Катушка с железным сердечником внутри называется

Катушка с железным сердечником внутри называется

Что вы себе представляете под словом «катушка» ? Ну… это, наверное, какая-нибудь «фиговинка», на которой намотаны нитки, леска, веревка, да что угодно! Катушка индуктивности представляет из себя точь-в-точь то же самое, но вместо нитки, лески или чего-нибудь еще там намотана обыкновенная медная проволока в изоляции.

Изоляция может быть из бесцветного лака, из ПВХ-изоляции и даже из матерчатой. Тут фишка такая, что хоть и провода в катушке индуктивности очень плотно прилегают к друг другу, они все равно изолированы друг от друга. Если будете мотать катушки индуктивности своими руками, ни в коем случае не вздумайте брать обычный медный голый провод!

Индуктивность

Любая катушка индуктивности обладает индуктивностью. Индуктивность катушки измеряется в Генри (Гн), обозначается буковкой L и замеряется с помощью LC — метра.

Что такое индуктивность? Если через провод пропустить электрический ток, то он вокруг себя создаст магнитное поле:

12 недорогих наборов электроники для самостоятельной сборки и пайки

Моя личная подборка конструкторов с Aliexpress «сделай сам» для пайки от простых за 153 до 2500 рублей. Дочке 5 лет — надо приучать к паяльнику))) — пусть пока хотя-бы смотрит — переходи посмотреть, один светодиодный куб чего только стоит

Катушка с железным сердечником внутри называется

В — магнитное поле, Вб

А давайте возьмем и намотаем в спиральку этот провод и подадим на его концы напряжение

катушка индуктивности с воздушным сердечником

И у нас получится вот такая картина с магнитными силовыми линиями:

катушка индуктивности магнитное поле

Грубо говоря, чем больше линий магнитного поля пересекут площадь этого соленоида, в нашем случае площадь цилиндра, тем больше будет магнитный поток (Ф). Так как через катушку течет электрический ток, значит, через нее проходит ток с Силой тока (I), а коэффициент между магнитным потоком и силой тока называется индуктивностью и вычисляется по формуле:

С научной же точки зрения, индуктивность — это способность извлекать энергию из источника электрического тока и сохранять ее в виде магнитного поля. Если ток в катушке увеличивается, магнитное поле вокруг катушки расширяется, а если ток уменьшается , то магнитное поле сжимается.

Задания 59.3-59.3 — Ханнанова, 8 класс.

Задание 59.1

Опыт с электромагнитом


Вставьте в текст пропущенные слова.
Катушка с железным сердечником называется электромагнитом. Магнитное действие катушки с током тем сильнее, чем больше число витков в ней и чем больше сила тока. Если из катушки убрать железный сердечник, то магнитное действие катушки ослабнет.

Задание 59.2
На рисунке приведена схема устройства электрического звонка.

Задания 59.3-59.3

а) Отметьте на рисунке цифрами соответствующие им детали. Обеспечивающие работу электрического звонка:
1 – ключ,
2 – звонковая чаша,
3 – молоточек,
4 — электромагнит,
5 – якорь (железная пластинка),
6 – пружина контактная, касающаяся винта.

б) Вставьте в текст пропущенные названия деталей устройства, представленного на рисунке.
При замыкании ключа по электрической цепи течет электрический ток. При прохождении тока через электромагнит к его полюсам притягивается железная пластинка якорь, в результате чего молоточек ударяет о звонковую чашу и слышится звон. Этот момент пружина контактная отходит от винта и цепь разрывается.

Задание 59.3
На рисунке изображено электромагнитное реле, с помощью которого запускают в действие мощный электрический двигатель, приводя его в действие малой силой тока.

