При поднесении сердечника к катушке поле индукционного тока помогает вдвигать сердечник или мешает

При поднесении сердечника к катушке поле индукционного тока помогает вдвигать сердечник или мешает

При внесении в катушку магнита в ней возникает индукционный ток. Если к катушке присоединить гальванометр, то можно заметить, что направление тока будет зависеть от того приближаем ли мы магнит или удаляем его.

Магнит будет взаимодействовать с катушкой либо притягиваясь, либо отталкиваясь от нее. Это будет возникать вследствие того, что катушка с проходящим по ней током, будет подобна магниту с двумя полюсами. Направление индуцируемого тока будет определять, где у катушки будет находиться какой из полюсов.

Если приближать к катушке магнит, то в ней будет возникать индукционный ток такого направления, что катушка обязательно будет отталкиваться от магнита. Если мы будет удалять магнит от катушки, то при этом в катушке возникнет такой индукционный ток, что она будет притягиваться к магниту.

Стоит отметить, что не важно каким полюсом мы подносим или убираем магнит, всегда при подносе катушка будет отталкиваться, а при удалении притягиваться. Различие состоит в том, что при приближении магнита к катушке магнитный поток, который будет пронизывать катушку, увеличивается, так как у полюса магнита кучность линий магнитной индукции увеличивается. А при удалении магнита, магнитный поток, пронизывающий катушку, будет уменьшаться.

Узнать направление индукционного тока можно. Для этого существует правило Ленца. Оно основано на законе сохранения. Рассмотрим следующий опыт.

Имеется катушка с подключенным к ней гальванометром. К одному и краев катушки начинаем подносить магнит, например, северным полюсом. Количество линий, которые будут пронизывать поверхность каждого витка катушки, будет увеличиваться. Следовательно, будет увеличиваться и значение магнитного потока.

Так как должен выполняться закон сохранения, должно возникнуть магнитное поле, которое будет препятствовать изменению магнитного потока. В нашем случае магнитный поток увеличивался, следовательно, ток должен течь в таком направлении, чтобы линии вектора магнитной индукции, создаваемые катушкой, были направлены в противоположном направлении линиям магнитной индукции, создаваемым магнитом.

То есть они должны в нашем случае быть направлены вверх. Теперь воспользуемся правилом буравчика. Направляем большой палец правой руки по необходимому нам направлению линий магнитной индукции, то есть — вверх. Тогда остальные пальцы укажут, в какую сторону должен быть направлен индукционный ток. В нашем случае, слева на право.

Аналогичный процесс происходит при удалении магнита. Убираем магнит, магнитный поток уменьшается, следовательно, должно возникнуть поле которое будет увеличивать магнитный поток. То есть поле линии магнитной индукции, которого будут сонаправлены с линиями магнитной индукции, создаваемыми постоянным магнитом. В нашем случае эти лини направлены вниз. Опять пользуемся правилом буравчика и определяем направление индукционного тока.

Правило Ленца. Физика

Помогите ПОООЖАЛУЙСТА ! Помогите пожалуйста с Л.Р. по физике!
Лабораторная работа №4
Изучение явления электромагнитной индукции

Цель работы: изучить явление электромагнитной индукции.

Оборудование: миллиамперметр, катушка-моток, магнит дуго­образный, источник питания, катушка с железным сердечником от разборного электромагнита, реостат, ключ, провода соединительные, модель генератора электрического тока (одна на класс).

Указания к работе

1. Подключите катушку-моток к зажимам миллиамперметра.

2. Наблюдая за показаниями миллиамперметра, подводите один из полюсов магнита к катушке, потом на несколько секунд останови­те магнит, а затем вновь приближайте его к катушке, вдвигая в нее (рис. 184). Запишите, возникал ли в катушке индукционный ток во вре­мя движения магнита относительно катушки; во время его остановки.

3. Запишите, менялся ли маг­нитный поток Ф, пронизывающий катушку, во время движения маг­нита; во время его остановки.

4. На основании ваших ответов на предыдущий вопрос сделайте и запишите вывод о том, при каком условии в катушке возникал индук­ционный ток.

