Какой прибор используется для измерения электрической мощности

Какой прибор используется для измерения электрической мощности

Думаю, все вы курсе, что электрический ток может выполнять работу. Например, вскипятить воду в электрочайнике, перемолоть кофе в кофемолке, согреть курицу в микроволновке и так далее. Все эти бытовые приборы являются нагрузкой для домашней сети. Но, как вы знаете, некоторые приборы «крутят» счетчик очень быстро, а некоторые приборы почти не потребляют электрический ток.

Если включить чайник и лампочку накаливания в вашей комнате и оставить на час, то чайник «съест» электроэнергии намного больше, чем та же самая лампа накаливания. Дело в том, что чайник обладает большей мощностью, чем лампочка. В этом случае можно сказать, что мощность чайника будет больше, чем мощность лампы в единицу времени, например, за секунду. Чтобы точно измерить, во сколько раз чайник потребляет электрической энергии больше, чем лампочка, нам нужно измерить мощность чайника и лампочки.

Ваттметр — это прибор, который измеряет потребляемую мощность какой-либо нагрузки. Выделяют три группы ваттметров:

  • низкой частоты и постоянного тока
  • радиочастотные ваттметры
  • оптические ваттметры

Так как наш сайт посвящен электронике и электротехнике, то мы будем в этой статье рассматривать только ваттметры постоянного тока и низкой частоты. Под низкой частотой подразумевается частота в 50-60 Герц.

12 недорогих наборов электроники для самостоятельной сборки и пайки

Моя личная подборка конструкторов с Aliexpress «сделай сам» для пайки от простых за 153 до 2500 рублей. Дочке 5 лет — надо приучать к паяльнику))) — пусть пока хотя-бы смотрит — переходи посмотреть, один светодиодный куб чего только стоит

Мощность постоянного тока

Итак, вы уже все в курсе, что любая нагрузка для электрического тока потребляет какую-либо мощность. Мощность постоянного тока выражается формулой:

P — это мощность, которая выражается в Ваттах (Вт,W)

I — сила тока, которую потребляет нагрузка, выражается в Амперах

U — напряжение, которое подается на нагрузку, выражается в Вольтах

Поэтому, чтобы найти мощность какой-либо нагрузки, которая подсоединена к постоянному току, достаточно перемножить значение силы тока и напряжения. Например, на этом фото мы видим вентилятор от компьютера, который подцепили к лабораторному блоку питания. Его мощность, как не трудно догадаться, составила P=IU=0,18 Ампер x 12 Вольт =2,16 Ватт.

Какой прибор используется для измерения электрической мощности

Что это такое?

Ваттметр – прибор, измеряющий потребляемую мощность. Он часто нужен там, где сечение проводов электрокабеля согласуется с суммарной нагрузкой, выдаваемой имеющимися на объекте потребителями. С помощью ваттметра можно измерить энергопотребление как светильника, так и 1–3 электрочайников либо стиральной машины.

Как измерить мощность мультиметром в Ваттах

Без замера потребляемой мощности на каждом из бытовых приборов, подключённых к старой электропроводке, новая, не имеющая запаса по мощности, может не выдержать нагрузки. Она воспламенится от перегрева и приведёт к пожару.

Устройство и принцип работы

В зависимости от исполнения измеряющих цепей прибора ваттметры подразделяются на две разновидности.

Аналоговый

Аналоговые сигналы по своей природе непрерывны. Для замера мощности пропускаемого по цепи электрического тока применяют электродинамические измерители. Аналоговый гальванометр работает на основе электромагнитного взаимодействия двух катушек. Одна из них – электродинамический статор – надёжно фиксируется в приборе, прикреплена к его каркасу (нижней части корпуса). Обмотка статорной части намотана толстым (до 1 мм или более в диаметре) обмоточным эмальпроводом. Её сопротивление мало. Она включается последовательно с нагрузкой, без добавочных резисторов.

