Лабораторный блок питания какой выбрать

Лабораторный блок питания какой выбрать

Выбор лабораторного блока питания — задача с которой рано или поздно сталкивается практически каждый электронщик и задача это не простая. Для облегчения выбора лабораторного блока питания в данной статье описываются преимущества и недостатки основных типов лабораторных блоков питания и их параметров. Предполагается, что лабораторный блок питания имеет режимы стабилизации напряжения и тока, иначе такой блок питания пожалуй не является лабораторным.

Для начала определимся с понятиями, под импульсными будут иметься лабораторные блоки питания у которых регулировка выходного напряжения и тока обеспечивается посредством широтно-импульсной модуляции (ШИМ) у линейных – посредством линейного регулирующего элемента, как правило биполярного транзистора.

Преимущества импульсного блока питания:

  • малые габариты и вес;
  • как правило большой выходной ток;
  • относительно меньшая стоимость;
  • высокий КПД.

Недостатки импульсного блока питания:

  • относительно высокие пульсации выходного напряжения/тока;
  • наличие существенных электромагнитных помех (свойственно дешевым «китайским» блокам питания);
  • малое быстродействие (далее будет описано подробно).

Преимущества линейных блоков питания:

  • малые пульсации выходного напряжения и тока;
  • высокое быстродействие.

Недостатки линейных блоков питания:

  • большие габариты и вес;
  • относительно небольшой выходной ток (как правило не более 5А);
  • низкий КПД.

С такими параметрами как габариты, вес и КПД и так все понятно, тут выбор скорее дело вкуса и наличия свободного места на рабочем столе, а вот относительно пульсаций, помех и быстродействия рассмотрим подробнее.

Итак у импульсных блоков питания регулирование уровня выходного напряжения (тока) осуществляется изменением заполнения ШИМ (резонансные источники питания не рассматриваем т.к. они имеют малый диапазон регулирования) т.е. длительностью импульса, для того что бы на выходе получить «ровное» напряжение используются LC или C фильтры, причем чем больше емкость конденсатора фильтра, тем ниже пульсации.

Таким образом, чтобы получить низкие пульсации напряжения (тока) требуются конденсаторы относительно большой емкости (как правило на уровне 1000-2000 мкФ). Конечно если значительно увеличить частоту ШИМ, то емкость конденсаторов можно уменьшить, но тогда значительно возрастут потери от переключения транзисторов и преимущества импульсного блока питания сойдут на нет.

Большая емкость на выходе лабораторного блока питания нежелательна из соображений защиты устройства, которое питается от блока питания ведь разряд этой емкости в случае перегрузки по току происходит на нагрузку, и не смотря на наличие у блока питания режима стабилизации тока устройство может выйти из строя.

Кроме того из-за большой емкости на выходе «время реакции» блока питания намеренно завышается, из-за чего при подключении значительной нагрузки могут наблюдаться существенные провалы напряжения, а при отключении всплески (выбросы). Провалы напряжения не так страшны, а вот выбросы напряжений могут оказать негативное влияние на питаемое устройство.

Нюансы выбора лабораторного источника питания

Для лучшего понимания вышеизложенного рассмотрим простейший случай питания светодиода от лабораторного блока питания. Допустим номинальный ток светодиода 20мА, падение напряжения 2В, так вот если мы выставим на блоке питания ограничение тока 20мА, а напряжение хотя бы 5В, то при подключении к импульсному источнику питания с большой емкость на выходе светодиод скорее всего сгорит т.к. выходной конденсатор, заряженный до 5В, будет разряжаться на светодиод неконтролируемым током. Конечно можно заранее установить заведомо меньшее напряжение, но лабораторный блок питания на то и лабораторный, что бы выручать электронщика в нештатных ситуациях. Тоже касается и неправильного подключения плюс/минус. В случае импульсного блока питания выходной конденсатор будет разряжаться неконтролируемым током на устройство и большой вероятностью повредит его.

В линейных блоках питания на выходе устанавливается относительно небольшая емкость ( на уровне 10-100 мкФ) и нужна она скорее не для стабилизации выходного напряжения, а для обеспечения устойчивости контуров стабилизации тока и напряжения.

Линейный лабораторный блок питания с маленькой емкостью на выходе более шустрый и с большой вероятностью спасет Ваше устройство при нештатных ситуациях.

