Типы конденсаторов и их применение

Типы конденсаторов и их применение

В этом материале мы очень подробно поговорим про конденсаторы, расскажем, зачем они нужны, каких видов бывают и многое другое. По своей сути это довольно простое устройство, но при этом сегодня без них трудно представить наш мир: конденсаторы встречаются повсеместно. В этой статье не будет схем и подробного разбора, а также глубокой теории — все это интересно лишь узкому кругу специалистов. Тут мы попробуем простым языком и не слишком длинно рассказать все, что нужно знать про конденсаторы.

Электрический конденсатор это двухполюсник который применяется для накопления заряда и его последующей отдачи. Каждый конденсатор имеет определенную емкость, разумеется, ничего общего с емкостью аккумуляторов она не имеет. Если говорить про электронные схемы, то конденсатор является вторым по распространенности после резисторов. Конденсаторы бывают постоянной или переменной емкости, бывают разных типов и из разных материалов, но об этом мы еще поговорим ниже. То есть, основная задача конденсатора это сперва накапливать электроэнергию, после чего отдавать её. Также стоит отметить, что конденсаторы относят к пассивным электронным компонентам.

Конденсаторы выполняют сразу ряд задач, благодаря чему они и используются так широко. Например, поддержание разницы потенциалов. Есть электронные компоненты, которые крайне чувствительны к падению напряжения, некоторые из них просто прекратят работу, либо перезапустятся, что крайне нежелательно во многих случаях. Если просадка напряжения происходит на короткий промежуток времени, то её компенсирует конденсатор, отдав накопленную энергию. Он не может заменить источник бесперебойного питания, емкость конденсатора значительно меньше, впрочем, тут есть разные варианты. Также конденсаторы выполняют роль фильтра низких и высоких частот. Кстати, не стоит думать, что типичный конденсатор это маленькое устройство, которое видели большинство людей. Они бывают очень большими и весят десятки, а то и сотни килограмм.

Типы конденсаторов и их применение

Характеристики конденсатора

Вне зависимости от типа и устройства, у каждого конденсатора есть набор характеристик. По своей сути это очень простые устройства, поэтому и параметров у них довольно мало. Стоит отметить, что есть не только обычные характеристики, но и так называемые паразитные, которые оказывают негативное влияние на их работу. Когда конденсатор подбирают под конкретную сферу использования, учитывают все характеристики. В рамках этой статьи мы поговорим только про основные, а такие как тангенс угла диэлектрических потерь или диэлектрическую абсорбцию рассматривать не будем. Напоминаем, что в нашей статье мы стараемся говорить простыми словами и коротко.

Емкость конденсатора

Емкость является главным параметром конденсатора, тут можно увидеть аналогию с аккумуляторами, правда единица измерения тут другая и называется фарад, ампер-часы тут не используются. Кстати, один фарад (фарадей) это примерно 26,8 А*ч. Емкость большинства конденсаторов измеряется в микрофарадах или пикофарадах. Впрочем, есть отдельные конденсаторы, которые имеют емкость в десятки фарад, то есть, этот показатель у них в десятки раз больше, чем у обычных аккумуляторов. Правда, такие конденсаторы имеют ограниченную сферу применения и зачастую изготавливаются под заказ, под конкретное оборудование, где требуется такая емкость.

Конденсаторы в электронике. Самое понятное объяснение!

Если нужно большая емкость, то здесь могут соединить параллельно несколько конденсаторов. Тут есть нюансы, которые мы рассматривать не будем, но этот способ используется довольно часто. Также к емкости можно отнести удельную емкость. Это отношение собственно емкости к массе или объему конденсатору, такой же показатель есть и у аккумуляторов. Максимальная удельная емкость есть у тех конденсаторов, которые имеют минимальную толщину диэлектрика, но для таких повышается вероятность пробоя, что является проблемой. Про пробой мы еще поговорим ниже.

Номинальное напряжение

Стандартный показатель для всех электрических устройств. В случае конденсатора номинальное напряжение это максимально допустимое значение. В указанных пределах конденсатор будет работать нормально и сохранит свою работоспособность. Если же напряжение будет выше, то конденсатор может выйти из строя. Вероятность этого зависит от уровня превышения, а также времени. Но сама по себе эта характеристика достаточно простая, тут выбирают исходя из фактического напряжения, которое будет проходить через конденсатор, возможно делают это с небольшим запасом.