Задания 59.3-59.3

а) Отметьте на рисунке буквами соответствующие им детали, входящие в состав этого устройства:
ЭМ (электромагнит), Я (якорь), П (пружина), Э (электродвигатель), КЭ (контакты цепи электродвигателя), КР (контакты рабочей цепи), К (ключ).
б) Заполните пропуски в тексте буквенными обозначениями деталей устройства, представленного на рисунке.
При замыкании К, находящегося далеко от электродвигателя, ток начинает течь по ЭМ, у торца которого возникает магнитное поле. Под действием сил магнитного поля Я (металлическая пластина) отклоняется вниз, растягивая при этом П и замыкая КР рабочей цепи.

  • ГДЗ по другим предметам >>
  • ГДЗ по географии
  • ГДЗ по истории

Магнитное поле катушки с током. Электромагниты и их применение

Большой практический интерес представляет собой магнитное поле катушки с током. Вообще по своей форме катушка напоминает пружину. Но в то время, если пружина важна в каких-либо механических системах, то катушка используется в магнетизме. Все потому что мы пропускаем электрический ток через катушку и это позволяет получить магнитное поле, сосредоточенное в основном внутри катушки и на её концах.

Посмотрите, как проходят линии магнитного поля внутри и снаружи катушки (рис. 1).

Силовые линии магнитного поля

На рис. 1. представлена ​​фотография с изображением формы силовых линий магнитного поля, полученного с помощью железных опилок. Мы видим, что линии поля внутри практически параллельны друг другу и оси катушки. На концах катушки они расходятся.

С другой стороны, в области вне соленоида, вдали от его краёв, железные опилки практически никак не упорядочены, что доказывает, что магнитная индукция там мала — магнитное поле слабое. Напоминает ли вам что-нибудь такое расположение линий магнитного поля? Такое расположение линий магнитного поля обуславливает множество применений катушки в технике.

Магнитные линии магнитного поля катушки с током являются также замкнутыми кривыми. Принято считать, что вне катушки они направлены от северного полюса катушки к южному.

Перышкин А.В. Физика 8. – М.: Дрофа, 2010.

Напомним: характерной величиной магнитного поля является поток вектора магнитной индукции B , который присваивается каждой точке в пространстве. Значение вектора B является мерой «силы» магнитного поля. Удобным и наглядным представлением магнитного поля являются линии поля. Векторы индукции B являются касательными к этим линиям.

На рис. 2 показаны силовые линии, источником которых является катушка, состоящая из пяти витков проводника с электрическим током, а на рис. 3 показаны силовые линии, возникающие из кругового тока. Здесь аналогичный характер линий. Мы предполагаем, что в случае с катушкой мы имеем дело с суммированием полей, исходящих от отдельных катушек, в результате чего внутри катушки образуется почти однородное поле.

Линии поля, источником которых является катушка

Линии поля кругового тока

Обратите внимание, что чем плотнее (ближе друг к другу) намотаны катушки, тем больше они напоминают круги (окружности), и тогда мы практически имеем дело с сильным и однородным полем внутри катушки. Такое поле показано на рисунке 4. А соответствующая этой фигуре реальная катушка с несколько иным числом витков показана на рис. 5.

Сильное и однородное поле внутри катушки Катушка

На практике мы используем катушки с еще более плотно намотанными витками (см. рисунок 6). Можно использовать даже несколько слоев катушек. Все это делается для того, чтобы получить максимально возможное значение магнитной индукции внутри катушки. Она прямо пропорциональна плотности намотки, т.е. количеству витков на единицу длины катушки.

Плотно намотанная катушка

Для плотно намотанной катушки с малым диаметром по отношению к её длине зависимость магнитной индукции внутри неё выражается следующим образом: B = ( μ0 * μr * I * N ) / L , где

где μ0 — магнитная постоянная, μr — магнитная проницаемость среды внутри катушки, I — значение силы тока, протекающего в обмотке, N — число витков, L — длина катушки.