Пульсации выходного напряжения (тока) импульсного блока питания обычно больше, чем у линейного, но справедливости ради следует заметить, что даже уровня пульсации импульсного блока питания достаточно для подавляющего числа устройств, так что это скорее не недостаток, а особенность.

Рассмотрим вопрос электромагнитных помех импульсного источника питания, некоторые электронщики убеждены, что абсолютно все импульсные источники питания «шумят» и не годятся для питания скажем устройств аудиотехники.

Это не совсем так, конечно помехи свести к нулю не возможно, но помехи качественно спроектированного импульсного источника питания незначительны и не оказывают влияния на подавляющее большинство потребителей, кроме того помехи источников питания различных приборов как то паяльная станция или люминесцентный светильник, могут быть больше чем помехи от блока питания. Поэтому не стоит заведомо «ставить крест» на импульсных источниках питания, просто к их выбору нужно подходить более тщательно.

При значительных преимуществах линейных источников питания имеют они и существенный недостаток — относительно малый выходной ток, как правило максимальный выходной ток линейных источников питания составляет 5А. Связано это с большими потерями на регулирующем элементе.

Кроме чисто импульсных и линейных блоков питания бывают лабораторные блоки питания с комбинированным регулированием, в частности лабораторный блок питания PS-3010PL3. В данном блоке питания используется двойное регулирование напряжения, напряжение сначала снижается импульсным стабилизатором до напряжения на 1-2В выше требуемого выходного напряжения, а затем контуром линейного стабилизатора напряжения снижается до требуемого, такое решение позволяет обеспечить высокое быстродействие контура стабилизации и высокий выходной ток (до 10А). Выходные пульсации такого блока питания чуть выше чем у традиционного линейного блока питания, но ниже чем у традиционного импульсного блока питания.

Диапазон выходного напряжения и тока, количество каналов

Наиболее распространены лабораторные блоки питания с максимальным выходным напряжением 18, 30, 60 В и максимальным выходным током 3, 5, 10А. При выходных токах более 10А градация как правило произвольная.

Выбор диапазона напряжения и тока лабораторного блока питания зависит от выполняемых задач, так для питания низковольтных устройств на микроконтроллерах достаточно 18В блока питания.

Если Вы еще только начинаете осваивать электронику и не можете предугадать какие устройства в будущем будет собирать и отлаживать, то при наличии бюджета лучше сделать выбор лабораторного блока питания на 30В, при ограниченном бюджете подойдет и 18В блок питания, в будущем его можно использовать как дополнительный или резервный блок питания если потребуется приобрести блок питания на 30 или 60В.
С максимальным выходным напряжением разобрались, теперь рассмотрим какой нам нужен выходной ток.

Для большинства случаев выходного тока 5А более чем достаточно, но если Вы занимаетесь например автомобильной электроникой, то не лишним будет иметь блок питания с выходным током до 10-20А. Лабораторный блок питания с выходным током до 3А подойдет если Вы не планируете отлаживать относительно мощных устройств, например ограничиваетесь программированием микроконтроллеров.

При выборе лабораторного блока питания также следует обратить внимание на точность и дискретность измерения выходного тока, большинство бюджетных блоков питания имеют дискретность измерения тока 10 мА, чего может оказаться недостаточным для отладки маломощных устройств, устройств с батарейным питанием.

Сколько же каналов должен иметь лабораторный блок питания ? Наиболее распространены одноканальные блоки питания, но если Вы планируете заниматься аудиотехникой, то желательно иметь двуканальный блок питания, допускающий последовательное соединение каналов, что позволит получать двуполярное напряжение питания.

Двух канальные лабораторные блоки питания также могут быть удобны при одновременной отладке нескольких устройств или устройств с множеством вторичных источников питания, но многоканальные блоки питания значительно дороже одноканальных и для питания относительно маломощных устройств может оказаться проще собрать самостоятельно дополнительный маломощный источник питания, например на 5 или 3,3В выходного напряжения и 1-2А выходного тока.

Как выбрать прибор

В отличие от первичных источников питания, предназначенных для перевода неэлектрической энергии в электроэнергию (например, солнечная батарея), лабораторный источник питания относится к вторичным, позволяющим преобразовать электроэнергию с целью обеспечения требуемых параметров (блок питания ПК, трансформатор, стабилизатор напряжения).