Роторная или подвижная катушка движется в поле статорной. Она закреплена на оси так, чтобы не создавать перекос в зазоре статора при отклонении в любую из двух сторон. Она намотана тонким эмальпроводом, имеет значительно большее сопротивление (и число витков). Если бы её намотали таким же толстым проводом – действие гальванометра визуально было бы никаким. Она подключается параллельно нагрузке через высокоомный дополнительный резистор. Тот, в свою очередь, предотвращает короткое замыкание на цепи и между витками – и выход из строя гальванометра.

Когда ваттметр подключается к сети – вернее, сеть включается через него – подвижная и неподвижная катушки вырабатывают свои магнитные поля. Взаимодействуя этими полями друг с другом, роторная катушка поворачивается на определённый (расчётный) угол. К оси катушки подвешена стрелка с плоской пружиной. Та возвращает саму стрелку в исходное (нулевое) положение – сразу же после отключения ваттметра от сети. Направление стрелки совпадает с плоскостью подвижной катушки – они обе прикреплены друг к другу.

Конец неуравновешенной стрелки может падать на пластину с нанесённой на неё и отградуированной шкалой, задевать за неё при движении по самой шкале. Чтобы исключить такое подтормаживание стрелки, фирма-приборостроитель балансирует её при помощи металлического волоска (стремени), расположенного у самой оси, вокруг которой поворачивается и сама катушка.

Стремя может быть заменено противовесом на соосном со стрелкой конце её нижней части – либо одно дополняет другое.

Приборы для измерения мощности

Приемник энергии

Рис. 5. Схема для измерения мощности амперметром и вольтметром.

Этот способ обладает рядом недостатков, заключающихся:

1) в необходимости при каждом измерении производить вычисление, требующее затраты времени;

2) в значительной относительной погрешности при измерении мощности, равной сумме относительных погрешностей измерения напряжения и измерения тока;

3) в невозможности производить измерение при изменяющихся значениях тока и напряжения вследствие невозможности произвести одновременный отсчет по двум приборам и др.

Электродинамический ваттметр. Для непосредственного измерения мощности в цепи электрического тока применяется электродинамический ваттметр.

Электродинамический ваттметр (рис. 6) представляет собой измерительный механизм электродинамической системы. Неподвижная последовательная катушка или катушка тока ваттметра соединяется последовательно с приемниками энергии. Подвижная параллельная катушка или катушка напряжения, соединенная последовательно с добавочным сопротивлением, образует параллельную цепь ваттметра, которая присоединяется параллельно приемникам энергии.

Рис. 6. Схема устройства и соединений электродинамического ваттметра

Угол поворота подвижной части ваттметра

где I ─ ток последовательной катушки;

Iu ─ ток параллельной катушки ваттметра.

Так как вследствие применения добавочного резистора параллельно цепи ваттметра имеет практически постоянное сопротивление ru , то

Таким образом, по углу поворота подвижной части ваттметра можно судить о мощности цепи. Шкала ваттметра, как следует из уравнения (2), равномерна.

Приборы для измерения количества электричества. Электрические счетчики

Электрические счетчики представляют собой интегрирующие приборы, предназначенные для измерения электрической энергии и количества протекающего электричества за некоторый промежуток времени.

Счетчики, так же как и показывающие приборы, делятся на системы. Наибольшее распространение получили счетчики электрической энергии индукционной системы для цепей переменного тока и электродинамической системы для цепей постоянного тока.

Основное отличие счетчиков от показывающих приборов заключается в том, что угол поворота подвижной части их не ограничивается пружиной, а имеет нарастающее значение, причем каждому обороту подвижной части счетчика соответствует определенное значение измеряемой величины.

Для регистрации электрической энергии или количества электричества каждый счетчик имеет счетный механизм, представляющий собой, по существу, счетчик оборотов, соединенный с подвижной частью зубчатой передачей.

