Трехфазный электродвигатель является электрической машиной, которая предназначена по своим конструктивным характеристикам для работы в трехфазных сетях переменного тока. Электрический трехфазный двигатель состоит из статора с намотанными на нем тремя обмотками, которые при этом обязательно должны быть сдвинуты в пространстве на сто двадцать градусов. В цепи обмоток двигателя при появлении трехфазного напряжения на магнитных полюсах образуются магнитные потоки, которые начинают вращать ротор. Следующей составляющей электродвигателя является ротор, который изготавливается различных конструкций. Если двигатель синхронный то ротор вращается со скоростью статора, а если асинхронный вращение ротора проходит медленнее.
Самое широкое распространение получили асинхронные трехфазные электродвигатели с короткозамкнутой обмоткой ротора. Такого типа ротор по – другому двигателя еще называется «беличье колесо». Далее поговорим о двигателе именно такого типа.
Асинхронные трехфазные двигатели бывают односкоростные с соединением обмоток по схемам «звезда», «треугольник» или переключаемые звезда-треугольник. Также электродвигатели с последовательным и параллельным соединением ветвей обмоток по схеме «звезда» или «двойная звезда».
Все трехфазные электродвигатели разделяются по способу соединения обмоток. Первый способ соединения обмоток называется «звездой». Принцип такого соединения обмоток заключается в том, что все концы всех трех обмоток соединяются, в единый узел, образуя нулевой вывод. Свободные концы обмоток подсоединяются к сетевым фазам. Такой способ соединения напоминает звезду, и от этого и название схемы подключения. Второй способ называется «треугольник». Такой способ соединения обмоток заключается в том, что все три обмотки соединены последовательно между собой, то есть конец первой обмотки соединяется с началом второй обмотки, соответственно начало второй обмотки соединено с концом третьей обмотки и так далее по кругу. Места соединения концов обмоток присоединяются к фазам сети. В такой схеме соединения обмоток отсутствует нулевой вывод. Такой способ напоминает треугольник.
Оба способа соединения обмоток трехфазных двигателей одинаково широко распространены, потому что не имеют особых преимущественных различий друг перед другом. Если судить о способах соединения при номинальном режиме работы, то для соединения обмоток «звездой» необходимо большее линейное напряжение, по сравнению со схемой «треугольник». Вот поэтому в технических характеристиках трехфазного электродвигателя всегда указывается номинальное напряжение через дробь, то есть 220/380 вольт или 127/220 вольт.
Двухскоростные электродвигатели с полюсно — переключаемыми обмотками работают по принципу амплитудно-фазовой модуляции, а обмотки соединяются тройной звездой.
У четырех скоростных электродвигателей, которые имеют две независимые обмотки, и каждая из них полюсно – переключаемая соединяются треугольником и двойной звездой.
Этому не учат, а стоило бы. Чем отличается звезда от треугольника? #звезда #треугольник #двигатель
Стоит также отметить то факт, что соединение «треугольник» можно на время пуска переключать в звезду для уменьшения пускового тока используя специальное пусковое реле.
Устройства ввода. Соединение обмоток у электродвигателя.
У некоторых серий трехфазных электродвигателей клеммные коробки или борно располагаются сверху корпуса двигателя и допускают разворот с фиксацией на 180 градусов. Конструкция вводных коробок разработана с таким расчетом, чтобы возможно было присоединять кабеля с алюминиевыми или медными жилами с оболочкой, изготовленной из резины или поливинилхлорида, а также провода находящиеся в гибком металлическом рукаве. Ввод жил производится через один или два штуцера предусмотренных во вводной коробке, или через специальный удлинитель, который предусмотрен для сухой разделки кабеля.
Вводные коробки для двигателей выпускаются различных исполнений и маркируются следующим образом:
Вводная коробка с клеммной панелью выводов и предусмотренным одним штуцером в исполнении К3I. Вводная коробка, имеющая клеммную панель для выводов и два штуцера в исполнении К3II. Вводная коробка, имеющая клеммную панель для выводов и имеющимся удлинителем в исполнении К3М. Вводная коробка, не имеющая клеммной панели для выводов с предусмотренным одним штуцером в исполнении К2I. Вводная коробка, выполненная без клеммной панели с имеющимися двумя штуцерами в исполнении К2II.