Конденсатор большой емкости

Вероятность взрыва

Да, есть и такой параметр, так как вероятность взрыва конденсатора не такая уж и маленькая, это вообще достаточно распространенное явление. О причинах можно рассказывать долго, но главной является повышенная температура, из-за которой происходит перегрев конденсатора и его взрыв. Но не стоит думать, что это именно опасный взрыв, нет, все не так. В современных конденсаторах устанавливают предохранительный клапан (актуально для устройств с большой емкости), либо делаю специальную верхнюю крышку, в небольших моделях. В компьютерах да и вообще в быту можно увидеть последний вариант. Многие видели вздутую верхнюю крышку конденсатора. Это не говорит о том, что он уже вышел из строя, но говорит о том, что скоро это произойдет. Ну а если крышка разорвана, то конденсатор нужно менять.

В старых моделях подобное было не предусмотрено, поэтому при взрыве от них могли отлетать осколки. И скорость их была такая, что они могли представлять опасность для здоровья человека. Убить не могли (если говорить про небольшие конденсаторы), но нанести травмы — вполне. Также стоит отметить, что есть разные типы конденсаторов и в них вероятность взрыва, как и его опасность — разная. Например, есть танталовые конденсаторы, которые состоят из тантала и двуокиси марганца. И эти два вещества, перемешанные вместе, при определенных условиях инициируют химическую реакцию, что приводит к взрыву конденсатора. Но, повторимся, современные устройства, которые широко используются в быту и т.д. не представляют опасности.

Это основные характеристики конденсаторов, как мы писали выше, про дополнительные и второстепенные в рамках данной статьи мы рассказывать не будем. Далее поговорим о различных видах конденсаторов, которые сегодня применяются наиболее широко. Про совсем специфические, которые применяются весьма ограниченно, мы рассказывать не будем.

Добро пожаловать на лекцию по электротехнике! Сегодня мы поговорим о конденсаторах – одном из основных элементов электрических цепей. Конденсаторы играют важную роль во многих устройствах и системах, и понимание их работы и свойств является необходимым для успешного изучения электротехники.

Мы начнем с определения конденсатора и рассмотрим его основные свойства и характеристики. Затем мы рассмотрим различные типы конденсаторов и их применение в различных областях. Также мы обсудим идеальный конденсатор и его свойства, а также различия между идеальным конденсатором и емкостным элементом.

В конце лекции мы рассмотрим примеры использования конденсаторов и емкостных элементов в электротехнике, чтобы показать практическую значимость этого элемента.

Давайте начнем и углубим наше понимание конденсаторов!

Нужна помощь в написании работы?

Мы — биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Что такое конденсатор?

Конденсатор – это электронный компонент, который способен накапливать и хранить электрический заряд. Он состоит из двух проводящих пластин, называемых обкладками, и диэлектрика, который разделяет эти пластины. Когда на конденсатор подается электрическое напряжение, заряд накапливается на обкладках, создавая электрическое поле в диэлектрике.

Емкость конденсатора определяет его способность накапливать заряд. Она измеряется в фарадах (Ф). Чем больше емкость конденсатора, тем больше заряда он может накопить при заданном напряжении.

Конденсаторы могут быть различных типов и размеров, и каждый из них имеет свои особенности и применение. Некоторые из наиболее распространенных типов конденсаторов включают электролитические конденсаторы, керамические конденсаторы и пленочные конденсаторы.

Конденсаторы широко используются в электротехнике и электронике. Они могут использоваться для фильтрации сигналов, сглаживания напряжения, хранения энергии, создания временных задержек и многих других приложений. Кроме того, конденсаторы могут быть частью различных электрических схем и устройств, таких как блоки питания, фильтры, усилители и т.д.

Пленочные конденсаторы

В данном виде конденсатора диэлектриком является пленка из пластика, например, полиэстер (KT, MKT, MFT), полипропилен (KP, MKP, MFP) или поликарбонат (KC, MKC).