5. Почему при приближении магнита к катушке магнитный по ток, пронизывающий эту катушку, менялся? (Для ответа на этот вопрос вспомните, во-первых, от каких величин зависит магнитный поток Ф и, во-вторых, одинаков ли модуль вектора индукции В магнитного поля постоянного магнита вблизи этого магнита и вдали от него.)

6. О направлении тока в катушке можно судить по тому, в какую сторону

от нулевого деления отклоняется стрелка миллиамперметра

Проверьте, одинаковым или различным будет направление индукционного тока в катушке при приближении к ней и удалении от нее одного и того же полюса магнита.

7. Приближайте полюс магнита к катушке с такой скоростью
чтобы стрелка миллиамперметра отклонялась не более чем на половину предельного значения его шкалы.

Повторите тот же опыт, но при большей скорости движения магнита, чем в первом случае.

При большей или меньшей скорости движения магнита относительно катушки магнитный поток Ф, пронизывающий эту катушку менялся быстрее?

При быстром или медленном изменении магнитного потокг сквозь катушку в ней возникал больший по модулю ток?

На основании вашего ответа на последний вопрос сделайте и за пишите вывод о том, как зависит модуль силы индукционного тока, возникающего в катушке, от скорости изменения магнитного потока Ф пронизывающего эту катушку.

8. Соберите установку для опыта по рисунку 185.

9. Проверьте, возникает ли в катушке-мотке 1 индукцион­ный ток в следующих случаях:

а) при замыкании и размыка­нии цепи, в которую включена
катушка 2;

б) при протекании через катушку 2 постоянного тока;

в) при увеличении и уменьшении силы тока, протекающего через катушку 2, путем перемещения в соответствующую сторону движка реостата.

10. В каких из перечисленных в пункте 9 случаев меняется маг­нитный поток, пронизывающий катушку 1 ? Почему он меняется?

11. Пронаблюдайте возникновение электрического тока в модели генератора (рис. 186). Объясните, почему в рамке, вращающейся в магнитном поле, возникает индукционный ток.

При поднесении сердечника к катушке поле индукционного тока помогает вдвигать сердечник или мешает

Помогите пожалуйста с Л.Р. по физике!
Лабораторная работа №4

Изучение явления электромагнитной индукции

Цель работы: изучить явление электромагнитной индукции.

Оборудование: миллиамперметр, катушка-моток, магнит дуго­образный, источник питания, катушка с железным сердечником от разборного электромагнита, реостат, ключ, провода соединительные, модель генератора электрического тока (одна на класс).

Указания к работе

1. Подключите катушку-моток к зажимам миллиамперметра.

2. Наблюдая за показаниями миллиамперметра, подводите один из полюсов магнита к катушке, потом на несколько секунд останови­те магнит, а затем вновь приближайте его к катушке, вдвигая в нее (рис. 184). Запишите, возникал ли в катушке индукционный ток во вре­мя движения магнита относительно катушки; во время его остановки.

3. Запишите, менялся ли маг­нитный поток Ф, пронизывающий катушку, во время движения маг­нита; во время его остановки.

4. На основании ваших ответов на предыдущий вопрос сделайте и запишите вывод о том, при каком условии в катушке возникал индук­ционный ток.

5. Почему при приближении магнита к катушке магнитный по ток, пронизывающий эту катушку, менялся? (Для ответа на этот вопрос вспомните, во-первых, от каких величин зависит магнитный поток Ф и, во-вторых, одинаков ли модуль вектора индукции В магнитного поля постоянного магнита вблизи этого магнита и вдали от него.)

6. О направлении тока в катушке можно судить по тому, в какую сторону

от нулевого деления отклоняется стрелка миллиамперметра

Проверьте, одинаковым или различным будет направление индукционного тока в катушке при приближении к ней и удалении от нее одного и того же полюса магнита.

7. Приближайте полюс магнита к катушке с такой скоростью
чтобы стрелка миллиамперметра отклонялась не более чем на половину предельного значения его шкалы.

Повторите тот же опыт, но при большей скорости движения магнита, чем в первом случае.

При большей или меньшей скорости движения магнита относительно катушки магнитный поток Ф, пронизывающий эту катушку менялся быстрее?

При быстром или медленном изменении магнитного потокг сквозь катушку в ней возникал больший по модулю ток?