В борне электродвигателя к внутренней стороне клеммной панели присоединяются выводные провода статорных обмоток электродвигателя двигателя. Все выводы статорных обмоток и болты для крепления этих выводов маркируются в соответствии с ГОСТ 26772 (МЭК 60034-8). На таких клеммных панелях и производится необходимое закрепление обмоток.
Лекция №13.. Обмотка статора может быть соединена звездой или треугольником
Обмотка статора может быть соединена звездой или треугольником. Схема соединения зависит от расчётного напряжения двигателя и номинального напряжения в сети.
Допустим линейное напряжение , а двигатель рассчитан для включения в сеть с напряжением , тогда обмотку статора следует соединять звездой, так как в этом случае , то есть , а .
Если же , то обмотку статора следует соединить треугольником. В этом случае .
Для осуществления таких соединений на корпусе двигателя имеется клеммная коробка, куда выведены начала и концы фаз.
Формула для нахождения частоты вращающегося поля.
Пусть на статоре всего три катушки.
Рассмотрим момент , при котором , в этом случае ток положителен, а токи и отрицательны. Если ток положителен, его направление примем от начала обмотки к её концу.
Для определения направления поля применяется правило правоходового винта.
Вектор магнитного поля направлен от северного полюса к южному полюсу . Если на статоре три катушки, то образуется одна пара полюсов, то есть .
Через время, равное периоду ось поля займёт первоначальное положение, следовательно, за период поле делает один полный оборот. Так как , следовательно, .
Частота — число полных колебаний или оборотов в секунду.
Чаще частоту вращения поля выражают в оборотах в минуту: .
Если число катушек в каждой фазе увеличить, а сдвиг фаз между токами оставить равным , то частота вращения поля измениться: .
Зависимость частоты вращения поля от числа катушек:
Число катушек в статоре | |||||
Число пар полюсов | |||||
Угол в пространстве между катушками | 120° | 60° | 40° | 30° | 24° |
Частота вращения поля |
ЭДС статора и неподвижного ротора. Режим холостого хода.
Обмотка ротора разомкнута. Ток в ней равен нулю. Вращающий момент также равен нулю, то есть ротор остаётся неподвижным. Частота индуцированной ЭДС в обмотке ротора равна частоте питающей сети. При этом магнитный поток, пронизывающий каждый виток в обмотке статора и ротора, меняется по синусоидальному закону: . Действующее значение ЭДС, которая индуцируется в каждом витке, по аналогии с трансформатором можно найти по формуле . ЭДС, которая индуцируется в обмотке статора, можно приблизительно найти по формуле: , а ЭДС, которая индуцируется в обмотке неподвижного ротора, приблизительно определяется по следующей формуле: .
Ток в обмотке ротора также будет равен нулю, если обмотка замкнута, а скорость вращения ротора достигнет . Такой режим называется режимом идеального холостого хода. При этом в обмотке статора также протекает ток , который достигает 20-40 процентов от номинального тока.
ЭДС вращающегося ротора.
Если обмотку фазного ротора замкнуть накоротко или на какое-либо сопротивление, то по ней потечёт ток , что приведёт к возникновению силы, действующей на проводник с током, то есть ротор будет разгоняться и при полной или номинальной нагрузке величина скольжения станет равной 2-8 процентам.
Определим частоту тока в обмотках вращающегося ротора:
Таким образом, во вращающемся поле .
Если частота сети , а величина скольжения лежит в пределах , то при номинальной нагрузке .
ЭДС, которая возникает в подвижном роторе можно определить по следующей формуле: , где — ЭДС, возникающая в неподвижном роторе. Таким образом, ЭДС во вращающемся роторе значительно меньше ЭДС в неподвижном роторе.
Токи ротора, помимо участия в создании общего магнитного потока, образуют также токи рассеивания. Следовательно, возникает ЭДС рассеивания. Действие этой ЭДС учитывается следующим образом: . Можно записать выражение для тока во вращающемся роторе: , где — активное сопротивление обмотки ротора.