пленочный вид конденсатора

Электроды могут быть напыленными на эту пленку (MKT, MKP, MKC) или изготовлены в виде отдельной металлической фольги, сматывающейся в рулон или спрессованной вместе с пленкой диэлектрика (KT, KP, KC). Современным материалом для пленки конденсаторов является полифениленсульфид (PPS).

Общие свойства пленочных конденсаторов (для всех видов диэлектриков):

  • работают исправно при большом токе;
  • имеют высокую прочность на растяжение;
  • имеют относительно небольшую емкость;
  • минимальный ток утечки;
  • используется в резонансных цепях и в RC-снабберах.

Отдельные виды пленки отличаются:

  • температурными свойствами (в том числе со знаком температурного коэффициента емкости, который является отрицательным для полипропилена и полистирола, и положительным для полиэстера и поликарбоната)
  • максимальной рабочей температурой (от 125 °C, для полиэстера и поликарбоната, до 100 °C для полипропилена и 70 °С для полистирола)
  • устойчивостью к электрическому пробою, и следовательно максимальным напряжением, которое можно приложить к определенной толщине пленки без пробоя.

Конденсаторы керамические

Этот вид конденсаторов изготавливают в виде одной пластины или пачки пластин из специального керамического материала. Металлические электроды напыляют на пластины и соединяют с выводами конденсатора. Используемые керамические материалы могут иметь очень разные свойства.

керамический вид конденсатора

Разнообразие включает в себя, прежде всего, широкий диапазон значений относительной электрической проницаемости (до десятков тысяч) и такая величина имеется только у керамических материалов.

Столь высокое значение проницаемости позволяет производить керамические конденсаторы (многослойные) небольших размеров, емкость которых может конкурировать с емкостью электролитических конденсаторов, и при этом работающих с любой поляризацией и характеризующихся меньшими утечками.

Керамические материалы характеризуются сложной и нелинейной зависимостью параметров от температуры, частоты, напряжения. В виду малого размера корпуса — данный вид конденсаторов имеет особую маркировку.

Конденсаторы с воздушным диэлектриком

регулируемый вид конденсатора

Здесь диэлектриком является воздух. Такие конденсаторы отлично работают на высоких частотах, и часто выполняются как конденсаторы переменной емкости (для настройки).

Основные характеристики и свойства

Что такое конденсатор, виды конденсаторов и их применение

К параметрам конденсатора, которые используют для создания и ремонта электронных устройств, относят:

  1. Ёмкость — С. Определяет количество заряда, которое удерживает прибор. На корпусе указывается значение номинальной ёмкости. Для создания требуемых значений элементы включают в цепь параллельно или последовательно. Эксплуатационные величины не совпадают с расчетными.
  2. Резонансная частота — fр. Если частота тока больше резонансной, то проявляются индуктивные свойства элемента. Это затрудняет работу. Чтобы обеспечить расчетную мощность в цепи, конденсатор разумно использовать на частотах меньше резонансных значений.
  3. Номинальное напряжение — Uн. Для предупреждения пробоя элемента рабочее напряжение устанавливают меньше номинального. Параметр указывается на корпусе конденсатора.
  4. Полярность. При неверном подключении произойдет пробой и выход из строя.
  5. Электрическое сопротивление изоляции — Rd. Определяет ток утечки прибора. В устройствах детали располагаются близко друг к другу. При высоком токе утечки возможны паразитные связи в цепях. Это приводит к неисправностям. Ток утечки ухудшает емкостные свойства элемента.
  6. Температурный коэффициент — TKE. Значение определяет, как ёмкость прибора меняется при колебаниях температуры среды. Параметр используют, когда разрабатывают устройства для эксплуатации в тяжелых климатических условиях.
  7. Паразитный пьезоэффект. Некоторые типы конденсаторов при деформации создают шумы в устройствах.

Виды и типы конденсаторов

Емкостные элементы классифицируют по типу диэлектрика, применяемого в конструкции.

Что такое конденсатор, виды конденсаторов и их применение

Бумажные и металлобумажные конденсаторы

Элементы используются в цепях с постоянным или слабо пульсирующим напряжением. Простота конструкции оборачивается пониженной на 10-25% стабильностью характеристик и возросшей величиной потерь.