Лабораторный БП может быть линейным или импульсным. В основе приборов первого типа — трансформатор, работающий на низких частотах. Он понижает стандартное напряжение из электросети (220 В) до нескольких десятков вольт при сохранении частоты в 50 Гц. После этого диодный мост выпрямляет и сглаживает напряжение конденсаторами, выполняется окончательное снижение вольтажа стабилизатором до необходимого значения.

Линейный блок питания также называют регулируемым, поскольку он позволяет получать постоянный результат напряжения на выходе вне зависимости от изменений параметров при работе с переменным током. Это полезная функция для восстановления работоспособности аккумуляторов портативных устройств при нахождении в разряженном состоянии в течение длительного времени, а также для зарядки мобильных гаджетов.

Импульсный БП функционирует по принципу заряда импульсами тока сглаживающих конденсаторов. Главные достоинства такого типа приборов по сравнению с линейными — небольшой вес и КПД, превышающий 80 % за счет поступления в конденсаторы точного количества требуемой для работы БП энергии.

Важный параметр при выборе эффективного БП — диапазон напряжения и тока на выходе прибора. Устройства с автоограничением выходных параметров эффективнее приборов с постоянным диапазоном ввиду отсутствия ограничений по предельной мощности, вырабатываемой блоком питания.

В быту обычно не требуется источник повышенной мощности, вырабатывающий более 700 Вт. Диапазон регулировки напряжения и тока в моделях стандартной мощности: 15-150 В, 1-25 А. Этого достаточно для решения повседневных задач.

Лабораторные БП могут содержать от 1 до 3 каналов. Большинство из них — одноканальные. Два или три канала применяются в специальных приборах, использующихся для компоновки схем с несколькими питающими напряжениями. Электроизоляция позволяет сделать независимыми ток и напряжение любого канала по отношению к электросети и прочим каналам. Это позволяет менять «плюс» на «минус» или соединять каналы последовательно.

В лабораторном источнике питания должны присутствовать защитные функции, позволяющие сохранить работоспособность прибора и предохраняющие пользователя от удара током. К ним относятся: защита от перегрузки по напряжению, току и мощности; предохранение от перегрева.

Наконец, большинство из БП среднего и премиального ценового диапазона поддерживают программный контроль наряду с ручным, а особо продвинутые модели управляются посредством компьютерных интерфейсов USB, LAN и IEEE-488.2. Это позволяет повысить комфорт при взаимодействии с прибором и единовременно отображать все параметры на мониторе ПК.

① Wanptek серия 3010 (KPS3010 / NPS3010 / GPS3010 / DPS3010 / WPS3010 / APS3010) цифровой лабораторный настольный источник питания

Лабораторный блок питания какой выбрать

Рейтинг: 4.9
Цена: от 5 045,77 руб. до 10 058,77 руб.
Перейти в магазин

Импульсный источник питания применяется для ремонта ноутбуков и смартфонов, зарядки аккумуляторов, в лабораторных исследованиях и пр. Выходная мощность прибора — 300 Вт, вес — 1,4 кг.

Блок питания оснащен светодиодным дисплеем для отображения силы тока, мощности и напряжения, имеет функцию автопереключения постоянного тока и давления. Выходное напряжение и ток регулируются пользователем в диапазоне от 0 до 60 В и от 0 до 10 А соответственно.

Устройство оснащено вентилятором, включающимся при нагреве до 50 градусов, USB-портом для зарядки гаджетов, имеет функции защиты от перегрузки по току (OCP) и перенапряжения (OVP).

Достоинства:

  • высокая точность как по напряжению, так и по току;
  • хорошее качество сборки;
  • удобное управление;
  • модели DPS3010/WPS3010/APS3010 идут с USB-портом с поддержкой QC.

Недостатки:

  • в серии много моделей, есть модели с выводом только трех цифр (разрядность индикатора) — этого бывает недостаточно для комфортной работы, лучше покупать модели с отображением на дисплее более трех цифр;
  • присутствуют импульсные помехи.