Индукционные счетчики активной энергии однофазного тока.

На рис. 7 дана схема устройства и соединения индукционного счетчика отечественного производства типа СО.

Счетчик состоит из последовательного А и параллельного Б электромагнитов, алюминиевого диска Д, укрепленного на оси, и постоянного тормозного магнита М.

При включении счетчика в цепь переменного тока по его последовательной обмотке (цепи) будет проходить ток потребителей энергии, вследствие чего в последовательном электромагните возникает магнитный поток ФI. Напряжение U на обмотке параллельного электромагнита вызовет в ней ток Iu, и в сердечнике электромагнита будет поддерживаться магнитный поток Фu, состоящий из двух частей: рабочего Фup и вспомогательного ФuB. Магнитный поток последовательного электромагнита и рабочий поток параллельного электромагнита, пронизывая диск, индуктируют в нем вихревые токи (рис. 7). Вращающий момент, возникающий от взаимодействия вихревых токов с магнитными потоками, заставит вращаться диск Д счетчика.

Следовательно, числом оборотов диска счетчика можно измерять электрическую энергию.

Рис. 7. Схема устройства и соединения индукционного счетчика.

Рис. 8. Схема устройства счетного механизма.

Число оборотов диска счетчика или пропорциональная ему электрическая энергия регистрируется счетным механизмом (рис. 8). Движение диска счетчика через червячную передачу и шестерни передается пяти роликам, на боковых поверхностях которых нанесены цифры от 0 до 9. Ролики свободно надеты на ось А. Первый (см. рис. 8 – правый) ролик скреплен с шестерней и при движении диска счетчика беспрерывно вращается. Один оборот его вызывает поворот второго ролика на 1/10 часть оборота. Один оборот второго ролика вызывает поворот третьего ролика также на 1/10 часть оборота и т. д. Ролики прикрываются алюминиевым щитком с отверстиями, через которые видно только по одной цифре на каждом ролике. Таким образом, прочитанное через отверстия в щитке числовое значение даст величину энергий, зарегистрированную счетчиком за весь период его работы, начиная с момента, когда показания его соответствовали нулевому значению.

Для нахождения энергии, израсходованной за какое-то время, нужно из показания счетчика в конце измерения вычесть показания, снятые вначале. На щитке счетчика всегда указывается передаточное число счетчика С, т. е. число оборотов диска счетчика, соответствующее единице энергии, регистрируемой счетчиком, – например, 1 кВт • ч равен 4 000 оборотов диска.

Индукционные счетчики активной энергии в цепях трехфазного тока

Для измерения электрической энергии в четырехпроводных цепях применяются трехэлементные счетчики. Схема включения такого счетчика (рис. 9) принципиально та же, что и ваттметра. Как показывает название, такой счетчик имеет три электромагнитные системы, которые воздействуют или на три диска, укрепленных на одной оси (например, счетчик типа СА4-ТЧ), или на два диска, также укрепленных на одной оси (например, счетчик типа СА4-И45, в котором на один диск воздействуют две системы, на второй – одна). Счетчик имеет один счетный механизм. Устройство каждой электромагнитной системы трехэлементного счетчика ничем не отличается от устройства электромагнитной системы однофазного счетчика.

Рис. 9. Схема устройства и соединения трехэлементного

трехдискового счетчика типа СА4-ТЧ

Наиболее распространенными приборами для измерения электрической энергии в трехпроводных цепях трёхфазного тока являются двухэлементные счетчики.

Двухэлементный счетчик имеет две электромагнитные системы, которые воздействуют на два диска, укрепленных на одной оси (например, счетчик типа САЗ-И43, рис. 10).

Рис. 10. Схема устройства и соединения двухэлементного двухдискового счетчика типа САЗ-И43

Работа и мощность тока

При прохождении тока в цепи электрическое поле совершает работу по перемещению заряда. В этом случае работу электрического поля называют работой электрического тока.