На основании вашего ответа на последний вопрос сделайте и за пишите вывод о том, как зависит модуль силы индукционного тока, возникающего в катушке, от скорости изменения магнитного потока Ф пронизывающего эту катушку.

8. Соберите установку для опыта по рисунку 185.

9. Проверьте, возникает ли в катушке-мотке 1 индукцион­ный ток в следующих случаях:

а) при замыкании и размыка­нии цепи, в которую включена
катушка 2;

б) при протекании через катушку 2 постоянного тока;

в) при увеличении и уменьшении силы тока, протекающего через катушку 2, путем перемещения в соответствующую сторону движка реостата.

10. В каких из перечисленных в пункте 9 случаев меняется маг­нитный поток, пронизывающий катушку 1 ? Почему он меняется?

11. Пронаблюдайте возникновение электрического тока в модели генератора (рис. 186). Объясните, почему в рамке, вращающейся в магнитном поле, возникает индукционный ток.

Втягивание железного сердечника в соленоид

При поднесении сердечника к катушке поле индукционного тока помогает вдвигать сердечник или мешает

Магнитное поле можно создать не только при помощи постоянных магнитов, но и с помощью проводника с током: когда по проводнику идет ток, вокруг него возникает магнитное поле. Соленоид — это катушка, по обмотке которой пропускается ток. При этом внутри соленоида возникает магнитное поле.

Вы хорошо знаете, что постоянные магниты притягивают к себе железные предметы. Магнитное поле можно создать не только с помощью постоянных магнитов, а и с помощью проводника с током. Когда по проводнику проходит ток, когда по проводнику движутся заряды, то при этом вокруг проводника возникает магнитное поле.

В нашем распоряжении имеется длинный соленоид (катушка), по которому мы будем пропускать ток, по обмотке этого соленоида. При этом внутри соленоида возникает магнитное поле. Внутрь соленоида мы введем длинный железный сердечник (вот сейчас я его вставляю до половины) и будем пропускать ток по соленоиду (замкнем цепь обмотки соленоида).

Мы видим, что сердечник при этом втянулся внутрь соленоида.

Повторим опыт еще раз. Вновь замкнем цепь соленоида, и вновь сердечник втягивается в соленоид. Если увеличить ток в обмотке соленоида (вначале он у нас был порядка 30 амперов, сейчас мы его устанавливаем порядка 70 амперов), то тогда при включении цепи сердечник будет с большей скоростью втягиваться внутрь соленоида, поскольку больший ток создает более сильное магнитное поле, и поэтому скорость движения сердечника возрастет.

Обратите внимание на левый конец соленоида в момент замыкания цепи. Сердечник пролетает соленоид, но затем возвращается внутрь соленоида.

Взаимодействие индукционного тока с магнитом

Если магнит приближать к катушке, то в ней появится индукционный ток такого направления, что магнит обязательно отталкивается. Для сближения магнита и катушки при этом нужно совершить положительную работу. Катушка становится подобной магниту, обращенному одноименным полюсом к приближающемуся к ней магниту. Одноименные же полюсы отталкиваются. При удалении магнита, наоборот, в катушке возникает ток такого направления, чтобы появилась притягивающая магнит сила.

Представьте, что все было бы иначе. Тогда при введении магнита в катушку он сам бы устремлялся в нее. Это противоречит закону сохранения энергии, так как при этом увеличилась бы кинетическая энергия при одновременном возникновении индукционного тока, который также затрачивает часть энергии. Кинетическая энергия и энергия тока в этом случае возникали бы из ничего, без затрат энергии, что невозможно.

Справедливость вывода можно подтвердить с помощью следующего опыта. Пусть на свободно вращающемся стержне закреплены два алюминиевых кольца: с разрезом и без разреза. Если поднести магнит к кольцу без разреза, оно будет отталкиваться. Если поднести его к кольцу с разрезом, ничего не произойдет. Это связано с тем, что в нем не возникает индукционный ток. Этому препятствует разрез. Но если отдалять магнит от кольца без разреза, то оно начнет притягиваться.

