Трансформатор тока своими руками

Трансформатор тока своими руками

Несмотря на многообразие электрооборудования на рынке, далеко не во всех ситуациях можно найти подходящий преобразовательный агрегат для решения конкретной задачи. Поэтому многие обыватели пытаются изготовить трансформатор своими руками для получения определенных параметров работы. Стоит отметить, что намотать трансформатор может каждый, даже без специализированного оборудования и особых навыков, но этот процесс довольно трудоемкий и кропотливый. Поэтому изначально вам придется определиться с типом и характеристиками прибора.

Все преобразователи подразделяются на две основные категории – повышающие и понижающие трансформаторы.

В зависимости от предназначения, конструктивных особенностей и места установки их можно разделить на такие категории:

  • Силовые трансформаторы;
  • Измерительные трансформаторы;
  • Импульсные трансформаторы;
  • Сварочные трансформаторы;

Практически каждое из вышеперечисленных устройств вы можете воссоздать в домашних условиях. Наиболее простым вариантом является перемотка трансформатора из заводского изделия, так как он уже содержит необходимые элементы. Главное, чтобы первичная обмотка подходила по номиналу питающего напряжения и мощности. Куда хуже, если перематывать нужно обе обмотки, к примеру, если и первичная, и вторичная обмотка пробиты или получили механическое повреждение.

Для изготовления трансформатора своими руками вам понадобятся:

  • Магнитопровод – служит в качестве проводника магнитного потока, лучше взять из старого трансформатора, так как он изготовлен из электротехнической стали и обеспечивает необходимые параметры работы, характеризуется малыми потерями в железе.
  • Провода нужного вам сечения в лаковой, полимерной или стеклотканевой изоляции. Чем тоньше этот слой, тем плотнее прилягут витки к каркасу и друг к другу.
  • Каркас – служит в качестве основания для обмоток трансформатора, устанавливает габариты по ширине. Можно взять из старого трансформатора, а можно изготовить своими руками. Материалом для каркаса может послужить электротехнический картон, гетинакс или текстолит, важно чтобы он не занимал много места в зазоре между сердечником и проводом.
  • Изоляция – предназначена для электрического отделения токоведущих элементов друг от друга и от конструктивных элементов трансформатора. В промышленном производстве используется лакотканевая лента, фторопласт, парафиновая пропитка, но при самостоятельном изготовлении подойдет любой имеющийся у вас материал, главное, чтобы его диэлектрической прочности хватало для напряжения сети.
  • Намоточный станок – позволяет упростить процесс и обеспечить постоянное натяжение. Можно изготовить своими руками из ручной дрели или по принципу вертела на двух шарнирах. Важно, чтобы изготовленный станок имел как можно меньший люфт.

Помимо этого вам могут пригодиться: молоток с деревянной пресс-планкой, паяльник для соединения проводов, ножницы, пассатижи. Но перед изготовлением, обязательно рассчитайте параметры трансформатора.

Расчеты

Трансформатор тока своими руками

Самодельный токовый трансформатор — легко!=Для чего ОН и зачем=

Наиболее сложный вариант, если вы будете изготавливать трансформатор своими руками с нуля. В таком случае расчет электрической машины производится в зависимости от выходной мощности. Исходя из этого параметра, рассчитывается мощность первичной обмотки. Если вы используете заводской сердечник, то можно считать эти величины одинаковыми, если вы соберете его самостоятельно, то P2 = 0,9 * P1

Это приблизительный расчет с учетом потерь в сердечнике. В зависимости от качества шихтовки своими руками, разница мощностей может находиться в пределах от 5 до 20%.

В зависимости от мощности первички определяется сечение магнитопровода, которое вычисляется по формуле: S = √P1

Следует отметить, что мощность для вычислений берется в Ваттах, а размеры сердечника получаем в квадратных сантиметрах.

Далее определяется коэффициент передачи электромагнитной энергии: k = f/S,

Где k – коэффициент передачи, f – частота сетевого напряжения переменного тока, S – площадь сечения магнитопровода.

Исходя из полученного коэффициента, определяется число витков в обмотках по величине входных и выходных напряжений: N1 = k*U1, N2 = k*U2

Это приблизительные вычисления, предназначенные для бытового применения радиолюбителями. Заводские трансформаторы имеют более сложную процедуру расчета, которая производится по справочникам и зависит от их типа и назначения (силовые, измерительные, трехобмоточные, тороидальные устройства и т.д.)

Далее рассчитывается сила тока в первичной обмотке трансформатора: I1 = P1 / U1

Соответственно, ток, протекающий по вторичной обмотке трансформатора, вычисляется по формуле: : I2 = P2 / U2

Исходя из величины тока в каждой обмотке, выбирается сечение жилы. Но заметьте, что проводник в обмотке значительно хуже охлаждается, поэтому запас сечения делается на 20 – 30%. Проще выполнять данную работу медными проводами, но это требование не критично.

Таблица: выбор сечения, в зависимости от протекающего тока

Медный проводникАлюминиевый проводник
Сечение жил, мм 2Ток, АСечение жил. мм 2Ток, А
0,511
0,7515
117
1.5192,522
2.527428
438636
6461050
10701660
16802585
2511535100
3513550135
5017570165
7021595200
95265120230
120300

Тороидальный трансформатор своими руками

На практике выделяют достаточно большое разнообразие преобразователей электрической энергии, как по конструктивным особенностям, так и по принципу действия. Среди устройств для изменения величины напряжения существуют броневые, стержневые и тороидальные трансформаторы. Последний вариант по своей форме напоминает бублик, за счет чего он является наиболее эффективным в части передачи магнитного потока. Его КПД может приближаться к 100% и отличается достаточной простотой намотки, поэтому многие радиолюбители стараются изготовить тороидальный трансформатор своими руками.