В бумажных конденсаторах обкладки из алюминиевой фольги разделяет бумага. Сборки скручивают и помещают в корпус в форме цилиндра или прямоугольного параллелепипеда.

Приборы работают при температурах -60…+125°C, с номинальным напряжением у низковольтных приборов до 1600 В, высоковольтных — выше 1600 В и ёмкостью до десятков мкФ.

В металлобумажных приборах вместо фольги на диэлектрическую бумагу наносят тонкий слой металла. Это помогает изготовить элементы меньших размеров. При незначительных пробоях возможно самовосстановление диэлектрика. Металлобумажные элементы уступают бумажным по сопротивлению изоляции.

Что такое конденсатор, виды конденсаторов и их применение

Электролитические конденсаторы

Конструкция изделий напоминает бумажные. Но при изготовлении электролитических элементов бумагу пропитывают оксидами металлов.

В изделиях с электролитом без бумаги оксид наносится на металлический электрод. У оксидов металлов односторонняя проводимость, что делает прибор полярным.

В некоторых моделях электролитических элементов обкладки изготавливают с канавками, которые увеличивают площадь поверхности электрода. Зазоры в пространстве между пластинами устраняют с помощью заливания электролитом. Это улучшает емкостные свойства изделия.

Большая ёмкость электролитических приборов — сотни мкФ, используется в фильтрах, чтобы сглаживать пульсации напряжения.

Что такое конденсатор, виды конденсаторов и их применение

Алюминиевые электролитические

В приборах этого типа анодная обкладка делается из алюминиевой фольги. Поверхность покрывают оксидом металла — диэлектриком. Катодная обкладка — твердый или жидкий электролит, который подбирается так, чтобы при работе восстанавливался слой оксида на фольге. Самовосстановление диэлектрика продлевает время работы элемента.

Конденсаторы такой конструкции требуют соблюдения полярности. При обратном включении разорвет корпус.

Приборы, внутри которых располагаются встречно-последовательные полярные сборки, используют в 2 направлениях. Ёмкость алюминиевых электролитических элементов достигает нескольких тысяч мкФ.

Что такое конденсатор, виды конденсаторов и их применение

Танталовые электролитические

Анодный электрод таких приборов изготовляют из пористой структуры, получаемой при нагреве до +2000°C порошка тантала. Материал внешне напоминает губку. Пористость увеличивает площадь поверхности.

С помощью электрохимического окисления на анод наносят слой пентаоксида тантала толщиной до 100 нанометров. Твердый диэлектрик делают из диоксида марганца. Готовую конструкцию прессуют в компаунд — специальную смолу.

Танталовые изделия используют на частотах тока свыше 100 кГц. Ёмкость создается до сотен мкФ, при рабочем напряжении до 75 В.

Что такое конденсатор, виды конденсаторов и их применение

Полимерные

В конденсаторах используются электролит из твердых полимеров, что дает ряд преимуществ:

  • увеличивается срок эксплуатации до 50 тыс. часов;
  • сохраняются параметры при нагреве;
  • расширяется диапазон допустимых пульсаций тока;
  • сопротивление обкладок и выводов не шунтирует ёмкость.

Что такое конденсатор, виды конденсаторов и их применение

Пленочные

Диэлектрик в этих моделях — пленка из тефлона, полиэстера, фторопласта или полипропилена.

Обкладки — фольга или напыление металлов на пленку. Конструкция используется для создания многослойных сборок с увеличенной площадью поверхности.

Пленочные конденсаторы при миниатюрных размерах обладают ёмкостью в сотни мкФ. В зависимости от размещения слоев и выводов контактов делают аксиальные или радиальные формы изделий.

Что такое конденсатор, виды конденсаторов и их применение

В некоторых моделях номинальное напряжение 2 кВ и выше.

Постоянные конденсаторы

Основной параметр постоянного конденсатора – номинальная ёмкость, может меняться во время эксплуатации, как и у резистора, под воздействием различных факторов. Разница заключается в том, что скрупулёзно следить за такими изменениями обычно не требуется: требования к точности конденсаторов не высоки.

Так, например, используемые в качестве фильтров питания электролитические и керамические конденсаторы могут иметь допуск номинала ± 30% и более.