Из вышеприведенной формулы можно, например, сделать следующий выводы:

  • Если выполнить замену имеющейся катушки на другую катушку с бóльшим количеством витков проволоки, то она будет притягивать больше железных предметов при той же силе тока. Это говорит о том, что магнитное действие катушки с электрическим током тем сильнее, чем больше число витков в ней.
  • При увеличении силы электрического тока действие магнитного поля катушки с током становится сильнее, при уменьшении — слабее.
  • Магнитное действие катушки с током может быть значительно увеличено без изменения числа витков и силы тока протекающего в катушке. Это можно сделать, вставив железный стержень (сердечник) внутрь катушки. Железо, вставленное внутрь катушки, усиливает её магнитное действие. Этот момент в приведенной выше формуле отражает переменная μr.

Обратим внимание на еще один, очень важный аспект магнитного поля, создаваемого катушкой. А именно, сходство силовых линий этого поля с силовыми линиями постоянного магнита в форме стержня. Смотрите рисунки 7а. и 7б., где оба поля показаны символически.

Сходство линий поля с полем постоянного магнита в форме бруска

Электромагниты и их применение

Обратите внимание на направление электрического тока в катушке. Согласно правилу правой руки, электрический ток создает магнитное поле, силовые линии которого направлены так же, как у магнита. Таким образом, мы можем назначить магнитные полюса катушке с электрическим током, что и у магнита. Поэтому такую ​​катушку с электрическим током можно назвать электромагнитом.

Важно! Катушка с железным сердечником внутри называется электромагнитом.

Электромагниты находят бóльшее применение в технике, чем постоянные магниты. Это происходит в основном по двум причинам:

  1. Они создают более сильное магнитное поле, потому что мы можем использовать в них ферромагнитный сердечник, который в 1000-чи раз усилит магнитное поле, создаваемое электрическим током, протекающим в катушке.
  2. Вы можете управлять ими — увеличивать или уменьшать значение индукции, потому что она прямо пропорциональна электрическому току, протекающему в обмотке.

Отметим широкое применение электромагнитов, которые используются, например, в:

  • электрические машины (двигатели и генераторы);
  • громкоговорители, реле, контакторы и т.д.;
  • магнитные железные дороги;
  • устройства, использующие ядерный магнитный резонанс (МРТ). Основной частью МРТ является сверхпроводящий электромагнит, который генерирует очень сильное магнитное поле с индукцией = 3 Тесла. Внутрь этого электромагнита помещается пациент, подлежащий тестированию;
  • электромагнитные краны (сталелитейные заводы, верфи, цеха);
  • круговые ускорители (например, в ЦЕРНе, где работает сверхпроводящий электромагнит);
  • замки для ворот и дверей.

Конечно, не во всех случаях применения электромагнит похож на так называемый стержневой магнит, очень часто он напоминает подковообразный магнит. Например, электромагнит, используемый для подъема железного лома, модель которого показана на рис. 8. или электромагнит, который используется для электрического звонка (рис. 9.).

Электромагнит для подъема металлолома Электромагнит в схеме традиционного электрического звонка

Наконец, интересный факт. Можно пойти еще дальше и соединить оба конца катушки. Тогда мы получим так называемую тороидальную катушку (см. рис. 10). Это важный компонент электрических систем переменного тока; он служит для хранения энергии магнитного поля и может иметь высокую индуктивность (L).

Тороидальная катушка

Электромагниты

Магнитное поле можно усилить, если провод, по которому идет ток, свернуть в форме винтовой спирали. Полученную в результате этого катушку с током называют соленоидом (от греч. Слова «солен» — трубка). Силовые линии магнитного поля соленоида изображены на рисунке 58, а. Направление этих линий определяют с помощью второго правила правой руки:

Сравнение магнитных полей соленоида и магнита

если обхватить соленоид ладонью правой руки, направив четыре пальца по току в витках, то отставленный большой палец укажет направление магнитных линий внутри соленоида.

Сравнив магнитное поле соленоида с полем постоянного полосового магнита (рис. 58, б), можно заметить, что они очень похожи. Как и у магнита, у соленоида есть два полюса — северный (N) и южный (S). Северным полюсом соленоида называют тот, из которого магнитные линии выходят; южным полюсом — тот, в который они входят. Северный полюс у соленоида всегда располагается с той стороны, на которую указывает большой палец ладони при ее расположении в соответствии со вторым правилом правой руки.