Опыты показывают, что притягивание или отталкивание кольца с индукционным током зависит от того, удаляется магнит, или притягивается. А различаются они характером изменения линий магнитной индукции, пронизывающих поверхность, ограниченную кольцом. В первом случае (рис. а) магнитный поток увеличивается, во втором (рис. б) — уменьшается. То же самое можно наблюдать в опытах с магнитом и проводящей катушкой.

Причем в первом случае линии индукции B’ магнитного поля, созданного возникшем в катушке индукционным током, выходят из верхнего конца катушки, та как катушка отталкивает магнит. Во втором же случае напротив, они входят в этот конец.

Правило Ленца

Описанные выше опыты позволяют делать вывод, что при увеличении магнитного потока через витки катушки индукционный ток имеет такое направление, что создаваемое им магнитное поле препятствует нарастанию магнитного потока через витки катушки. Если же магнитный поток через катушку ослабевает, то индукционный ток создает магнитное поле с такой индукцией, которая увеличивает магнитный поток через витки катушки.

Правило направления индукционного тока носит название правила Ленца.

Возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует тому изменению магнитного потока, которым он вызван.

Применять правило Ленца для нахождения направления индукционного тока I i в контуре надо так:

  1. Установить направление линий магнитной индукции → B внешнего магнитного поля.
  2. Выяснить, увеличивается ли поток магнитной индукции этого поля через поверхность, ограниченную контуром ( Δ Φ > 0 ), или уменьшается ( Δ Φ < 0 ).
  3. Установить направление линий магнитной индукции → B ‘ магнитного поля индукционного тока I i . Эти линии должны быть согласно правилу Ленца направлены противоположно линиям → B при Δ Φ > 0 и иметь одинаковое с ними направление при Δ Φ < 0 .
  4. Зная направление линий магнитной индукции → B ‘ , найти направление индукционного тока I i , пользуясь правилом правой руки.

Пример №1. Найти направление индукционного тока, возникающего в кольце во время приближения к нему магнита (см. рисунок).

Линии магнитной индукции магнита обращены в сторону кольца, так как он направлен к нему северным полюсом. Так как магнит приближается к кольцу, магнитный поток увеличивается. Следовательно, кольцо отталкивается. Тогда оно обращено к магниту одноименным — северным — полюсом. Применим правило правой руки. Так как линии магнитной индукции выходят из северного полюса, направим к нему большой палец. Теперь четыре пальца руки покажут направление индукционного тока. В нашем случае он будет направлен против направления хода часовой стрелки.

Текст: Алиса Никитина, 9.9k

Задание EF17577

Медное кольцо на горизонтальном коромысле поворачивается вокруг вертикальной оси ОВ под действием движущегося магнита С. Установите соответствие между направлением движения магнита, вращением коромысла с кольцом и направлением индукционного тока в кольце.

К каждой позиции первого столбца подберите соответствующую позицию второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

МАГНИТПОВОРОТ КОРОМЫСЛА И ТОК В КОЛЬЦЕ
А)движется по направлению к кольцу, северный полюс обращён к кольцу1)коромысло с кольцом поворачивается, отталкиваясь от магнита, ток идёт по часовой стрелке
Б)движется к кольцу, к кольцу обращён южный полюс2)коромысло с кольцом поворачивается, отталкиваясь от магнита, ток идёт против часовой стрелки
3)коромысло с кольцом поворачивается, притягиваясь к магниту, ток идёт по часовой стрелке
4)коромысло с кольцом поворачивается, притягиваясь к магниту, ток идёт против часовой стрелки

Алгоритм решения

  1. Записать правило Ленца.
  2. В соответствии с правилом Ленца установить, что произойдет, если к кольцу поднести магнит северным полюсом.
  3. В соответствии с правилом Ленца установить, что произойдет, если к кольцу поднести магнит южным полюсом.

Решение

Запишем правило Ленца:

Возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует тому изменению магнитного потока, которым он вызван.

Следовательно, если поднести к кольцу магнит северным полюсом, линии магнитной индукции поля, образованного магнитом, будут направлены в сторону кольца (т.к. они выходят из северного полюса). Тогда в кольце образуется такой ток, при котором с той стороны, с которой подносят магнит, тоже сформируется северный полюс. Используем правило правой руки и расположим большой палец правой руки так, чтобы он указывал в сторону северного полюса кольца с индукционным током. Тогда четыре пальца покажут направление этого тока. Следовательно, индукционный ток направлен по часовой стрелке.