В момент пуска двигателя величина скольжения равна 1, а ток достигает своего максимального значения, и становится равен пусковому току . Обмотка ротора электрически не связана с внешней цепью. Ток в ней появляется за счёт наведённых ЭДС, поэтому уравнение напряжений для цепи вращающегося ротора будет иметь следующий вид: .
Уравнение напряжение обмотки статора совпадает с уравнением напряжения для обмотки трансформатора: . Уравнение токов обмотки статора также аналогично уравнению токов обмотки трансформатора: .
Действительную цепь вращающегося ротора заменяют энергетически эквивалентной цепью заторможенного (неподвижного) ротора с частотой . При этом ток и мощность, потребляемые двигателем из сети, а также электромагнитная мощность, передаваемая ротору, остаются неизменными, поэтому можно изобразить схему замещения эквивалентного неподвижного ротора.
Механическая нагрузка асинхронного двигателя при анализе условно заменяется эквивалентной электрической нагрузкой, включённой в сеть ротора. Если сделать привидение параметров обмотки ротора к числу витков статора, то получается полная схема замещения одной фазы трёхфазного асинхронного двигателя.
В электрическом отношении асинхронный двигатель подобен трансформатору, работающему на чисто активную нагрузку.
Электрические потери – потери в обмотках.
Электрические потери в обмотках статора можно определить по следующей формуле: .
Электрические потери в обмотке ротора определяются по формуле: .
Тепловые потери в сопротивлении равны магнитным потерям в стальном магнитопроводе статора, то есть .
Тепловые потери в сопротивлении числено равны электрической энергии фактически преобразованной в механическую работу, то есть: .
От статора к ротору передаётся электромагнитная мощность, которую можно определить по формуле: .
Возьмём отношение: , следовательно, .
Потери в цепи ротора прямо пропорциональны скольжению, поэтому двигатели с большими номинальными скольжениями имеют большие потери, а следовательно низкий КПД.
Электромагнитный вращающий момент.
Механическую работу можно найти по формуле: . Кроме того, эту работу можно найти следующим образом: , где . Если приравнять да этих выражения, получим следующее выражение для момента: . Если это выразить через напряжение с учётом упрощённой схемы замещения и выразить ток через напряжение на фазе, то можно получить следующее выражение для момента: . При заданном значении напряжения на фазе, вращающий момент двигателя зависит только от скольжения или от скорости вращения ротора , так как .
Задаваясь различными значениями величины скольжения в пределах от 0 до 1, пользуясь полученной формулой можно построить зависимость .
— максимальный (критический) момент.
, — номинальные момент и скольжение, когда двигатель работает при полной нагрузке.
— момент при пуске.
С помощью этого графика, учитывая соотношение , строят зависимость .
Эти зависимости и называют механическими характеристиками двигателя.
Вращающий момент и скольжение соответствующие работе двигателя при полной нагрузке называются номинальными моментом и скольжением.
Естественные механические характеристики – механические характеристики, построенные для случая, когда напряжение на зажимах двигателя равно номинальному, и в цепях двигателя отсутствуют какие-либо добавочные сопротивления.
Реостатные механические характеристики – механические характеристики, полученные при включении реостата в цепь фазного ротора.
Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:
Запуск электродвигателя по схеме «звезда-треугольник»
Практически любое производство в наши дни не обходится без мощного асинхронного электродвигателя. При запуске такого двигателя пусковой ток в 3-8 раз превышает значение номинального тока, необходимого для работы в нормально-устойчивом режиме. Большой пусковой ток необходим для того, чтобы раскрутить ротор из состояния покоя. Для этого необходимо приложить гораздо больше усилий, чем для дальнейшего поддержания постоянного числа оборотов в заданный промежуток времени. Значительные величины пусковых токов у асинхронных двигателей являются весьма нежелательным явлением, поскольку это может приводить к кратковременной нехватке энергии для другого подключенного к этой же сети оборудования (падению напряжения). Масса примеров такого влияния встречается как на производстве, так и в быту. Первое, что вспоминается — это «мигание» электрической лампочки при работе сварочного аппарата, но бывают случаи серьезнее: просадка напряжения может стать причиной бракованной партии товара на производстве, что ведет к большим финансовым и трудовым затратам. Большой пусковой ток также может вызвать ощутимые тепловые перегрузки обмотки электродвигателя, в результате чего происходит старение изоляции, ее повреждение и в конечном итоге может произойти сгорание двигателя. Все это послужило мотивом для поиска решения по минимизации токов пуска. Одним из таких решений является метод запуска двигателя по схеме «звезда-треугольник». Для начала разберемся что же такое «звезда», а что — «треугольник», и чем они отличаются друг от друга. Звезда и треугольник являются самыми распространенными и применяемыми на практике схемами подключения трехфазных электродвигателей. При включении трехфазного электродвигателя «звездой» (см. Рисунок 1) концы обмоток статора соединяются вместе, соединение происходит в одной точке, называемой нулевой точкой или нейтралью. Трехфазное напряжение подается на начало обмоток. При соединении обмоток статора «звездой», соотношение между линейным и фазным напряжениями выражается формулой:
U л = U ф ⋅ 3 U _л= U _ф cdot sqrt
где:
Uл — напряжение между двумя фазами;
Uф — напряжение между фазой и нейтральным проводом;
Значения линейного и фазного токов совпадают, т. е. Iл = Iф. При включении трехфазного электродвигателя по схеме «треугольник» (см. Рисунок 2) обмотки статора электродвигателя соединяются последовательно. Таким образом, конец одной обмотки соединяется с началом следующей, напряжение в этом случае подается на точки соединения обмоток. При соединеии обмоток статора «треугольником» напряжение на фазе равно линейному напряжению между двумя проводами: Uл = Uф. Однако ток в линии (сети) больше, чем ток в фазе, что описывается формулой:
I л = I ф ⋅ 3 I _л=I _ф cdot sqrt
где:
Iл — линейный ток;
Iф — фазный ток. Получается, что соединяя обмотки «звездой», мы уменьшаем линейный ток, чего изначально и добивались. Но есть и обратная сторона этой схемы: как мы видим из формулы, пусковой момент двигателя прямо пропорционален фазному напряжению:
M n = m ⋅ U 2 ⋅ r 2 ´ ⋅ p 2 ⋅ π ⋅ f ( ( r 1 + r 2 ´ ) 2 + ( x 1 + x 2 ´ ) 2 ) M _n = < m cdot U^2 cdot acute r_2 cdot p >over < 2 cdot %pi cdot f( ( r _1 + acute r _2 )^2 + ( x_1 + acute x_2 )^2 )>
где:
U — фазное напряжение обмотки статора;
r1 — активное сопротивление фазы обмотки статора
r2 — приведенное значение активного сопротивления фазы обмотки ротора;
x1 — индуктивное сопротивление фазы обмотки статора;
x2 — приведенное значение индуктивного сопротивления фазы обмотки неподвижного ротора;
m — количество фаз;
p — число пар полюсов. Чтобы было нагляднее, давайте рассмотрим пример: предположим, что рабочей схемой обмотки асинхронного электродвигателя является «треугольник», а линейное напряжение питающей сети равно 380 В, сопротивление обмотки статора Z = 10 Ом. Если обмотки во время пуска подключены «звездой», то уменьшатся напряжение и ток в фазах:
U ф = U л 3 = 380 3 = 220 В U _ф= over < sqrt> = over =220В
Фазный ток равен линейному току и равен:
I ф = I л = U ф Z = 220 10 = 22 A I _ф=I _л= over = over =22A
После того, как двигатель набрал необходимые обороты, т. е. разогнался, переключаем обмотки со «звезды» на «треугольник», в этом случае получаем совершенно другие значения тока и напряжения:
U ф = U л = 380 B U _ф=U _л =380B