В работе

Диапазон значений напряжения и тока

У современных лабораторных блоков питания бывает два типа диапазонов выходных напряжений и токов: фиксированный и с автоматическим ограничением выходной мощности.

Фиксированный диапазон встречается у большинства недорогих лабораторных блоков питания. Такие блоки питания могут выдать любую комбинацию напряжения и тока в пределах своих максимальных значений. Например, одноканальный лабораторный блок питания на 40 В и 15 А может поддерживать на нагрузке напряжение 40 Вольт даже при токе потребления 15 Ампер. При этом, потребляемая нагрузкой мощность составит: 40 В х 15 А = 600 Вт. Всё просто и понятно, но с таким прибором Вы не сможете установить напряжение больше 40 В и ток больше 15 А.

Автоматическое ограничение выходной мощности существенно расширяет диапазон лабораторного блока питания по напряжению и току. Если сравнивать с лабораторным блоком питания на 600 Вт с фиксированным диапазоном, то очевидно, что лабораторный блок питания с автоматическим ограничением выходной мощности значительно универсальнее и может заменить несколько более простых приборов.

Мощность блока питания

По полезной мощности, отдаваемой в нагрузку, все лабораторные блоки питания постоянного тока можно разделить на стандартные (до 700 Вт) и большой мощности (700 Вт и более). Такое деление не случайно. Модели стандартной и большой мощности довольно сильно отличаются по функциональным возможностям и области применения.

В моделях стандартной мощности максимальное напряжение обычно находится в диапазоне от 15 В до 150 В, а максимальный ток от 1 А до 25 А. Количество каналов: один, два или три. Есть как линейные, так и импульсные модели. Конструктивное исполнение: стандартный приборный корпус для размещения на лабораторном столе. Масса от 2 до 15 кг. В основном, возможности таких приборов нацелены на разработку и ремонт электронной аппаратуры, хотя область их применения значительно шире.

С другой стороны, модели большой мощности всегда одноканальные и импульсные. Модели до 3 кВт выпускаются в приборном или стоечном исполнении. Большая мощность выдвигает повышенные требования к конструкции: наличие «умных» вентиляторов охлаждения, полный набор защит (от перегрузки, перегрева, смены полярности и пр.), возможность параллельного включения нескольких блоков для наращивания выходной мощности, поддержка специальных форм выходных сигналов.

Параметры выбора

Перед покупкой лабораторного источника питания необходимо определиться со сферой и местом его применения. Использовать данный прибор можно для следующих целей:

  1. Контроль за качеством радиотехнических деталей.
  2. Тестирование электроники.
  3. Тестирование приборов контроля и измерений.
  4. Производство и ремонт радиотехники.
  5. Проектирование и тестирование радиотехники.
  6. Использование как источника питания.
  7. Применение в лабораторных работах при обучении.
  8. Использование для моделирования физико-электрических механизмов.

Видео — Вопросы и ответы: выбор лабораторного блока питания

Характеристики подбора устройства

Существует несколько наиболее важных характеристик, на которые необходимо обратить внимание при подборе лабораторного источника питания:

  • габариты;
  • рабочие характеристики;
  • количество выходов и их мощность;
  • наличие или отсутствие защиты;
  • стоимость.

Особое внимание следует уделить следующим параметрам:

Схема регулируемого блока питания

  • уровень шума при работе;
  • показатель стабильности в сети питания;
  • время, за которое происходит переход к первоначальным параметрам при изменении тока;
  • качество измерений и наличие или отсутствие погрешностей;
  • наличие или отсутствие разрешения;
  • интерфейс управления;
  • варианты компенсации потерь при подключении к схеме из 4-рех проводов.

Наиболее оптимальным вариантом для лаборатории является устройство с минимальным уровнем шума, максимально точной регулировкой и возможностью подключения различных функций.

Диапазон выходного напряжения и тока, количество каналов

Наиболее распространены лабораторные блоки питания с максимальным выходным напряжением 18, 30, 60 В и максимальным выходным током 3, 5, 10А. При выходных токах более 10А градация как правило произвольная.

Выбор диапазона напряжения и тока лабораторного блока питания зависит от выполняемых задач, так для питания низковольтных устройств на микроконтроллерах достаточно 18В блока питания.