Если поднести к кольцу магнит южным полюсом, линии магнитной индукции поля, образованного магнитом, будут направлены в сторону от кольца (т.к. они выходят из северного полюса). Тогда в кольце образуется такой ток, при котором с той стороны, с которой подносят магнит, тоже сформируется южный полюс. Используем правило правой руки и получим, что в этом случае индукционный ток будет направлен против часовой стрелки.

Так как магнит подносят к кольцу, а не отодвигают от него, то кольцо всегда будет отталкиваться, поскольку в нем возникают силы противодействия. Следовательно, позиции А соответствует строка 1, а позиции Б — строка 2.

Задание EF18621

На рисунке запечатлён тот момент демонстрации по проверке правила Ленца, когда все предметы неподвижны. Южный полюс магнита находится вблизи сплошного металлического кольца. Если магнит выдвигать из алюминиевого кольца, то кольцо перемещается вслед за магнитом. Это движение кольца – результат действия

а) силы гравитационного взаимодействия между кольцом и магнитом

б) силы Ампера, действующей со стороны магнитного поля магнита на кольцо, по которому идёт индукционный ток

в) кулоновских (электростатических) сил, которые возникают при движении магнита относительно кольца

г) воздушных потоков, вызванных движением руки и магнита

Алгоритм решения

  1. Проанализировать предложенные варианты ответа.
  2. Установить природу взаимодействия магнита и кольца.
  3. Выбрать верный ответ.

Решение

Гравитационные силы между магнитом и кольцом ничтожно малы при данных массах и расстояниях, поэтому они не могли вызвать притяжения кольца к магниту.

Кулоновские силы характеризуют силу электростатического взаимодействия зарядов. Поскольку магнит не имеет заряда, между ним и кольцом такие силы не возникают.

Металлическое кольцо достаточно тяжелое для того, чтобы заставить его стремительно двигаться вслед за магнитом.

Но вариант с силой Ампера подходит, так как сила Ампера — это сила, с которой действует магнитное поле на проводник с током. В момент, когда магнит двигают в стороны от кольца, магнитный поток, пронизывающий его, меняется. Это вызывает образование в кольце индукционного тока, который также порождает магнитное поле, противодействующее магнитному полю постоянного магнита.

Задание EF19032

Катушка № 1 включена в электрическую цепь, состоящую из источника напряжения и реостата. Катушка № 2 помещена внутрь катушки № 1 и замкнута (см. рисунок).

Из приведённого ниже списка выберите два правильных утверждения, характеризующих процессы в цепи и катушках при перемещении ползунка реостата вправо.

А) Сила тока в катушке № 1 увеличивается.

Б) Вектор индукции магнитного поля, созданного катушкой № 1, всюду увеличивается.

В) Магнитный поток, пронизывающий катушку № 2, увеличивается.

Г) Вектор индукции магнитного поля, созданного катушкой № 2, в центре этой катушки направлен от наблюдателя.

Д) В катушке № 2 индукционный ток направлен по часовой стрелке.

Алгоритм решения

  1. Проверить истинность каждого утверждения.
  2. Выбрать только истинные утверждения.

Решение

Согласно утверждению А, при перемещении ползунка реостата вправо сила тока в катушке №1 увеличивается. Перемещая ползунок реостата вправо, мы увеличиваем сопротивление. Следовательно, сила тока уменьшается. Утверждение А — неверно.

Согласно утверждению Б, при перемещении ползунка реостата вправо вектор индукции магнитного поля, созданного катушкой №1, всюду увеличивается. Так как сила тока уменьшается, вектор индукции магнитного поля ослабевает. Утверждение Б — неверно.

Согласно утверждению В, при перемещении ползунка реостата вправо магнитный поток, пронизывающий катушку №2, увеличивается. Так как магнитное поле ослабевает, будет уменьшаться и магнитный поток, пронизывающий катушку № 2. Утверждение В — неверно.