Катушка и электромагнит

На рисунке 59, а изображен соленоид в виде катушки из большого числа витков провода, намотанного на деревянный каркас. Подобную катушку можно использовать в качестве магнита.

Для изучения магнитного действия катушки с током соберем цепь, изображенную на рисунке 59, б.

Используя реостат, изменим силу тока в цепи. Мы увидим, что при увеличении силы тока действие магнитного поля соленоида усиливается, при уменьшении ослабляется.
Заменим катушку другой, с большим числом витков проволоки. Мы обнаружим, что к ней начнет притягиваться больше железных предметов. Это означает, что при увеличении числа витков магнитное действие соленоида усиливается.

Магнитное действие катушки с током можно усилить и не меняя силу тока и число витков в ней. Для этого надо ввести внутрь катушки железный стержень (сердечник). Железный сердечник значительно усиливает магнитное действие соленоида.

Соленоид с железным сердечником внутри называется электромагнитом.

Электромагниты могут содержать не одну, а несколько катушек (обмоток) и иметь при этом разные по форме сердечники. На рисунке 59, в изображен дугообразный электромагнит, удерживающий железную пластину (якорь) с подвешенным грузом. Впервые подобный электромагнит был сконструирован в 1825 г. английским изобретателем У. Стердженом. Его электромагнит имел массу 0,2 кг и удерживал груз весом 36 Н. В том же году Дж. Джоуль увеличил подъемную силу электромагнита до 200 Н, а через шесть лет американский ученый Дж. Генри построил электромагнит массой 300 кг, способный удерживать груз массой 1 т!

Современные электромагниты могут поднимать грузы массой несколько десятков тонн.

Применение электромагнитов

Электромагниты находят широкое применение в технике. Мощные электромагниты, обладающие очень большой подъемной силой, используют на заводах при перемещении тяжелых изделий из чугуна и стали (рис. 60, а). При включении тока эти изделия притягиваются к электромагниту подъемного крана, при выключении свободно отсоединяются.

С помощью электромагнита удается очищать зерна некоторых растений (лен, клевер, люцерна и др.) от сорняков и случайно попавших в них железных предметов. Для этого используют магнитный сепаратор зерна (рис. 60, б). Когда зерна 1 с подмешанными заранее очень мелкими железными опилками высыпают из бункера на вращающийся барабан 2, то находящийся в нем электромагнит притягивает железные опилки 4 вместе с прилипшими к ним сорняками, отсеивая их таким образом от гладких зерен 3, к которым опилки не прилипают.

Еще одно применение электромагнита — его использование в электрическом звонке. Схема такого звонка изображена на рисунке 60, в. На этой схеме обозначены: ЭМ — дугообразный электромагнит; Я — железная пластинка, называемая якорем; М — молоточек; 3 — звонковая чаша; П — контактная пружина, касающаяся винта В. При нажатии кнопки цепь звонка замыкается, якорь притягивается к электромагниту и молоточек ударяет по звонковой чаше. При этом контакт с винтом В нарушается, ток в электромагните прекращается и пружина П возвращает якорь в прежнее положение. Затем все повторяется снова. Быстро повторяющиеся удары молоточка по чаше 3 заставляют ее непрерывно звенеть.

Электрический двигатель

В мощных электрических двигателях, применяемых в прокатных станах, шахтных подъемниках, лифтах и некоторых насосах сила тока достигает тысяч ампер. Для включения таких цепей применяют электромагнитное реле. Его устройство показано на рисунке 61. На этом рисунке обозначены: 1 — электромагнит; 2 — якорь; 3 — контакты рабочей цепи, включаемой с помощью реле; 4 — пружина; 5 — электродвигатель; 6 — контакты, к которым подключен источник тока, питающий электродвигатель. Электромагнитное реле приводится в действие малой силой тока, и поэтому оператор оказывается защищенным от контакта с цепью большого тока.