I ф = U ф Z = 380 10 = 38 A I _ф = over = over =38A
I л = 3 ⋅ I ф = 3 ⋅ 38 = 65 ,8 A I _л= sqrt <3>cdot I _ф=sqrt <3>cdot38=65,8A
Соответственно, при пуске двигателя по схеме «звезда», фазное напряжение в √3 раз меньше линейного, а по схеме «треугольник» — они равны. Отсюда следует, что момент при пуске по схеме «звезда» в 3 раза меньше, а значит, запуская двигатель по этой схеме, мы не сможем добиться выхода двигателя на номинальную мощность. Решая одну проблему возникает вторая, не менее острая, чем повышенные пусковые токи. Но единое решение все-таки есть: необходимо скомбинировать схемы подключения двигателя так, чтобы при пуске мощного двигателя не было больших токов в сети, а после того, как двигатель выйдет на необходимые для его работы обороты, происходит переключение на схему «треугольник», что позволяет работать со 100% нагрузкой без каких-либо проблем. С поставленной задачей прекрасно справляется реле времени Finder 80.82. При подаче питания на реле, мгновенно замыкается контакт, который отвечает за подключение по схеме «звезда». После заданного промежутка времени, на котором обороты двигателя достигают рабочей частоты, контакт схемы «звезда» размыкается и замыкается контакт, который отвечает за подключение по схеме «треугольник». Контакты останутся в таком положении до снятия питания с реле. Наглядная диаграмма работы данного реле представлена на Рисунке 3. Рассмотрим более подробно реализацию данной схемы на практике. Она применима только для двигателей, у которых на шильдике указано «Δ/Y 380/660В». На Рисунке 4 представлена силовая часть схемы «звезда-треугольник», в которой используется три электромагнитных пускателя.
Как было описано ранее, для управления переключением со схемы «звезда» на схему «треугольник» необходимо воспользоваться реле Finder 80.82. На Рисунке 5 представлена схема управления с помощью данного реле.
Разберем алгоритм работы данной схемы: После нажатия кнопки S1.1, запитывается катушка пускателя КМ1, в результате чего, замыкаются силовые контакты КМ1 и при помощи дополнительного контакта КМ1.1 реализуется самоподхват пускателя. Одновременно подается напряжение на реле времени U1. Замыкаются контакты реле времени 17-18 и включается пускатель КМ2. Таким образом, происходит запуск двигателя по схеме «звезда». По истечении времени Т (см. Рисунок 3), контакт реле времени 17-18 мгновенно разомкнется, пройдет задержка времени Tu, и замкнется контакт 17-28. Вследствие чего, сработает пускатель КМ3, который осуществляет переключение на схему «треугольник». Нормально замкнутые контакты пускателей КМ2.2 и КМ3.2 используется для предотвращения одновременного включения пускателей КМ2 и КМ3. Чтобы защитить двигатель от перегрузки, в силовой цепи установлено тепловое реле КК1. В случае перегрузки, тепловое реле разомкнет силовую цепь и цепь управления через контакт КК1.1. Остановка двигателя происходит при нажатии кнопки S1.2, которая разрывает цепь самоподхвата и обесточит катушку пускателя КМ1. Обобщая написанное, можно сделать вывод, что для облегчения пуска мощного электродвигателя, рекомендуется изначально запускать его по схеме «звезда», что позволяет значительно снизить пусковые токи, уменьшить просадку напряжения в сети, но не позволяет двигателю выйти на номинальный режим работы. Для выхода двигателя на номинальный режим необходимо осуществить переключение обмоток статора на схему «треугольник». Схема переключения обмоток со «звезды» в «треугольник» реализована с помощью реле времени Finder 80.82, в котором устанавливается время разгона электродвигателя.
- ГОСТ 11828-86 «Определение вращающих моментов и пусковых токов».
- Вешеневский С. Н. Характеристики двигателей в электроприводе. // Издание 6-е, исправленное — Москва, Издательство «Энергия», 1977
- Войнаровский П. Д. Электродвигатели // Энциклопедический словарь Брокгауза и Ефрона: в 86 т. (82 т. и 4 доп.) — СПб., 1890—1907
- Статья «Запуск асинхронного электродвигателя по схеме «Звезда-треугольник» номиналом 30 кВт с использованием реле времени Finder 80.82» в pdf-формате — 1,37 МБ
Практическое применение
Практическое применение схем соединения обмоток трехфазных асинхронных двигателей играет важную роль для электриков, работающих с электрическими сетями напряжением 220/380 вольт. Давайте рассмотрим, как выбрать правильную схему соединения обмоток при подключении электродвигателя к такой сети.