Согласно утверждению Г, при перемещении ползунка реостата вправо вектор индукции магнитного поля, созданного катушкой №2, в центре этой катушки направлен от наблюдателя. В катушке №1 ток течёт по часовой стрелке, и по правилу буравчика эта катушка будет создавать магнитное поле, направленное от наблюдателя. В силу того, что сила тока в цепи уменьшается, будет уменьшаться и магнитный поток, пронизывающий вторую катушку. При этом согласно правилу Ленца во второй катушке будет создаваться индукционный ток, который направлен так, чтобы своим магнитным полем противодействовать изменению магнитного потока, которым он вызван. В этом случае вектор индукции магнитного поля, созданного катушкой №2, в центре этой катушки сонаправлен с внешним полем и направлен от наблюдателя. Утверждение Г — верно.

Согласно утверждению Д, при перемещении ползунка реостата вправо в катушке №2 индукционный ток направлен по часовой стрелке. По правилу правой руки, индукционный ток в катушке 2 направлен по часовой стрелке. Утверждение Д — верно.

Урок№36. Явление электромагнитной индукции. Правило Ленца

Прежде чем начать наш урок, давайте подумаем, что нужно современному школьнику? Конечно же компьютер или ноутбук, например, чтобы общаться в мессенджере с друзьями из других городов. Тогда нужны ещё наушники и микрофон. А кто-то из вас скажет, что компьютер — это прошлый век, так как есть более компактные устройства — планшеты и мобильные телефоны. Но задумывался ли кто-нибудь из вас над тем, что лежит в основе работы подобных приборов. А ведь без явления, которое было открыто чуть более ста восьмидесяти пяти лет назад, эти приборы создать было бы невозможно и по сей день. Поэтому сегодня наша задача разгадать тайну работы многих из них. И тема нашего урока звучит так: явление электромагнитной индукции. Правило Ленца.

После опытов Эрстеда стало понятно, что электрические и магнитные поля имеют одни и те же источники — движущиеся электрические заряды. Это позволило предположить, что они каким-то образом связаны друг с другом. Фарадей был абсолютно уверен в единстве электрических и магнитных явлений. Вскоре после открытия Эрстеда в своём дневнике в декабре 1821 года он пишет: «Превратить магнетизм в электричество». На решение этой фундаментальной задачи ему понадобилось 10 лет.

Давайте и мы проведём несколько опытов, подобных опытам Фарадея, только с современными приборами. Соберём электрическую цепь, состоящую из источника тока, чувствительного гальванометра, двух катушек и ключа.

Подключим одну из катушек к источнику тока, а вторую катушку расположим так, чтобы часть её входила внутрь первой катушки. Соединив выводы второй катушки с гальванометром, замкнём ключ. Опыт показывает, что в момент замыкания ключа стрелка гальванометра отклоняется на несколько делений, а затем возвращается в исходное положение. Это говорит о том, что в течение короткого времени по виткам второй катушки протекал электрический ток.

Аналогичное явление наблюдается и при размыкании ключа, только в этом случае стрелка гальванометра отклоняется в противоположную сторону, что свидетельствует об изменении направления тока в катушке.

Проделаем другой опыт Фарадея, используя то же самое оборудование. Только на этот раз ключ оставим в замкнутом положении, а катушку, соединённую с гальванометром, будем перемещать относительно первой катушки, подключённой к источнику тока. В процессе перемещения катушки в её цепи протекает ток.

Как установил учёный, неважно, какая из катушек перемещается: можно перемещать катушку, соединённую с источником, оставляя вторую катушку неподвижной. Результат будет тот же самый — в цепи катушки, соединённой с гальванометром, появляется ток.

Эти вторичные мгновенные токи, вызываемые влиянием первичных, названы были Фарадеем индукционными, то есть наведёнными, и это название сохранилось за ними и до наших дней.

— Но как объяснить результаты опытов? Может быть здесь важную роль играет наличие источника тока?

Давайте попробуем ответить и на этот вопрос. Для чего проведём такой опыт. Соберём цепь, состоящую только из катушки и гальванометра.

Если теперь внутрь катушки вводить постоянный магнит, то стрелка гальванометра будет отклоняться, указывая на возникновение индукционного тока в цепи катушки. Это же явление можно наблюдать, если магнит оставить неподвижным, а двигать подключённую к гальванометру катушку.

Однако если мы, например, будем вращать магнит в катушке, то индукционный ток не возникнет.