При прохождении заряда (q) по участку цепи электрическое поле будет совершать работу: (A=qcdot U), где (U) — напряжение электрического поля, (A) — работа, совершаемая силами электрического поля по перемещению заряда (q) из одной точки в другую.

Для выражения любой из этих величин можно использовать приведённый ниже рисунок.
Рис. (1). Зависимость между работой, напряжением и зарядом

Количество заряда, прошедшее по участку цепи, пропорционально силе тока и времени прохождения заряда: q = I ⋅ t .

Работа электрического тока на участке цепи пропорциональна напряжению на её концах и количеству заряда, проходящего по этому участку: A = U ⋅ q .

Работа электрического тока на участке цепи пропорциональна силе тока, времени прохождения заряда и напряжению на концах участка цепи: A = U ⋅ I ⋅ t .

Чтобы выразить любую из величин из данной формулы, можно воспользоваться рисунком.

3.png

Рис. (2). Зависимость между работой, силой тока и временем прохождения заряда
Единицы измерения величин:
работа электрического тока ([A]=1) Дж;
напряжение на участке цепи ([U]=1) В;
сила тока, проходящего по участку ([I]=1) А;
время прохождения заряда (тока) ([t]=1) с.

Для измерения работы электрического тока нужны вольтметр, амперметр и часы. Например, для определения работы, которую совершает электрический ток, проходя по спирали лампы накаливания, необходимо собрать цепь, изображённую на рисунке. Вольтметром измеряется напряжение на лампе, амперметром — сила тока в ней. А при помощи часов (секундомера) засекается время горения лампы.

Рис. (3). Схема и часы для измерения
I = 1 , 2 А U = 5 В t = 1 , 5 мин = 90 с А = U ⋅ I ⋅ t = 5 ⋅ 1 , 2 ⋅ 90 = 540 Дж
Обрати внимание!
Работа чаще всего выражается в килоджоулях или мегаджоулях.

(1) кДж = 1000 Дж или (1) Дж = (0,001) кДж;
(1) МДж = 1000000 Дж или (1) Дж = (0,000001) МДж.

Для потребителей электрической энергии существуют приборы, позволяющие в пределах ошибки измерения получать числовые данные о ее расходе в единицу времени.

soe_52_60_11_sh.jpg

Рис. (4). Электросчетчик

Механическая мощность численно равна работе, совершённой телом в единицу времени: N = А t . Чтобы найти мощность электрического тока, надо поступить точно также, т.е. работу тока, A = U ⋅ I ⋅ t , разделить на время.

Мощность электрического тока обозначают буквой (Р):
P = A t = U ⋅ I ⋅ t t = U ⋅ I . Таким образом:
Мощность электрического тока равна произведению напряжения на силу тока: P = U ⋅ I .

Из этой формулы можно определить и другие физические величины.
Для удобства можно использовать приведённый ниже рисунок.

Рис. (5). Зависимость между мощностью, напряжением и силой тока
За единицу мощности принят ватт: (1) Вт = (1) Дж/с.
Из формулы P = U ⋅ I следует, что

(1) ватт = (1) вольт ∙ (1) ампер, или (1) Вт = (1) В ∙ А.
Обрати внимание!

Используют также единицы мощности, кратные ватту: гектоватт (гВт), киловатт (кВт), мегаватт (МВт).
(1) гВт = (100) Вт или (1) Вт = (0,01) гВт;
(1) кВт = (1000) Вт или (1) Вт = (0,001) кВт;
(1) МВт = (1 000 000) Вт или (1) Вт = (0,000001) МВт.

Измерим силу тока в цепи с помощью амперметра, а напряжение на участке — с помощью вольтметра.
Рис. (6). Схема

Так как мощность тока прямо пропорциональна напряжению и силе тока, протекающего через лампочку, то перемножим их значения:

I = 1 , 2 А U = 5 В P = U ⋅ I = 5 ⋅ 1 , 2 = 6 Вт .