Сами трехфазные асинхронные двигатели можно условно разделить на две большие группы: с возможностью изменения схемы соединения обмоток и без этой возможности.
В первом случае на клеммниках внутри электродвигателя присутствуют 6 проводов, и в зависимости от напряжения в электрической сети, к которой он подключается, можно выбрать нужную схему соединения обмоток. Обмотки электродвигателей могут быть подключены в разные схемы с использованием медных шинок или перемычек из провода. Клеммы на двигателе размещены таким образом, что с помощью всего трех перемычек можно настроить нужную схему подключения.
Важно соблюдать соответствие начал и концов обмоток клеммам, а также правильное положение перемычек между клеммами, чтобы выбрать нужную схему подключения — звезду или треугольник.
Хотя эта информация должна быть известна каждому электрику, производители часто облегчают задачу, нанося на крышку этикетку с указанием положения перемычек для каждой из схем.
Перемычка на клеммной колодке при схеме подключения Звезда
Перемычка на клеммной колодке при схеме подключения Треугольник
Какую схему выбрать и какая лучше?
Выбор схемы подключения обмоток трехфазного двигателя — звезда или треугольник — зависит от напряжения в электрической сети. Важно понимать, что возможность изменения схемы соединения обмоток предназначена для адаптации двигателя к различным электрическим сетям с разным напряжением.
Какую схему выбрать?
Вопрос не имеет однозначного ответа, так как необходимо выбирать схему, учитывая номинальное напряжение в электросети. Эта информация обычно указана на шильдике электродвигателя.
Если на шильдике указано, например, «Δ/Y 220/380», это означает, что при линейном напряжении в питающей сети 220 Вольт обмотки следует соединить треугольником, а при 380 Вольтах — звездой. Если вы подключаете двигатель к однофазной сети 220 Вольт с использованием конденсаторов, обмотки также соединяются треугольником.
Если на шильдике указано только одно напряжение и символ схемы (например, «Δ» или «Y»), это означает, что нет возможности изменить схему соединения обмоток, и она задана жестко.
Соединение обмоток электродвигателя: звезда и треугольник
Асинхронные двигатели имеют множество преимуществ, среди которых можно выделить высокий уровень производительности, надежность эксплуатации, сравнительно невысокую стоимость, невысокие требования в обслуживании и при ремонте. К тому же асинхронные двигатели достаточно хорошо переносят механические нагрузки. Все перечисленные преимущества обусловлены простотой конструкции. Но, несмотря на широкий ряд достоинств можно выделить и некоторые слабые стороны. На практике при подключении двигателя можно применить один из двух трехфазных способов соединения с электросетью. К таковым способам относят подключение по типу «звезда» или по типу «треугольник». При соединении трехфазного двигателя способом «звезда» соединение концов обмоток статора производится в одной точке. Трехфазное напряжение, в этом случае, подается на начала обмоток.
При выполнении соединения трехфазного двигателя способом «треугольник» обмотки статора присоединяют друг за другом в последовательном порядке. Начало следующей обмотки соединяют с концом предыдущей и т. д. Если провести практический анализ теоретических и технических основ электротехники, то становится ясно, что электродвигатели, работающие от схемы «звезда» в эксплуатации запускаются более плавно и функционируют мягче сравнительно с двигателями, подключенными по схеме «треугольник». Но, в то же время асинхронные двигатели с обмотками соединенными способом «треугольник» набирают значительно большую мощность. При соединении звездой такого не достичь. При соединении «треугольник» электродвигатель способен функционировать на максимальной мощности, заявленной в технических характеристиках. Следует учесть, что пусковые токи здесь будут иметь высокие значения. Если сравнивать работу электродвигателей подключенных по разным схемам, можно сделать вывод, что при треугольнике мощность выдается на полтора раза выше, чем при подключении звездой. Беря за основу вышеизложенную информацию, для снижения токов при запуске логично применять соединение обмоток в комбинационной схеме «звезда-треугольник». Данный вид подключения особенно актуален для асинхронных двигателей с высокой мощностью. При использовании схемы «звезда-треугольник» непосредственный запуск происходит по типу «звезда», а после того как набраны обороты происходит автоматическое переключение на схему «треугольник».