Проделаем ещё несколько опытов. Поместим в магнитное поле плоский контур, концы которого соединены с гальванометром. Ели контур привести во вращение, то стрелка гальванометра начнёт отклоняться, фиксируя появление индукционного тока.

Ток также будет возникать и в случае, когда рядом с контуром или внутри него приводить во вращение постоянный магнит.

«Ток возникает лишь при движении магнита относительно провода, а не в силу свойств, присущих ему в покое», — записал Фарадей в свой научный дневник.

Хотя приведённые опыты внешне выглядят различно, Фарадей уловил нечто общее, от чего зависит возникновение индукционного тока. Именно в замкнутом проводящем контуре индукционный ток возникает только тогда, когда изменяется число линий магнитной индукции, пронизывающих поверхность, ограниченную этим контуром. Поскольку число линий индукции определяет магнитный поток, то при всяком изменении магнитного потока, пронизывающего замкнутый проводящий контур, в этом контуре возникает электрический ток, существующий в течение всего времени изменения магнитного потока.

Здесь мы сформулировали сущность явления электромагнитной индукции на качественном уровне. С количественной формулировкой закона электромагнитной индукции вы познакомитесь при дальнейшем изучении физики в старших классах.

В дневнике Майкла Фарадея записана дата открытия явления электромагнитной индукции — 29 августа 1831 года. Интересно, что почти в одно и то же время с Фарадеем эксперименты по получению электрического тока с помощью магнита проводил швейцарский физик Жан-Даниэль Колладон. Для этого он использовал гальванометр с лёгкой магнитной стрелкой. Чтобы магнит не оказывал влияния на стрелку прибора, концы катушки были выведены в соседнюю комнату и там присоединены к гальванометру. Вдвинув магнит в катушку, Колладон шёл в эту комнату и разочарованный убеждался, что гальванометр не показывал наличие тока в цепи.

Я думаю, вы догадались почему? Если бы он всё время наблюдал за гальванометром, а магнитом занимался бы кто-то другой, то замечательное открытие было бы сделано Колладоном.

Были попытки и у других учёных, например, американский физик Джозеф Генри также успешно проводил опыты по индукции токов в то же время, что и Майкл Фарадей. Но, по неизвестным причинам, учёный прекратил свои эксперименты и вернулся к ним лишь девять месяцев спустя. Сегодня точно известно, что открытие электромагнитной индукции Генри совершил в июне тысяча восемьсот тридцать второго года. Если бы Генри не прервал свои эксперименты. В таких случаях на ум приходит известная русская пословица: терпение и труд всё перетрут. А, как мы увидели, терпение позволило только Фарадею довести начатое дело до конца.

Однако оставался ещё один не решённый вопрос: каково направление возникающего индукционного тока?

Чтобы на него ответить проведём простой опыт. Возьмём два одинаковых алюминиевых кольца, закреплённых на концах алюминиевого коромысла.

Обратите внимание, что одно из колец сплошное, а в другом есть прорезь. Коромысло надето на иглу штатива и может свободно вращаться вокруг вертикальной оси. Возьмём полосовой магнит и внесём его в кольцо с разрезом — никаких изменений мы не наблюдаем. А теперь внесём магнит в сплошное кольцо. Удивительно, но у нас ничего не получается — кольцо «убегает» от магнита, поворачивая при этом всю пластинку.

— Почему же так происходит?

Дело в том, что при приближении к кольцу магнита, поле которого является неоднородным, проходящий сквозь кольцо магнитный поток увеличивается. При этом в сплошном кольце возникает индукционный ток, а в кольце с разрезом ток циркулировать не может.

Возникающий индукционный ток в сплошном кольце порождает в нём магнитное поле. При этом оно имеет такое направление, что линии индукции магнитного поля, порождённого индукционным током, направлены противоположно линиям индукции внешнего поля магнита. То есть, кольцо и магнит обращены друг к другу одноименными по́люсами.

Придержим кольцо рукой и внесём в него магнит. А теперь начнём его выдвигать из кольца — кольцо стремиться за магнитом.