Конструктивная особенность такого трансформатора заключается в форме магнитопровода, которая представляет замкнутое кольцо, называемая тором.

В остальном состав его элементов идентичен другим типам электрических машин:

Конструкция тороидального трансформатора

  • Обмотка – выполняется медным проводником, разделяется на первичную и вторичную. Обе обмотки могут отличаться сечением проводника.
  • Тороидальный сердечник — имеет форму кольца, изготавливается наборной шихтовкой, ленточной сталью или монолитным железом, в зависимости от габаритов и назначения. В качестве материала берутся ферромагнитные сплавы, обеспечивающие хорошую магнитную проводимость.
  • Изоляционных материалов – часть диэлектрика заранее наносится на монтажных провод, остальной диэлектрик разделяет катушку тора с железом, обмотки между собой, между катушками и кожухом. В качестве изоляции используются ленточные или лакотканевые материалы, электроизоляционный картон, клей и т.д.
  • Защитный кожух – предназначен как для защиты силового трансформатора от механических повреждений, так и для предотвращения контакта человека с поверхностью обмоток.
  • Выводы вторичной и сетевой обмотки, крепежные и вспомогательные детали.

Принцип действия тороидального преобразователя заключается в подаче напряжения питания на выводы первичной обмотки. После чего в ней начинает протекать электрический ток, который создает магнитный поток внутри витков. Магнитный поток перемещается внутри каркасов катушек и наводит ЭДС во вторичной обмотке. При условии подключения нагрузки к ее выводам будет происходить потребление заданной мощности.

Данное устройство нашло применение в тороидальных автотрансформаторах (ЛАТРах), радиоэлектронике, сварочных трансформаторах и прочих преобразователях. В домашних условиях занимаются перемоткой трансформатора такого типа за счет относительно простого процесса.

Изготовление своими руками

Чтобы изготовить тороидальную электрическую машину вам необходимо определиться с ее типом. Всего выделяют повышающий и понижающий трансформатор, в первом случае с низкого напряжения, к примеру, 220В получают высокое — 600В, а во втором, с высокого низкое, как наиболее распространенный вариант с 220В – 12В. Важным параметром для изготовления и расчета тороидального агрегата является коэффициент трансформации, показывающий, во сколько раз изменяется электрическая величина во вторичной обмотке по отношению к первичной. Для его определения используется одно из следующих соотношений:

U1 и U2, I1 и I2 — величина напряжения и тока в обмотках, W1 и W2 – это число витков.

Что необходимо для работы?

Вам обязательно пригодится набор слесарных инструментов для элементарных работ: отвертки, пассатижи, круглогубцы, ножи, паяльник, заклепочник и т.д. Также для того чтобы намотать тороидальный сетевой трансформатор или самодельный сварочный агрегат вам понадобятся некоторые материалы:

  • Медный провод с лаковым покрытием – можете взять и с виниловой изоляцией, но у него будет толщина больше. Как результат, намотка потребует больших усилий, что не сильно удобно при большом числе витков.
  • Устройство для намотки – чаще всего применяется либо автоматизированный механизм с кольцевым расцеплением, либо челночная катушка. Первый позволяет наматывать провода быстро и без лишних усилий, но его приобретение или самостоятельное изготовление требует дополнительных затрат. Второй способ куда проще, но он хуже применяется для жил большого сечения.
  • Изоляционный материал – вам пригодится электроизоляционный картон, полимерный диэлектрик, лакотканевая изоляция, тканевая изолента. Чтобы перемотать трансформатор можно использовать не все вышеперечисленные материалы, а выбрать некоторые из них.
  • Магнитопровод или тор – наилучшим вариантом будет готовый заводской сердечник круглой формы от другого трансформатора. Однако если его нет, можно собрать тороидальную конструкцию самостоятельно. Для этого подойдет шихтовка от стержневого магнитопровода.

Возьмите длинный лист стали и согните кольцом, на краю зафиксируйте концы.

Согните пластину железа

Внутрь полученного тороидального листа поместите следующий, следите за тем, чтобы края ложились стык в стык. При необходимости, края можно подрезать, что особенно актуально на внутренних слоях. Каждую пластину необходимо четко обжимать, чтобы при мотании тор получился плотным без зазоров.

Если вы решите изготовить сердечник, его края обязательно следует обработать эпоксидным клеем с обеих сторон. После этого сборку сердечника можно считать оконченной. Помимо этого можно использовать ленточную сталь, которую по такой же технологии закручивают плотной по спирали.

Намотайте сердечник из ленточной стали

Расчет

Чтобы начать вычисления, вам необходимо определиться с величиной напряжения на вторичной и первичной обмотке и нужной мощностью тороидального трансформатора. Далее вам понадобится определить сечение тора:

S = H * ((D-d))/2

  • S – площадь сечения магнитопровода;
  • H – высота тороидального сердечника;
  • D – внешний диаметр тороидального сердечника;
  • d – внутренний диаметр тороидального сердечника.