Если Вы еще только начинаете осваивать электронику и не можете предугадать какие устройства в будущем будет собирать и отлаживать, то при наличии бюджета лучше сделать выбор лабораторного блока питания на 30В, при ограниченном бюджете подойдет и 18В блок питания, в будущем его можно использовать как дополнительный или резервный блок питания если потребуется приобрести блок питания на 30 или 60В.
С максимальным выходным напряжением разобрались, теперь рассмотрим какой нам нужен выходной ток.

Для большинства случаев выходного тока 5А более чем достаточно, но если Вы занимаетесь например автомобильной электроникой, то не лишним будет иметь блок питания с выходным током до 10-20А. Лабораторный блок питания с выходным током до 3А подойдет если Вы не планируете отлаживать относительно мощных устройств, например ограничиваетесь программированием микроконтроллеров.

При выборе лабораторного блока питания также следует обратить внимание на точность и дискретность измерения выходного тока, большинство бюджетных блоков питания имеют дискретность измерения тока 10 мА, чего может оказаться недостаточным для отладки маломощных устройств, устройств с батарейным питанием.

Сколько же каналов должен иметь лабораторный блок питания ? Наиболее распространены одноканальные блоки питания, но если Вы планируете заниматься аудиотехникой, то желательно иметь двуканальный блок питания, допускающий последовательное соединение каналов, что позволит получать двуполярное напряжение питания.

Двух канальные лабораторные блоки питания также могут быть удобны при одновременной отладке нескольких устройств или устройств с множеством вторичных источников питания, но многоканальные блоки питания значительно дороже одноканальных и для питания относительно маломощных устройств может оказаться проще собрать самостоятельно дополнительный маломощный источник питания, например на 5 или 3,3В выходного напряжения и 1-2А выходного тока.

Интерфейс – крутилки, кнопки, индикаторы

И снова немного терминологии. Лабораторные блоки питания бывают программируемые и обычные (непрограммируемые). В программируемых лабораторных блоках питания выходное напряжение задается клавиатурой, кнопками или энкодером и в контуре стабилизации тока и напряжения с использованием цифроаналоговых преобразователей (ЦАП) формируются соответствующие опорные напряжения т.е. выходное напряжение и ток явно задаются пользователем, а блок питания их обеспечивает ( с учетом погрешности естественно).

В обычных (непрограммируемых) лабораторных блоках питания выходное напряжение и ток задаются переменными резисторами (крутилками), которые подключаются непосредственно в контур обратной связи и/или как делитель опорного напряжения, при этом текущее выходное напряжение определяется по показанием индикатора напряжения в режиме «онлайн», а максимальный выходной ток устанавливается по индикатору тока при замкнутом выходе.

Следует отметить, что как правило программируемые лабораторные блоки питания имеют функцию подключения и отключения нагрузки
Таким образом программируемый лабораторный блок питания является более предпочтительным выбором, т.к. более удобен в эксплуатации, но за удобство приходится платить поскольку эти блоки питания дороже обычных.

Важной особенностью обычных (непрограммируемых) блоков питания является и то, что при их включении/выключении на выходе возможны кратковременные всплески напряжения, способные причинить вред подключенному устройству, поэтому если все же Вы сделали выбор в пользу такого блока питания — проверьте его на наличие такой особенности.

Следующий элемент интерфейса — индикаторы, у программируемых блоков питания индикация выходных параметров (тока и напряжения) осуществляется цифровыми индикаторами, а вот у обычных лабораторных блоков питания встречаются стрелочные индикаторы.

С точки зрения точности отображения цифровые индикаторы лучше т.к. измерение напряжения и тока осуществляется посредством аналого-цифрового преобразователя (АЦП) и типовая погрешность показаний составляется 0,5-1%, в то время как при наличии стрелочных индикаторов напряжение и ток измеряется непосредственно ими, при этом типовая погрешность измерения составляет 1,5-2,5% и может со временем увеличиваться по мере ослабления пружины стрелочного механизма.

Рейтинг самых недорогих БП

Element 1502D+

Отличное устройство, предназначенное для работы с электронными приборами. Изделие обладает защитой от короткого замыкания и перенапряжения. Для большего удобства присутствует USB интерфейс, который дает возможность подключить прибор к персональному компьютеру или ноутбуку. Также присутствует ограничение напряжение в 5 В, что полезно при ремонте сотовых телефонов, так как гаджет не повредится из-за высокого перенапряжения.