Ваттметры измеряют мощность электрического тока, протекающего через прибор. По своему назначению и техническим характеристикам ваттметры разнообразны.

В зависимости от сферы применения у них различаются пределы измерения.
Аналоговый ваттметр
Аналоговый ваттметр
Аналоговый ваттметр
Цифровой ваттметр

0007-004-Vattmetr-pribor-dlja-izmerenija-moschnosti.jpg

791838.jpeg

c301 (1).jpg

0987.jpg

Рис. (7). Приборы для измерения

Подключим к цепи по очереди две лампочки накаливания, сначала одну, затем другую и измерим силу тока в каждой из них. Она будет разной.

1.pngJauda1.png

Рис. (8). Лампы различной мощности в цепи

Сила тока в лампочке мощностью (25) ватт будет составлять (0,1) А. Лампочка мощностью (100) ватт потребляет ток в четыре раза больше — (0,4) А. Напряжение в этом эксперименте неизменно и равно (220) В. Легко можно заметить, что лампочка в (100) ватт светится гораздо ярче, чем (25)-ваттовая лампочка. Это происходит оттого, что её мощность больше. Лампочка, мощность которой в (4) раза больше, потребляет в (4) раза больше тока. Значит:

Обрати внимание!
Мощность прямо пропорциональна силе тока.

Что произойдёт, если одну и ту же лампочку подсоединить к источникам различного напряжения? В данном случае используется напряжение (110) В и (220) В.

2_1.png Jauda2.png

Рис. (8). Лампа, подключенная к источнику тока с различным напряжением

Можно заметить, что при большем напряжении лампочка светится ярче, значит, в этом случае её мощность будет больше. Следовательно:

Обрати внимание!
Мощность зависит от напряжения.
Рассчитаем мощность лампочки в каждом случае:

I = 0 , 2 А U = 110 В P = U ⋅ I = 110 ⋅ 0 , 2 = 22 ВтI = 0,4 А U = 220 В P = U ⋅ I = 220 ⋅ 0,4 = 88 Вт .

Можно сделать вывод о том, что при увеличении напряжения в (2) раза мощность увеличивается в (4) раза.
Не следует путать эту мощность с номинальной мощностью лампы (мощность, на которую рассчитана лампа). Номинальная мощность лампы (а соответственно, ток через нить накала и её расчётное сопротивление) указывается только для номинального напряжения лампы (указано на баллоне, цоколе или упаковке).

dsc_0264.jpg79616800.jpg2642_0.jpg

§102. Измерение мощности и электрической энергии

Измерение мощности. В цепях постоянного тока мощность измеряют электро- или ферродинамическим ваттметром. Мощность может быть также подсчитана перемножением значений тока и напряжения, измеренных амперметром и вольтметром.

В цепях однофазного тока измерение мощности может быть осуществлено электродинамическим, ферродинамическим или индукционным ваттметром. Ваттметр 4 (рис. 336) имеет две катушки: токовую 2, которая включается в цепь последовательно, и напряжения 3, которая включается в цепь параллельно.

Ваттметр является прибором, требующим при включении соблюдения правильной полярности, поэтому его генераторные зажимы (зажимы, к которым присоединяют проводники, идущие со стороны источника 1) обозначают звездочками.

Рис. 336. Схема для измерения мощности

Рис. 336. Схема для измерения мощности

Для расширения пределов измерения ваттметров их токовые катушки включают в цепь при помощи шунтов или измерительных трансформаторов тока, а катушки напряжения — через добавочные резисторы или измерительные трансформаторы напряжения.