Чтобы вычислить количество витков воспользуйтесь двумя выражениями для коэффициента передачи магнитопровода:

Здесь k – коэффициент передачи, f – частота в подключаемой сети, S – площадь сечения магнитопровода. W1 – число витков в первичной катушки, U1 – напряжение в первичке. Из второй формулы вы узнаете количество витков, аналогично рассчитываются витки для вторичной обмотки тороидального трансформатора.

Чтобы определить сечение проводов катушек преобразователя, воспользуйтесь формулой:

  • S – площадь сечения проводника трансформатора;
  • P – мощность тороидального трансформатора;
  • ρ – удельная проводимость материала жил (для меди 0,017 Ом*мм 2 /м);
  • U – напряжение в соответствующей обмотке трансформатора;
  • l – длина проводника в катушке, этот параметр можно узнать из следующей формулы:

И длину и сечение трансформатора можно рассчитать для каждой обмотки отдельно. После того как расчет тороидального агрегата готов, можно переходить к его намотке.

Намотка

Процесс изготовления самодельного трансформатора будет состоять из нескольких этапов:

  • осмотрите тороидальный магнитопровод на предмет отсутствия заусениц и неровностей – поверхность должна быть ровной, без выпирающих краев.

Осмотрите сердечник

  • изготовьте для пластин самодельного трансформатора изоляцию из электротехнического картона, при его отсутствии можете взять любой другой диэлектрик;

Заизолируйте сердечник картоном

  • чтобы не повредить изоляцию провода, наденьте на край челнока виниловую трубку и намотайте медный провод;

Виниловая изоляция на край челнока

  • припаяйте край провода к первому выводу обмотки тороидального трансформатора;

Припаяйте провод к выводу трансформатора

  • заизолируйте электроизоляционным картоном и закрепите место пайки на сердечнике;

Закрепите место пайки на сердечнике

  • с помощью челнока намотайте обмотку, при этом старайтесь делать витки, как можно плотнее к сердечнику;

Намотайте обмотку челноком

  • заизолируйте первичную обмотку тороидального трансформатора.

Заизолируйте первичную обмотку

Перемотка вторичной обмотки осуществляется аналогичным образом, после чего ее так же изолируют и всю конструкцию, при необходимости, закрывают корпусом. Тороидальный трансформатор готов.

Конструкция трансформатора тока

В реальном мире у сигнальной жилы есть ненулевое пассивное сопротивление и для создания в ней тока необходимо ненулевое значение ЭДС индукции, а значит магнитный поток силовой обмотки должен быть скомпенсирован не полностью. Чтобы ток в сигнальной обмотке был максимально близок к идеальному, нужно максимизировать отношение напряжения разомкнутой обмотки к реальному падению напряжения, необходимому для создания этого тока. Этого можно добиться разными способами:

  • снижением целевого падения напряжения на сигнальной обмотке
  • увеличением числа витков силовой обмотки
  • увеличением числа витков сигнальной обмотки
  • увеличением индуктивности каждого витка

Минимизировать напряжение на сигнальной обмотке можно за счёт более чувствительной схемы измерения тока. В самом простом случае ток преобразуется в напряжение на шунтирующем резисторе и падение напряжения определяется диапазоном детектируемых токов и характеристиками аналогового входа микроконтроллера.

Существенно увеличить число витков в силовой обмотке сложно, т.к. через неё подключается нагрузка, а значит у неё должно быть и сечение достаточно большое, и изоляция надёжная. А вот в сигнальной обмотке число витков можно увеличить весьма значительно, причём поскольку ток в сигнальной обмотке обратно пропорционален числу витков в ней, сечение провода также можно существенно уменьшить. Именно поэтому в токовых трансформаторах в сигнальной обмотке обычно значительно больше витков, чем в силовой.

Индуктивность каждого витка можно очень сильно увеличить с помощью ферромагнитного магнитопровода. Обычная электротехническая сталь увеличивает магнитную индукцию в несколько тысяч раз, а также концентрирует магнитное поле внутри магнитопровода, обеспечивая полноту прохождения магнитного потока через витки сигнальной обмотки. Например один виток на ферритовом кольце R36x23x15 PC40 имеет индуктивность около 3 мкГн, что в 12 раз больше, чем те 0.25 мкГн, которые у нас получились для витка в мотке кабеля намного больших размеров.

Наличие магнитопровода в конструкции трансформатора приводит и к некоторым ограничениям:

  • Напряжённость поля внутри сердечника ограничена эффектом магнитного насыщения, т.е. чем больше измеряемый ток — тем больше должно быть сечение сердечника, чтобы распределить магнитное поле по большей площади.
  • Сердечник должен успевать перемагничиваться вслед за изменением магнитного поля силовой обмотке, т.е. частота изменения измеряемого тока ограничена характеристиками материала сердечника.
  • При перемагничивании сердечника выделяется тепло, что ограничивает произведение частоты изменения тока на величину магнитного поля.

Все эти ограничения однако больше влияют на конструкцию силовых трансформаторов, а для измерительного трансформатора достаточно легко можно обеспечить очень большой запас по каждому из этих ограничений.

От теории к практике

Токовый трансформатор SCT-013

Трансформаторы тока повсеместно используются для измерений в сети 220В. Можно купить готовый трансформатор и через простенькую аналоговую схему подключить его к микроконтроллеру, но возможность и желание ждать заказа есть не всегда, так что мы будем делать самодельный из подручных материалов — в надежде, что это получится и быстрее, и дешевле, и интереснее. Важно сказать, что у меня не было задачи сильно оптимизировать конструкцию — нужно было сделать быстро, просто и понятно, чтобы работало и не ломалось.