Также можно использовать еще одну схему управления асинхронным двигателем, которая заключается в следующем.
На контакт NC (нормально замкнутый) реле времени K1, а также на контакт NC реле K2, в цепи катушки пускателя КЗ, происходит подача напряжения питания. После включения пускателя КЗ нормально закрытыми контактами КЗ происходит расцепление цепи катушки пускателя К2. Контакт К3 в цепи питания катушки пускателя К1 замыкается. При запуске магнитного пускателя К1, в цепи питания его катушки замыкают контакты К1. В этот же период включается реле времени. Контакт данного реле К1 в цепи катушки пускателя К3 размыкается. А в цепи катушки пускателя K2 – замыкается. Во время отключения обмотки пускателя К3 произойдет замыкание контакта К3 в цепи К2. При включении К2 произойдет размыкание цепи питания катушки пускателя К3. Трёхфазное напряжение питания будет подано на начало каждой обмотки W1, U1 и V1 за счет силовых контактов пускателя К1. После срабатывания магнитного пускателя К3, за счет его контактов произойдет замыкание, затем между собой должны соединиться концы каждой обмотки двигателя W2, V2 и U2. Так происходит подключение обмоток по типу «звезда». Спустя некоторый промежуток времени произойдет срабатывание реле времени с магнитным пускателем К1, затем отключится магнитный пускатель К3 и включится К2. Силовые контакты К2 замкнутся и питание пойдет на концы каждой обмотки двигателя. Двигатель заработает по схеме «треугольник». Для запуска электродвигателя по типу «звезда-треугольник» у разных производителей выполнены специальные пусковые реле. Типовую схему запуска «звезда-треугольник» рассмотрите на рисунке ниже.
Для снижения пусковых токов электродвигатель должен запускаться в определенной последовательности:
- На пониженных оборотах по типу соединения «звезда»;
- Переход на схему «треугольник».
Первоочередный пуск по типу «треугольник» создает максимальную нагрузку, а следующее соединение «звезда» с меньшим пусковым моментом продолжит работу в номинальном режиме. При наборе оборотов двигателя автоматически осуществится переход на соединение «треугольник». Важно понимать, что нагрузка, созданная перед запуском на валу, скажется на ослаблении при соединении схемой «звезда». Исходя из этого маловероятно, что такой способ запуска подойдет для двигателей с высокой нагрузкой, ведь при таких условиях они утрачивают работоспособность.
В качестве заключительного аккорда рассмотрим основные преимущества и недочеты каждого из способов подключения.
Преимущества подключения по типу «звезда»:
- Устойчивость и возможность эксплуатации двигателя длительное время;
- Высокий уровень надежности долговечности благодаря сниженной мощности электродвигателя;
- Максимально плавный запуск электропривода;
- Возможный допуск кратковременных перегрузок;
- Исключен перегрев корпуса двигателя.
Есть типы оборудования, у которого концы обмотки соединены внутри. К колодке подводятся лишь три вывода, и использовать другой вид подключения нет возможности. Электроустановки такого типа не требуют работы узкого специалиста для соединения.
Преимущества подключения электродвигателя по типу «треугольник»:
- Возможность увеличения до максимальных показателей уровня мощности электродвигателя;
- Применение реостата для запуска;
- Повышение вращающегося момента;
- Высокие усилия тяги.
Отдельное внимание следует уделить и недостаткам:
- Высокое потребление электроэнергии при пуске;
- Перегрев двигателя в условиях длительной эксплуатации.
Основные преимущества комбинации:
- Значительное продление срока эксплуатации электроустановки;
- Плавный запуск;
- Исключение возникновения неравномерных нагрузок;
- Сохранение механических элементов двигателя;
- Наличие двухуровневой мощности.
Для соединений обмоток асинхронных двигателей необходимо использовать специальные термостойкие колодки. Компания «Термоэлемент» предлагает специально разработанные моторные колодки из стеатита для электродвигателей, которые предназначены именно для работы с данными электротехническими устройствами. Клеммные колодки со стеатитовым корпусом легко выдерживают температурную нагрузку до 800°С даже при длительной эксплуатации. У нас вы можете купить клеммные колодки в любом количестве и для любых высокотемпературных применений.
