимости отсутствуют электроны, а валентная зона ими заполнена. При возрастании температуры часть электронов забрасывается в зону проводимости за счет теплового движения. Полупроводник становится электропроводящим.

В диэлектриках зоны так же, как и у полупроводников, не перекрываются. Величина запрещенной зоны здесь – более 2.0 эВ. Для того чтобы перевести электроны из зоны валентности в зону проводимости, необходимо значительно повысить температуру. При невысоких градусах электрический ток не проводится.

Сверхпроводимость

Свойство материала обладать нулевым электрическим сопротивлением при температуре ниже определенного значения получило название сверхпроводимости.

У некоторых проводящих веществ эта способность возникает при холодной температуре, близкой к химическому состоянию жидкого гелия.

В 1986 году произошло открытие веществ с высокотемпературной сверхпроводимостью. Например, керамика из кислорода, бария, меди, лантана не проводит ток в обычных условиях, а вследствие нагревания становится сверхпроводником.

На практике используют вещества, пропускающие электрический ток при 58 градусах Кельвина и более, то есть при температуре выше точки кипения азота.

Чаще всего находят применение твердые высокотемпературные сверхпроводники. Жидкие и газообразные используют реже. Все эти материалы необходимы для изготовления современных электротехнических устройств различной мощности.

Оцените статью
TutShema
Добавить комментарий