С максимальной точностью ± 1% изготавливаются некоторые керамические конденсаторы, ёмкость которых ограничена значением 100 нФ. Они используются в качестве времязадающих компонентов при создании активных электрических фильтров или генераторов. Другие важные их отличия – высокая температурная стабильность и большая цена.

Следует иметь в виду, что ёмкость электролитических конденсаторов может существенно меняться с изменением температуры и с течением времени они сильно деградируют (высыхают).

Конденсаторы выпускаются в соответствии с рядом Е24, но часто имеют более ограниченный набор номиналов, который задаётся в технических описаниях.

Цветовая маркировка конденсаторов похожа на аналогичную для резисторов, однако в отличие от чип-резисторов, чип-конденсаторы обычно не имеют маркировки!

Типовые расчётные соотношения

  1. Выражение для накопленного в конденсаторе заряда
  1. Последовательное соединение конденсаторов:

Последовательное соединение конденсаторов

  1. Параллельное соединение конденсаторов:

Параллельное соединение конденсаторов

  1. Переходный процесс в RC-цепочке:

Переходный процесс в RC-цепочке

Переменные и подстроечные конденсаторы

Переменные (регулирующие) конденсаторы предназначены для интенсивной регулировки так, как это делалось при настройке частоты вещания в старых радиоприёмниках. Это конденсаторы с воздушным диэлектриком сегодня используются редко.

Подстроечный конденсатор это переменный конденсатор малой ёмкости, который обычно используется для точной настройки режимов работы электрических схем. Обычно, подстроечный конденсатор используется однократно – в ходе процедуры настройки, или изредка.

После манипуляций настройки регулировочный винт контрится (закрашивается), чтобы во время дальнейшей эксплуатации изделия его положение не сдвинулось от случайных механических воздействий (например, вибраций). Количество подстроек у таких конденсаторов лимитировано несколькими десятками полных поворотов.

Переменные и подстроечные конденсаторы в современной электронике применяются редко. Широко их используют только в радиотехнике. Внешний вид таких конденсаторов представлен на рисунке 1.22.

Переменные и подстроечные конденсаторы

Классификация

Основные параметры конденсаторных изделий определяются типом диэлектрика. От материала зависит стабильность ёмкости, тангенс диэлектрических потерь, пьезоэффект и другие. Исходя из этого, классификацию моделей целесообразно осуществлять именно по виду диэлектрика.

По данному признаку различают следующие типы изделий:

  • вакуумные;
  • с воздушным диэлектриком;
  • радиоэлементы, в которых диэлектриком является жидкость;
  • с твёрдым неорганическим диэлектриком (стекло, слюда, керамика). Характеризуются малым током утечки;
  • модели с бумажным диэлектриком и комбинированные, бумажно-плёночные;
  • масляные конденсаторы постоянного тока;
  • электролитические;
  • категория оксидных конденсаторов, к которым относятся оксидно-полупроводниковые и танталовые конденсаторы;
  • твёрдотельные, у которых вместо жидкого электролита используется органический полимер или полимеризованный полупроводник.

В твёрдотельных моделях срок службы больший, чем у жидко-электролитических и составляет около 50 000 часов. У них меньшее внутренне сопротивление, то есть ЭПС почти не зависит от температуры, они не взрываются.

Классифицируют изделия и по другому важному параметру – изменению ёмкости. По данному признаку различают:

  • постоянные конденсаторы, то есть те, которые имеют постоянную емкость;
  • переменные, у которых можно управлять изменением ёмкости механическим способом либо с помощью приложенного напряжения (варикапы и вариконды), а также путём изменения температуры (термоконденсаторы);
  • класс подстроечных конденсаторов, которые используют для подстройки или выравнивания рабочих ёмкостей при настройке контуров, а также с целью периодической подстройки различных схем.

Все существующие конденсаторы можно условно разделить на общие и специальные. К изделиям общего назначения относятся самые распространённые низковольтные конденсаторы (см. рис. 6). К ним не предъявляют особых требований.