Чтобы получить достаточный запас по ЭДС индукции, но сохранить при этом небольшие габариты, я использовал в качестве магнитопровода ферритовое кольцо R36x23x15 PC40 (такое можно купить в ряде магазинов радиодеталей меньше чем за 100 рублей). Первичную обмотку я сделал обычным силовым проводом, просто пропустив его несколько раз через кольцо. А сигнальную обмотку намотал тонким монтажным проводом с сечением 30AWG — таким просто удобнее сделать нужное число витков. Плотность и аккуратность намотки в данном случае были не важны, т.к. достаточно было всего лишь обнаружить включение нагрузки, а не измерять потребляемый ток.

Чтобы оценить запас по ЭДС индукции, я посчитал ожидаемое напряжение на разомкнутой сигнальной обмотке при работающей нагрузке. Для этого сначала вычислил индуктивность одного витка провода на магнитопроводе:

Здесь — магнитная проницаемость материала (2300 для феррита PC40 ), — внешний радиус ферритового кольца, — внутренний радиус, — высота. Получилось значение около 3 мкГн.

Дальше я взял паспортную мощность погружного насоса, включения которого нужно было детектировать (320 Вт), и посчитал амплитуду напряжения на разомкнутой обмотке в зависимости от числа витков в первичной и вторичной обмотках:

Самодельный трансформатор тока, подключённый в цепь с тестовой нагрузкой

Поиграв с числом витков, я решил сделать 6 витков первичной обмотки и 130 витков вторичной. Так получился запас ЭДС около 1.5 В и амплитуда тока в короткозамкнутой сигнальной обмотке чуть меньше 100 мА, что при использовании резистора на 5 Ом соответствует падению напряжения около 0.5 В. Больше витков силового кабеля было бы сложнее впихнуть в просвет кольца, да и ток в сигнальной обмотке не хотелось делать слишком большим (т.к. она сделана из довольно тонкого провода). При меньшем числе витков первичной обмотки для получения хорошего запаса по ЭДС пришлось бы сильно увеличить число витков во вторичной обмотке — а значит гораздо больше возиться с намоткой и получить для детектирования в несколько раз меньший ток.

Самостоятельное изготовление

Цена на готовые изделия велика, при этом не всегда удаётся найти прибор с требуемыми параметрами. Поэтому целесообразно изготовить трансформатор или автотрансформатор своими руками. Кроме изготовления трансформатора с нуля существует возможность перемотать неисправное устройство.

Для изготовления изделия потребуются трансформаторное железо и провод. Железо представляет собой пластины собранные в виде тора и образующие магнитопровод. Его можно купить либо взять со старых разобранных приборов. Например, взять пластины от промышленных трансформаторов и, используя приспособление в виде разрезанного кольца, скатать из металла пластинки в виде бублика. Пластинки собрать, сердечник обтянуть стеклотканью и залить лаком.

Витки обмоток изготавливаются из медного провода нужного диаметра. Сама намотка не вызывает сложностей:

Принцип действия трансформатора тороидального типа

  1. Наматывается первичная обмотка. Для этого один конец проволоки закрепляется на расстоянии около трёх сантиметров от поверхности железа, а оставшаяся часть провода сворачивается в виде полоски.
  2. Полоска с проводом поочерёдно продевается через внутреннее отверстие сердечника, обматывая его грани, и равномерно распределяется по всей поверхности. В конце вывод фиксируется и выводится в районе начала обмотки на таком же расстоянии, что и начало.
  3. Сверху первичная обмотка проматывается слоем диэлектрика (стеклотканью).
  4. Таким же способом наматывается вторичная обмотка.
  5. После выполнения требуемого количество витков сверху наматывается стеклоткань, и трансформатор покрывается лаком.

Если в процессе намотки необходимо выполнить отвод, тогда наматываемый провод разрывается. На место разрыва впаивается отвод, а основной провод мотается дальше. Место отвода, как правило, тщательно изолируется. Закрепление концов обмоток обычно выполняется с помощью ниток, которыми привязываются провода к поверхности сердечника или проложенного провода. Полоску продеваемого провода лучше разместить на «челнок». Изготавливается он из небольшого пластикового профиля с прорезями в торцах для фиксации проволоки.

Такая работа требует внимательности и аккуратности, особенно при наматывании первичной обмотки. Для изготовления нескольких устройств целесообразно использовать станок для намотки тороидальных трансформаторов. Своими руками такой прибор выполнить сложно, но возможно.

Намоточный станок своими руками

Один из возможных вариантов — сделать станок, оснащённый регулируемым укладчиком и счётчиком витков, используя принцип велосипедного колеса.

Колесо надевается на штырь в стене, при этом его обод снабжается резиновым кольцом. Для того чтобы на обод надеть сердечник, предварительно потребуется его разрезать, а затем снова скрепить, получив цельный круг. Намотав на него необходимую длину проволоки, один ее конец подсоединяется к свободно расположенному на ободе сердечнику. Катушка передвигается по ободу полными кругами, в результате чего проволока укладывается на каркас. При этом для подсчёта оборотов используется велосипедный счётчик.