Соединение выводов обмотки статора
Выводы обмотки статора соединяют звездой или треугольником для того, чтобы двигатель можно было подключить к двум разным напряжениям.
Обмотка статора рассчитана на фазное напряжение, напряжение в сети – это линейное напряжение. Если обмотку статора соединить треугольником, то к двигателю придет то же напряжение, что и в сети. Если обмотку статора соединить звездой, то на фазу двигателя придет напряжение на √3 меньше чем напряжение в сети.
Соединение звездой Υ. Uаb, Ubc, Uac- линейные напряжения, напряжения приложенные между разными фазами.
Ua Ub Uc- фазные напряжения- напряжения, приложенные между началом
и концом одной фазы (рис.8.1).
Рис.8.1 Соединение обмоток статора звездой.
Рис.8.2 Соединение обмоток статора треугольником.
Пример: Эл. двигатель рассчитан на напряжение 220/380в.
Как необходимо соединить выводы обмотки при подключении к сети а)220в
Решение: Напряжение сети – это линейное напряжение. Напряжение на двигателе — фазное. Фазным является меньшее напряжение, указанное на двигатели, второе U указывают для того, чтобы знать к каким двум напряжениям можно подключить данный двигатель, но на фазу в любом случае придёт одно и тоже U. В данном примере Uф=220в (меньшее)
studopedia.org — Студопедия.Орг — 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.009 с) .
Соединение «треугольником» и его преимущества
Принцип соединения «треугольник» заключается в последовательном соединении конца обмотки фазы А с началом обмотки фазы В. И дальше по аналогии – конец одной обмотки с началом другой. В итоге конец обмотки фазы С замыкает электрическую цепь, создавая неразрывный контур. Данную схему можно назвать было кругом, если бы не структура монтирования. Форму треугольника предает эргономичное размещение соединения обмоток.
При соединении «треугольником» на каждой из обмоток, присутствует линейное напряжение равное 220В или 380В.
Основные преимущества применения схемы «треугольник»:
- Увеличение до максимального значения мощности электрооборудования;
- Использование пускового реостата;
- Повышенный вращающийся момент;
- Большие тяговые усилия.
Недостатки:
- Повышенный ток пуска;
- При длительной работе двигатель сильно греется.
Метод соединения обмоток двигателя «треугольником» широко используется при работе с мощными механизмами и наличия высоких пусковых нагрузок. Большой вращающий момент создается за счет увеличения показателей ЭДС самоиндукции, вызванных протекающими большими токами.
Подключение трехфазного двигателя к однофазной сети по схеме треугольник
Тип соединения «звезда-треугольник»
В сложных механизмах, зачастую используется комбинированная схема «звезда-треугольник». При таком переключении резко вырастает мощность, и если двигатель по техническим характеристикам не предназначен для работы по методу «треугольника», то он перегреется и сгорит.
Двигатели с повышенной мощностью обладают большими пусковыми токами, и как следствие при пуске часто вызывают перегорание предохранителей, отключению автоматов. Для снижения линейного напряжения в обмотках статора применяют автотрансформаторы, универсальные дросселя, пусковые реостаты или соединение типа «звезда».
Схемы подключения звездой и треугольником
В этом случае напряжение на соединении каждой обмотки будет в 1,73 раза меньше, следовательно, будет меньше и протекающий в этот период ток. Дальше происходит увеличение частоты и продолжение снижения показания тока. Тогда применяя релейно-контактную схему, произойдет переключение со «звезды» на «треугольник».
В итоге, используя данную комбинацию, получим максимальную надежность и эффективную продуктивность используемого электрического оборудования, не боясь вывести ее из строя.
Переключение «звезда-треугольник» допустимо для электродвигателей с облегченным режимом пуска. Этот метод неприменим, если необходимо понизить ток пуска и одновременно не снижать большой пусковой момент. В этом случае применяют двигатель с фазным ротором с пусковым реостатом.
Основные преимущества комбинации:
- Увеличение срока службы. Плавный пуск позволяет избежать неравномерности нагрузки на механическую часть установки;
- Возможность создания двух уровней мощности.