БП оснащен удобной цифровой индикацией, которая показывает параметры в режиме реального времени. Для изменения тока и напряжения, используются специальные регуляторы на передней панели. В комплекте присутствует набор проводов.

Продается по цене: от 1 590 рублей.

лабораторный блок питания Element 1502D+
Достоинства:

  • Удобство;
  • Небольшая цена;
  • Эффективность;
  • Комплектация;
  • Удобный дисплей.

5 место — UNI-T UTP3303

Встречайте серьезный прибор — двухканальный источник питания.

двухканальный источник напряжения UNI-T UTP3303

Такой блок питания удобно использовать при сложном ремонте блоков питания. материнских плат и смартфонов, когда на плату нужно подать два независимых напряжения. Если задействован только один канал, то второй можно нагрузить зарядкой для другого аппарата через набор переходников .

Технические характеристики:

  • Установка напряжения 0 — 32 В;
  • Пульсации по напряжению до 1 мВ RMS;
  • Установка тока 0 — 3 А;
  • Пульсации по току до 3 мА RMS;
  • Точность установки значений ±0,1 %.

Недостатки:

  • Большая масса и габариты;
  • Высокая стоимость.

Достоинства:

  • Хорошее соотношение цена/качество;
  • Малые пульсации напряжения;
  • Дополнительный выход 5 В 3 А;
  • Есть защита от короткого замыкания, переполюсовки и перенапряжения;
  • Контакты под штекер и под зажим.

Стоимость двухканального лабораторного источника питания UNI-T UTP3303 равна 270 $ .

Аналоги:

  1. Zhaoxin RXN-305D-II имеет стоимость около 180 $ (30 В, 5 А, дополнительный выход 5 В 3 А);
  2. YIHUA 3005D-II по цене 230 $ (30 В, 5 А, популярная модель, уже появились отзывы о покупках);
  3. ATTEN TPR3003T-3C стоит около 250 $ (30 В, 3 А, пульсации 1 мВ и 3 мА);
  4. MCH 305DII по цене 400 $ (30 В, 5 A, дополнительный выход 5 В 2 А);
  5. МЕГЕОН 32303 за волшебные 270 $ в России (30 В, 3 А, полный клон Zhaoxin RXN-305D-II с поправкой на ток).

Отечественные источники питания

Среди признанных народных блоков питания из наследия советского союза можно отметить аналоговый Б5-71/3м. Также мне приходилось использовать цифровые Б5-71мм и Б5-71/1мс по цене около 500 $. Все они находятся в Госреестре средств измерений РФ. У каждого из них есть свои недостатки.

Топ 5 лучших лабораторных блоков питания

Например у Б5-71/3м со временем выходит из строя регулировочный двухосевой потенциометр, который найти можно, но сложно.

Топ 5 лучших лабораторных блоков питания

Импульсные источники питания Б5-71/1мс и Б5-71мм отличаются тем, что от перепадов напряжения питания 220 В могут выставить другое напряжение на выходе, например 50 В. Поэтому для ответственных работ я их не использую.

Применение старых источников питания Made in USSR и самоделок оставляю в стороне. Только помните о технике безопасности при работе с ними.

Возможно, со временем этот рейтинг блоков питания будет добавляться Hi-End источниками от Agilent, RohdeИсточники»]

  • https://www.e-core.ru/vyibor-laboratornogo-bloka-pitaniya/
  • https://uberdeal.ru/37056-luchshie-laboratornye-bloki-pitaniya
  • https://www.impulsi.ru/company/news/373103.html
  • https://stroyday.ru/stroitelstvo-doma/elektroxozyajstvo/kakoj-vybrat-laboratornyj-blok-pitaniya.html
  • https://www.e-core.ru/vyibor-laboratornogo-bloka-pitaniya/
  • https://yanashla.com/luchshie-laboratornye-bloki-pitaniya/
  • https://masterpaiki.ru/top-5-luchshih-laboratornyh-blokov-pitaniya.html
  • https://markakachestva.ru/rating-of/8615-luchshie-laboratornye-bloki-pitanija-rejting.html

[/spoiler]

Оцените статью
TutShema
Добавить комментарий