Создание более совершенного устройства потребует применение шаговых двигателей с позиционированием их положения. Для этого используются микроконтроллеры и электронный счётчик. Такое конструирование требует определённых навыков в радиоэлектронике.

Originally posted 2018-07-04 07:14:26.

Давняя задумка — кольцевой трансформатор на сердечнике от асинхронного электродвигателя.

Когда-то очень давно, в начале 90-х я служил в Литве в г. Каунас на ведущем авиаремонтном заводе ВВС по вертолетам Ми-8. Сказать, что этот завод был большим, значит ничего не сказать. Одно то, что завод выпускал по 22 откапиталенных вертолета в месяц говорит о многом. Но речь не о том. Стал я там начальником смешанного цеха по ремонту вооружения, слесарно-механической обработки, гальваники и пр. и т.д. и т.п.
Чем отличались люди, работающие на авиаремонтных заводах, а это был мой второй завод (я начинал службу в Омске на таком же заводе, только значительно меньшем). Люди отличались высокой степенью «рукастости», то есть самодельщики, да еще вооруженные авиационными знаниями и технологиями.
Как известно, в те годы самодельщикам было очень тяжело, в магазинах практически ничего не было. Высоким статусом обладал гаражный «кулибин», владевший сварочным аппаратом. Вот и у меня давно зрело решение построить свой сварочник. Да еще такой, чтобы работал от простой гаражной розетки.
Перелопатив горы журналов и литературы по самодеятельности, я несколько раз встречал самодельные аппараты построенные на основе ЛАТРов.
ЛАТР — лабораторный автотрансформатор, однообмоточный, позволяющий регулировать напряжение от 0 до несколько большего, чем в сети напряжения, как правило, до 250 Вольт. Но главное полезное свойство для сварочного аппарата у ЛАТРа было то, что изготавливались они на тороидальном или, по-русски, кольцевом сердечнике, не имевшем зазоров и поэтому обладавшим практически 100% КПД, вследствие отсутствия потерь в магнитном зазоре. Мощность ЛАТРов выбиралась 10 А, т.е 2 кВт, что при 40-50 Вольтах на выходе, обеспечивало сварочный ток 40-50 Ампер. Это конечно было хорошо, но хотелось большего.
Теперь, немного теории, я думаю, полезной и для современных кулибиных.
Как известно, мощность трансформатора определяется, в основном, площадью сечения магнитопровода — сердечника, на который установлены, намотаны обмотки. Второй фактор — сечение обмоточных проводов, оно определяется по токам и ограничиваются еще и возможностью уместить обмотки в окна сердечника.
Итак, имеем сердечник, ранее работавший (новый врятли доступен) в трансформаторе известной мощности. Для расчета, радиолюбители-электронщики применяют упрощенные формулы.
Измеряем площадь сечения сердечника. Для Ш-образных пластин, из которых набран сердечник — площадь среднего штыря, куда будет намотана обмотка. Площадь вычисляется в квадратных сантиметрах
Измеряем ширину пластины, умнощаем на толщину набора пластин и вычисляем:
50/S, где 50 — коэффициент для трансформаторов длительной или непрерывной работы, можно применить 40 — для трансформаторов, выключаемых после работы. В результате этих вычислений получаем количество витков на 1 Вольт
Для намоточных проводов применяют правило — 1 квадратный мм сечения на 10 Ампер, ВНИМАНИЕ не путать площадь сечения с диаметром! Вспоминаем школу и вычисляем площадь круга.
И вот, возвращаясь к кольцевым сердечникам, попросил меня мастер слесарно-механического участка помочь ему сделать сварочник.
Не помню уже где, но вычитал идею использовать в качестве кольцевого сердечника статор от асинхронного электродвигателя. Нашел мастер на свалке старый 4 кВт двигатель (тогда еще всё валялось), разобрали мы его, выковыряли обмотки, выбили сердечник. На токарном станке срезали пазы для обмоток внутри сердечника, и я занялся расчетом. Намотали авиационными несгораемыми проводами (ПТЛ-200) вторичку сделали на 50 Вольт. Результат превзошел ожидания! Сварочник варил даже электродом пятеркой. И всё из розетки.
Впоследствии к нему добавили выпрямитель и и регулятор тока, мастер ходил как петух довольный.
Вот сейчас, заимев гараж, захотелось мне в его оснащение добавить этот чудо-трансформатор. О его возможном применении напишу ниже.
На свалке завода «приватизировал» статор от могучего электродвигателя. Весу в нем было, килограмм 60-70, но своё же не тянет, пыхтя, кряхтя и попёрдывая, завалил я его в багажник своей Волги.
Фото его еле нашел

Разбив кувалдой ребристую чугуняку корлуса, я из него добыл сердечник статора. Медь обмоток выковыряли еще до меня.
Сын на работе вырезал на токарном станке пазы и приварил к сжимающим кольцам ножки и ручку для переноски этого тяжеловеса.

Обмерил сердечник, получилось 15 см — толщина набора, 2,5 см — ширина кольца. Площадь сечения — 37,5 кв. см.
Далее, обмотал сердечник стеклотканевой лентой, чтобы предохранить изоляцию проводов.

Далее, рассчитал число витков первичной обмотки. 220 х 50/37,5 = 293 Витка.
Далее — провод. На 20 Ампер (4 кВт из розетки) решил мотать сложенным вдвое проводом БПВЛ-0,7
Несколько запутанную бухту 440 метров перемотали сложив начало и конец.