. 1. Что такое соленоид? 2. Сформулируйте второе правило правой руки. 3. Перечислите способы усиления магнитного действия катушки с током. 4. Что называют электромагнитом? 5. Для каких целей используют электромагниты на заводах? 6. Как работает магнитный сепаратор зерна? 7. Объясните, как действует электрический звонок. 8. Для чего используется электромагнитное реле? Как оно действует? 9. Чему была равна масса груза, удерживаемого первым дугообразным электромагнитом Стерджена?

Экспериментальное задание. Изготовьте самодельный электромагнит. Для этого возьмите большой гвоздь, обмотайте его проволокой, а ее концы присоедините к источнику тока (например, батарее от карманного фонаря). Испытайте действие электромагнита, поднося его к различным железным предметам. Попробуйте определить подъемную силу электромагнита по наибольшему числу гвоздиков, удерживаемых им.

Вставьте в текст пропущенные слова Катушка с железным сердечником внутри называется электромагнитной. Магнитное

Обучайтесь и развивайтесь всесторонне вместе с нами, делитесь знаниями и накопленным опытом, расширяйте границы знаний и ваших умений.

поделиться знаниями или
запомнить страничку

  • Все категории
  • экономические 43,679
  • гуманитарные 33,657
  • юридические 17,917
  • школьный раздел 612,672
  • разное 16,911

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

  • Обратная связь
  • Правила сайта

Слайд 1ЭЛЕКТРОМАГНИТЫ
Электромагниты

ЭЛЕКТРОМАГНИТЫЭлектромагниты

КАТУШКА С ЖЕЛЕЗНЫМ СЕРДЕЧНИКОМ ВНУТРИ НАЗЫВАЕТСЯ ЭЛЕКТРОМАГНИТОМ.

Слайд 3 СОБЕРИТЕ ЭЛЕКТРОМАГНИТ САМИ

СОБЕРИТЕ ЭЛЕКТРОМАГНИТ САМИ

витков
Электрики 2 – зависимость магнитного поля катушки от силы тока
Электрики 3 – влияние сердечника на магнитное поле катушки
Электрики 4 – Наблюдение зависимости полюсов катушки от направления электрического тока.

ИЗУЧЕНИЕ СВОЙСТВ ЭЛЕКТРОМАГНИТАЭлектрики 1 – зависимость магнитного поля катушки от числа витковЭлектрики 2 – зависимость магнитного поля

Электромагнетизм | Конспект

Cart ocenka

Линии, вдоль которых в магнитном поле располагаются оси маленьких магнитных стрелок, называют магнитными линиями магнитного поля.

Магнитные линии магнитного поля тока представляют собой замкнутые кривые, охватывающие проводник.

Направление магнитных линий магнитного поля тока связано с направлением тока в проводнике.

Магнитное действие катушки с током тем сильнее, чем больше число витков в ней.

При увеличении силы тока действие магнитного поля катушки с током усиливается, при уменьшении – ослабляется.

Железо, введённое внутрь катушки, усиливает магнитное действие катушки.

Катушка с железным сердечником внутри называется электромагнитом.

Проводник с током становится источником магнитного поля. Это явление было обнаружено Эрстедом.

Картину магнитного поля можно представить силовыми линиями.

Направление магнитных линий определяем правилом буравчика.

Магнитное поле прямого тока неоднородное: близко к проводнику – сильное, вдали от проводника – слабое. Чётко выраженных магнитных полюсов нет.

A picture containing tiled, tub, bath, tile Description automatically generated

A picture containing tiled Description automatically generated

Ток направлен на читателя, такое направление изображаем точкой.

То направлен от читателя, такое направление изображают крестиком.

Магнитное поле катушки с током

Магнитное поле прямого тока гораздо слабее, чем магнитное поле катушки с тем же током.

Длинная катушка с током называется соленоид. Если внести в катушку ферромагнитный сердечник, то магнитное поле усилится в тысячи раз.

Оцените статью
TutShema
Добавить комментарий