Объясняется это тем, что при уменьшении магнитного потока (выдвигание магнита), индукционный ток имеет в нем такое направление, что линии индукции возникающего магнитного поля совпадают по направлению с линиями индукции внешнего магнитного поля. То есть кольцо и магнит обращены друг к другу разноимёнными полюсами.

Таким образом, проследив за взаимодействием между кольцом и магнитом во всех случаях и сравнив его с направлением движения магнита, можно видеть, что взаимодействие между полюсами всегда препятствует движению магнита.

В тысяча восемьсот тридцать четвёртом году русскому учёному Эмилию Христиановичу Ленцу удалось обобщить эти закономерности и сформулировать общее правило. Найденную им связь называют правилом Ленца: возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует изменению внешнего магнитного потока, которое вызвало этот ток.

Интересен, что о вопросах надобности и ненадобности открытия явления электромагнитной индукции долго спорил научный, и не только, мир. В архивах сохранилась следующая примечательная запись:

«Однажды после лекции Фарадея в Королевском обществе, где он демонстрировал свои опыты, к нему подошёл богатый коммерсант, оказывавший обществу материальную поддержку, и надменным голосом спросил:

— Всё, что вы нам здесь показывали, господин Фарадей, действительно красиво. Но теперь скажите мне, для чего годится эта магнитная индукция!?

— А для чего годится только что родившийся ребёнок? — ответил рассердившийся Фарадей.»

На вопрос коммерсанта в последующие годы ответили многие учёные и изобретатели. Среди них и были наши соотечественники: Эмилий Христианович Ленц, Борис Семёнович Якоби и Михаил Иосифович Доливо-Добровольский внёсшие незаменимый вклад в развитие электротехнике. А также французский изобретатель Ипполит Пикси, построивший в 1832 году первую динамо-машину, положившую основу для промышленного производства электроэнергии.

Магнитное поле катушки с током

Катушка получится, если плотно, виток к витку, намотать провод в достаточно длинную спираль (рис. 1 ). В катушке может быть несколько десятков, сотен или даже тысяч витков.

Соленоид (от греч. solen — «канал», «труба» и eidos — «подобный») — разновидность катушки с током. Обычно под термином «соленоид» подразумевается цилиндрическая обмотка из провода, причём длина такой обмотки многократно превышает её диаметр.

Рис. 1 . Изображение катушки

Рассмотрим рисунок 2 . Мы видим цепь, состоящую из источника тока, реостата и катушки. Катушка содержит большое число витков провода. При протекании тока по цепи железные опилки притягиваются к торцу катушки. А если тока нет, то притяжение не наблюдается.

цепь.png

Рис. 2 . Изображение цепи с катушкой, реостатом и источником тока

Если катушка в этом опыте будет подвешена на проводах, то при протекании тока в цепи, она установится в пространстве строго определённым образом. Точно так же, как и магнитная стрелка компаса (в направлении север — юг).

Это наблюдение позволяет сделать вывод, что катушка с током тоже имеет магнитные полюсы (рис. 3 ).

3.png

Рис. 3 . Изображение катушки, подвешенной на проводах с током

Логично предположить, что у катушки магнитное поле тоже имеется. Для доказательства можно воспользоваться железными опилками (рис. 4 ).

6 Asset 2.png

Рис. 4 . Изображение катушки с железными опилками
Железные опилки располагаются, образуя замкнутые кривые.

За направление линий магнитного поля принято направление от северного полюса катушки к южному (вне катушки с током).

Сила магнитного поля постоянного магнита невелика. Другое дело – электромагнит. Сила магнитного поля электромагнита может изменяться. Ее можно увеличивать или уменьшать. Основная часть любого электромагнита – катушка с намотанным на нее проводом. Рассмотрим опыт, изображенный на рисунке 2 . По виткам катушки протекает ток, и она притягивает к себе железные предметы (так проявляется магнитное действие тока). Если увеличить количество витков в катушке, не меняя силу тока в ней, то ее магнитное действие усилится, о чем свидетельствует увеличение количества притягиваемых предметов.

Физическая величина, характеризующая магнитные свойства катушки с током, связана линейной зависимостью с числом витков в ней.

На рисунке (5) показан электрический контур, позволяющий экспериментально выявить взаимосвязь между силой тока и действием магнитного поля катушки.

Оцените статью
TutShema
Добавить комментарий