Для намотки из ДВП я вырезал челнок.

Далее, пошло самое интересное и муторное — намотка. 293 витка — это и много и немного, по сравнению с маломощными трансформаторами.

В результате получилась обмотка в два слоя. Для контроля работы, тем же проводом намотал 2 витка, замерял напряжение — 2,4 Вольта. Всё правильно! В качестве баловства замыкаю концы, они начинают весело светиться.

На этом позавчера закончили. Вчера вечером занимались с Жекой Ascender с его БК Мультитроникс, а сегодня я опять продолжил эксперименты с уже наполовину намотанным трансформатором.
Тут надо прояснить для чего он нужен. Задумывался он как трансформатор для точечной сварки и споттера.
А тут еще назрела переборка передней подвески, решил попробовать его для разогрева прикипевших болтов и гаек.
Накрутил вторичку счетверенным проводом 5 мм диаметром. Концы временно, для экспериментов стянул на болты с большими шайбами.

Она выдала 1,2 Вольта.

Далее — пробы. Беру шпильку М12 с накрученной гайкой. Прижимаю один коней обмотки к свободному концу шпильки, второй — к гайке. Трансформатор глухо зарычал, свет при этом не потух. Секунд 5-10 я держал шпильку под током, потом мне стало горячо, держал-то голыми руками, разогрелись болты, стягивающие провода. И вот, что интересно, испытуемая шпилька была просто теплой, зато гайка почти дымилась. Это можно объяснить худшим сопротивлением в резьбе, по сравнению со сплошным телом шпильки. Основная энергия выделилась на сопротивлении — т.е. резьбе. Это очень хорошо, в закисших соединениях важно разогреть ржавчину в резьбе.

В дальнейшем будем пробовать на объекте, изменяя напряжение и ток.
Еще одно применение данного трансформатора — разделитель. Поскольку первичная обмотка намотана двойным проводом, то, расцепив их, получаем две идентичные обмотки. Это позволит «отвязаться» от «земли» в обычной розетке и пользоваться 220 Вольт в сырых местах, не боясь электротравмы. Ударит только, если тупо взяться за оба провода. Если держаться за один, можно стоять босиком в луже и ничего не произойдет.

Вот где-то так. Всем приятных выходных!

СВАРОЧНЫЙ ИЗ… НИЧЕГО

СВАРОЧНЫЙ ИЗ. НИЧЕГО

Конструированием сварочных трансформаторов я занимаюсь давно, так что опыт в этом деле есть. Хочу предложить читателям мою последнюю — как кажется, самую удачную — разработку сварочного аппарата не совсем обычной конструкции.

Своеобразие этого устройства в том, что сердечник для трансформатора представляет собой статор отслужившего свой срок асинхронного двигателя. Выбор сердечника определяется площадью поперечного сечения статора — она должна быть не менее 20 см 2 . Если, такое условие выполняется, подойдет статор от любого асинхронного двигателя. Ну а площадь поперечного сечения определяется так, как это показано на рисунке.

Упомяну, что наиболее рациональная величина сечения статора-сердечника лежит между величинами 20 см 2 и 50 см 2 . В принципе, подойдут и сердечники с площадью меньше 20 см 2 , однако при этом придется уменьшать сечение провода в первичной и вторичной обмотках трансформатора, что значительно уменьшит мощность аппарата и сузит его возможности. Ну а использование сердечников с площадью сечения более 50 см 2 также нерационально: трансформатор на его базе получается неоправданно громоздким и тяжелым, и это тоже не является достоинством портативного сварочного аппарата.

Извлечь статор из станины двигателя не слишком сложно. Для этого следует воспользоваться ножовкой по металлу и небольшой кувалдой. Для начала с двигателя снимаются передняя и задняя крышки вместе с якорем. Затем ножовкой надо сделать пару пропилов таким образом, как это показано на рисунке. Пропил нужен максимально глубокий, однако старайтесь при этом не повредить статор. Знайте только: чем глубже будет пропил — тем легче и без повреждений удастся извлечь статор из корпуса.

Теперь хорошенько ударьте кувалдой рядом с одним и другим пропилами. Как правило, хватает нескольких ударов, чтобы корпус развалился и статор с обмотками оказался освобожденным от него.

Обмотку сгоревших двигателей использовать, как правило, бывает невозможно, так что ее придется удалить с помощью плоскогубцев и ножниц для резки металла.

Освободив статор от обмотки, вы получите заготовку сердечника сварочного трансформатора. Надо только удалить перемычки пазов под обмотки — и вы получите готовый сердечник. Для этого используются обычное зубило и молоток. Удобнее всего удалять перемычки сначала с одного торца, а затем с другого. Предупреждаю, что работать надо в защитных очках, в изолированном помещении. Проследите также, чтобы поблизости не оказалось бьющихся предметов. Срубать зубья старайтесь как можно ближе к основанию и желательно поровнее.

Рис. 1. Основные параметры статора асинхронного двигателя, необходимые для переделки его в сердечник трансформатора

Рис. 1. Основные параметры статора асинхронного двигателя, необходимые для переделки его в сердечник трансформатора:

а — высота поперечного сечения сердечника, б — ширина поперечного сечения сердечника, S — площадь поперечного сечения сердечника.

Рис. 2. Подготовительные операции для извлечения статора из корпуса электродвигателя.