Конденсаторы общего назначения

Все остальные ёмкостные радиоэлементы принадлежат к классу специального назначения:

Высоковольтные конденсаторы

  • импульсные;
  • пусковые;
  • высоковольтные (см. рис. 7);
  • помехоподавляющие,
  • дозиметрические и др.;

Изображённые на фото устройства могут работать в высоковольтных цепях сравнительно низкой частоты.

Маркировка

Для маркировки отечественных изделий применялась буквенная система. Сегодня распространена цифровая маркировка. В буквенной системе применялись символы:

  • К – конденсатор;
  • Б, К, С, Э и т. д – тип диэлектрика, например: К – керамический, Э – электролитический;
  • На третьем месте стоял символ, обозначающий особенности исполнения.

В данной системе маркировки иногда первую букву опускали.

В новой системе маркировки на первом месте может стоять буква К, а после неё идёт буквенно-цифровой код. Для обозначения номинала, вида диэлектрика и номера разработки используют цифры. Пример такой маркировки показан на рисунке 8. Обратите внимание на то, что на корпусе электролитического конденсатора обозначена полярность включения.

  • Ёмкость от 0 до 999 пФ указывают в пикофарадах, например: 250p:
  • от 1000 до 999999 пФ – в нанофарадах: n180;
  • от 1 до 999 мкФ – в микрофарадах: 2μ5;
  • от 1000 до 999999 мкФ – в миллифарадах: m150;
  • ёмкость, больше значения 999999 мкФ, указывают в фарадах.

Основные виды

Рядовой пользователь не всегда знает о том, каким конденсатором снабжено его устройство. А ведь каждый вид имеет свои недостатки и преимущества, а также эксплуатационные особенности. Существуют две большие группы этих устройств, предназначенные для электрической цепи с переменным и постоянным током. Но всё-таки основная классификация ведётся по типу диэлектрика, который находится между облатками конденсатора. Основные виды:

Керамические конденсаторы

  • Керамические. Имеют маленький размер, малый ток утечки и небольшую индуктивность. Отлично работают в условиях высоких частот, в цепях пульсирующего, постоянного и переменного тока. Представлены в различном диапазоне напряжений и ёмкостей, в зависимости от того, для чего конденсатор предназначен.
  • Слюдяные. В настоящее время почти не используются и не выпускаются. В накопителях такого типа диэлектриком служит слюда. Рабочее напряжение таких конденсаторов в диапазоне — 200−1500 В.
  • Бумажные. В алюминиевых облатках заключена конденсаторная бумага. Выдерживают напряжение 160−1500 В.
  • Полиэстеровые. Максимальная ёмкость не превышает 15 мФ, рабочее напряжение — 50−1500 В.
  • Полипропиленовые. Выгодно выделяются на фоне остальных собратьев двумя преимуществами. Первое — маленький допуск ёмкости (+/- 1%), второе — до 3 кВ рабочего напряжения.

Полипропиленовые конденсаторы

Отдельно стоит отметить электролитические конденсаторы. Главное их отличие от других видов — подключения только к цепи постоянного или пульсирующего тока. Такие накопители имеют полярность — это особенность их конструкции, поэтому неправильное подключение ведёт к вздутию или взрыву устройства. Они обладают большой ёмкостью, что делает конденсатор электролитический пригодным для применения в выпрямительных цепях.

Сферы применения

Можно смело сказать, что конденсаторы используют практически во всех электронных и радиотехнических схемах. Чтобы иметь представление о том, где и зачем нужен конденсатор, следует вспомнить его способность сохранять заряд и разряжаться в нужное время, а также пропускать переменный ток и не пропускать постоянный. А это значит, что такие устройства используются во многих технических сферах, например:

Сферы применения конденсаторов

  • телефонии;
  • в производстве счётных и запоминающих устройств;
  • автоматике;
  • при создании измерительных приборов и многих других.

Электрические накопители можно встретить как в телевизорах, так и в приборах радиолокации, где необходимо формировать импульс большой мощности, для чего и служит конденсатор. Невозможно встретить блок питания без этих устройств или сетевой фильтр.

Нужно сказать, что накопители применяют и в сферах, не связанных с электрикой, например, в производстве металла и добыче угля, где используют конденсаторные электровозы.

Оцените статью
TutShema
Добавить комментарий