Рис. 2. Подготовительные операции для извлечения статора из корпуса электродвигателя.

Рис. 3. Обмотка статора хлопчатобумажной изолентой

Рис. 3. Обмотка статора хлопчатобумажной изолентой:

1 — статор (сердечник трансформатора), 2 — изолента, 3 — челнок с изолентой.

После удаления зубьев сердечник обматывается хлопчатобумажной изоляционной лентой — это обезопасит первый спой обмотки от пробоя на корпус. Изоляцию удобно наматывать с помощью специального челнока, вырезанного из фанеры, как это показано на рисунке. Кстати, такой же челнок понадобится вам и для намотки провода на сердечник.

Первичная обмотка трансформатора лучше всего получается из проволоки в хлопчатобумажной изоляции. Сечение ее можно подобрать в соответствии с таблицей 1. Для вторичной обмотки подойдет стандартная «жила» в резиновой изоляции — такие используются в силовых кабелях.

Таблица 1

Таблица 1.

В таблице 1 используются следующие обозначения:

S1 — площадь поперечного сечения первичной обмотки;

S — площадь поперечного сечения сердечника, равная произведению высоты сердечника на его толщину;

W1 — число витков первичной обмотки трансформатора;

W2 — число витков вторичной обмотки трансформатора;

S2 — площадь поперечного сечения вторичной обмотки трансформатора;

W3 — дополнительная обмотка, наматывается той же проволокой, что и первичная обмотка W, служит для регулировки сварочного тока.

Дополнительная обмотка W может иметь от двух до пяти дополнительных отводов, но, в принципе, можно обойтись и без нее, оставив только единственную обмотку W. При этом, правда, несколько ухудшится экономичность сварочного аппарата.

Рис. 4. Принципиальная схема сварочного трансформатора.

Рис. 4. Принципиальная схема сварочного трансформатора.

Рис. 5. Сварочный аппарат постоянного тока.

Рис. 5. Сварочный аппарат постоянного тока.

Рис. 6. Универсальное устройство для сварки переменным током и запуска автомобиля постоянным током.

Рис. 6. Универсальное устройство для сварки переменным током и запуска автомобиля постоянным током.

Рис. 7. Вариант конструкции сварочного трансформатора

Рис. 7. Вариант конструкции сварочного трансформатора:

1, 2 — силовые кабели, 3 — основание трансформатора, 4 — гайка, 5 — резьбовая шпилька, 6 — сердечник трансформатора, 7 — обмотки, 8 — винт крепления верхней панели, 9 — верхняя панель, 10 — замыкатель (сетевая розетка), 11 — перемычка (сетевая вилка с перемычкой), 12 — сетевой шнур, 13 — вилка сварочного аппарата.

Как видно из схемы трансформатора, сварочный ток регулируется с помощью замыкателя SА1. Для этого на панели прибора закрепляются несколько обычных сетевых розеток — их количество выбирается в зависимости от числа выводов дополнительной обмотки. Замыкателем же служит сетевая вилка, у которой ножки разъема соединены между собой одножильным проводом, диаметр которого составляет 1/4 диаметра провода первичной обмотки. Это дает возможность использовать замыкатель в качестве плавкого предохранителя, который срабатывает при нежелательных перегрузках.

Хотелось бы предупредить тех, кому не удастся достать провод для первичной обмотки подходящего сечения, что это не причина для того, чтобы вовсе не браться за создание сварочного аппарата. Вполне можно подобрать несколько проводов таким образом, чтобы их суммарное сечение было бы не меньше рекомендованного для W. В принципе, можно даже использовать неизолированную проволоку, обмотав ее самостоятельно хлопчатобумажной изоляционной лентой. Точно так же можно подбирать проволоку и для вторичной обмотки. Кстати, именно так и пришлось поступить мне при изготовлении своего сварочного аппарата. При этом для изолирования проволоки потребовалось десять мотков узкой хлопчатобумажной изоленты, которую вполне можно приобрести в хозяйственных магазинах или в магазинах электротоваров.

Хотелось бы предупредить, что после намотки первичной обмотки не следует сразу же заполнять и вторичную — сначала надо ее проверить. Для этого первичная обмотка подключается к сети через плавкий предохранитель, в качестве которого используется отрезок медной проволоки диаметром 0,1…0,15 мм. Если обмотка не гудит и не греется, это означает, что работу вы выполнили качественно и можете приступать к намотке вторичной обмотки. Если же предохранитель сгорает — это явный признак короткозамкнутого витка. Из этого следует, что первичную обмотку придется наматывать заново, обращая особое внимание на качество изоляции проволоки. Ну а если обмотка не греется, но прослушивается довольно громкое гудение, то это означает, что вы ошиблись при подсчете витков и у вас оказалось меньше, чем рекомендует таблица 1. В этом случае надо подмотать еще несколько витков и повторить проверку.

Для того чтобы сварочный аппарат был универсальным, на вторичной обмотке необходимо сделать отвод от третьей части витков и подключить через него трансформатор к мощному диодному выпрямителю — таким образом получается «пускач» для автомобиля, который особенно удобно использовать в холодное время года, что существенно продлит жизнь аккумулятору вашего автомобиля.

Учтите, что использование в выпрямителе мощных диодов с прямым током не меньше 200 А позволит вам сваривать детали дугой постоянного тока — это дает лучшее зажигание дуги и более ровный шов. Если же величина прямого тока диодов лежит в промежутке от 50 до 200 А, то в этом случае получается устройство для сварки переменным током и для запуска автомобиля выпрямленным током.

Учтите, что правильно собранный трансформатор не требует никакой настройки и сразу же после сборки готов к работе. Разумеется, при выполнении сварочных работ необходимо соблюдать все меры предосторожности, рекомендуемые при работах с электроприборами. В частности, запрещается касаться токоведущих участков; все переключения режимов работы сварочного аппарата необходимо производить только при отключении его от сети. Сварочные работы следует вести в специальной маске и в спецодежде, не допуская попадания брызг раскаленного металла и светового излучения на открытые участки тела.

Если вам в процессе работы встретятся какие-либо трудности, охотно поделюсь своим опытом, отвечу на любые вопросы по конструкции моего сварочного аппарата и по его работе.

Мой адрес: 654000, г. Новокузнецк Кемеровской обл., ул. Кирова, д. 10-а, кв. 3.

Василий ДРУЖИНИН, инженер

↑ Первый запуск

Итак, все готово для первого пуска переделанной схемы «Tashibra». Включаем для начала — без нагрузки, но не забываем о предварительно подключенном вольтметре на выход преобразователя и осциллографе. При правильно сфазированных обмотках обратной связи, преобразователь должен запуститься без проблем.

Если запуска не произошло, то провод, пропущенный в окно коммутирующего трансформатора (отпаяв его предварительно от резистора R5), пропускаем с другой стороны, придав ему, опять же, вид законченного витка. Подпаиваем провод к R5. Вновь подаем питание на преобразователь. Не помогло? Ищите ошибки в монтаже: КЗ, «непропаи», ошибочно установленные номиналы.

При запуске исправного преобразователя с указанными моточными данными, на дисплее осциллографа, подсоединенного к вторичной обмотке трансформатора Tr2 (в моем случае — к половине обмотки) будет отображена неизменяющаяся во времени последовательность четких прямоугольных импульсов. Частота преобразования подбирается резистором R5 и в моем случае при R5=5,1 Ohm, частота ненагруженного преобразователя составила 18 кГц.

При нагрузке 20 Ом — 20,5 кГц. При нагрузке 12 Ом — 22,3 кГц. Нагрузка подсоединялась непосредственно к контролируемой приборами обмотке трансформатора с действующим значением напряжения 17,5 В. Расчетное значение напряжения было несколько иным (20 В), но выяснилось, что вместо номинала 5,1 Ом, сопротивление установленного на плате R1=51 Ом. Будьте внимательны к подобным сюрпризам от китайсикх товарищей.

Впрочем, я счел возможность продолжить эксперименты без замены этого резистора, несмотря на его существенный, но терпимый нагрев. При отдаваемой преобразователем мощности в нагрузку около 25 Вт, мощность, рассеиваемая на этом резисторе не превышала 0,4 Вт.

Что же касается потенциальной мощности БП, то при частоте 20кГц установленный трансформатор сможет отдать в нагрузку не более 60-65Вт.

Попробуем частоту повысить. При включении резистора (R5) сопротивлением 8,2 Ом, частота преобразователя без нагрузки возросла до 38,5 кГц, с нагрузкой 12 Ом — 41,8 кГц.

При такой частоте преобразования с имеющимся силовым трансформатором можно смело обслужить нагрузку мощностью до 120Вт.
С сопротивлениями в цепи ПОС можно экспериментировать и дальше, добиваясь необходимого значения частоты, имея ввиду, однако, что слишком большое сопротивление R5 может приводить к срывам генерации и нестабильному запуску преобразователя. При изменении параметров ПОС преобразователя, следует контролировать ток, проходящий через ключи преобразователя.

Можно эксперементировать так же и с обмотками ПОС обоих трансформаторов на свой страх и риск. При этом следует предварительно произвести расчеты количества витков коммутирующего трансформатора по формулам, размещенным на страничке //interlavka.narod.ru/stats/Blokpit02.htm, например, или с помощью оной из программ г-на Москатова, размещенных на страничке его сайта //www.moskatov.narod.ru/Design_tools_pulse_transformers.html.

↑ Усовершенствование Tasсhibra — конденсатор в ПОС вместо резистора!

Можно избежать нагрева резистора R5, заменив его. конденсатором. Цепь ПОС при этом безусловно пробретает некоторые резонансные свойства, но каких либо ухудшений в работе БП не проявляется. Более того, конденсатор, установленный взамен резистора, нагревается значительно меньше, чем замененный резистор. Так, частота при установленном конденсаторе емкостью 220nF, возросла до 86,5кГц (без нагрузки) и составила при работе на нагрузку 88,1кГц.

Запуск и работа преобразователя оставались такими же стабильными, как и в случае с применением резистора в цепи ПОС. Заметим, что потенциальная мощность БП пи такой частоте возрастает до 220 Вт (минимально).
Мощность трансформатора: значения — приблизительны, с определенными допущениями, но не завышены.

К сожалению, у меня не было возможности для испытания БП с большим нагрузочным током, но, полагаю, что и описания произведенных экспериментов достаточно для того, чтобы обратить внимание многих на такие, вот, простые схемки преобразователей питания, достойных для использования в самых различных конструкциях.

Заранее приношу извинения за возможные неточности, недоговоренности и погрешности. Исправлюсь в ответах на ваши вопросы.

Оцените статью
TutShema
Добавить комментарий