Измерение электрической энергии. Способ измерения . Для учета электрической энергии, получаемой потребителями или отдаваемой источниками тока, применяют счетчики электрической энергии. Счетчик электрической энергии по принципу своего действия аналогичен ваттметру. Однако в отличие от ваттметров вместо спиральной пружины, создающей противодействующий момент, в счетчиках предусматривают устройство, подобное электромагнитному демпферу, создающее тормозящее усилие, пропорциональное частоте вращения подвижной системы. Поэтому при включении прибора в электрическую цепь возникающий вращающий момент будет вызывать не отклонение подвижной системы на некоторый угол, а вращение ее с определенной частотой.

Число оборотов подвижной части прибора будет пропорционально произведению мощности электрического тока на время, в течение которого он действует, т. е. количеству электрической энергии, проходящей через прибор. Число оборотов счетчика фиксируется счетным механизмом. Передаточное число этого механизма выбирают так, чтобы по показаниям счетчика можно было отсчитывать не обороты, а непосредственно электрическую энергию в киловатт-часах.

Наибольшее распространение получили ферродинамические и индукционные счетчики; первые применяют в цепях постоянного тока, вторые — в цепях переменного тока. Счетчики электрической энергии включают в электрические цепи постоянного и переменного тока так же, как и ваттметры.

Ферродинамический счетчик (рис. 337) устанавливают на э. п. с. постоянного тока. Он имеет две катушки: неподвижную 4 и подвижную 6. Неподвижная токовая катушка 4 разделена на две части, которые охватывают ферромагнитный сердечник 5 (обычно из пермаллоя). Последний позволяет создать в приборе сильное магнитное поле и значительный вращающий момент, обеспечивающий нормальную работу счетчика в условиях тряски и вибраций. Применение пермаллоя способствует уменьшению погрешности счетного механизма 2 от гистерезиса магнитной системы (он имеет весьма узкую петлю гистерезиса).

Чтобы уменьшить влияние внешних магнитных полей на показания счетчика, магнитные потоки отдельных частей токовой катушки имеют взаимно противоположное направление (астатическая система). При этом внешнее поле, ослабляя поток одной части, соответственно усиливает поток другой части и оказывает в целом небольшое влияние на результирующий вращающий момент, создаваемый прибором. Подвижная катушка 6 счетчика (катушка напряжения) расположена на якоре, выполненном в виде диска из изоляционного материала или в виде алюминиевой чаши. Катушка состоит из отдельных секций, соединенных с пластинами коллектора 7 (эти соединения на рис. 337 не показаны), по которому скользят щетки из тонких серебряных пластин.

Ферродинамический счетчик работает принципиально как двигатель постоянного тока, обмотка якоря которого подключена параллельно, а обмотка возбуждения — последовательно с потребителем электроэнергии. Якорь вращается в воздушном зазоре между полюсами сердечника. Тормозной момент создается в результате взаимодействия потока постоянного магнита 1 с вихревыми токами, возникающими в алюминиевом диске 3 при его вращении.

Для компенсации влияния момента трения и уменьшения благодаря этому погрешности прибора в ферродинамических счетчиках устанавливают компенсационную катушку или в магнитном поле неподвижной (токовой) катушки помещают лепесток из пермаллоя, который имеет высокую магнитную проницаемость при малой напряженности поля. При небольших нагрузках этот лепесток усиливает магнитный поток токовой катушки, что приводит к увеличению вращающего момента и компенсации трения. При увеличении нагрузки индукция магнитного поля катушки увеличивается, лепесток насыщается и его компенсирующее действие перестает возрастать.

При работе счетчика на э. п. с. возможны сильные толчки и удары, при которых щетки могут отскакивать от коллекторных пластин. При этом под щетками будет возникать искрение. Для его предотвращения между щетками включают конденсатор С и резистор R1. Компенсация температурной погрешности осуществляется с помощью термистора Rт (полупроводникового прибора, сопротивление которого зависит от температуры). Он включается совместно с добавочным резистором R2 параллельно подвижной катушке. Чтобы уменьшить влияние тряски и вибраций на работу счетчиков, их устанавливают на э. п. с. на резинометаллических амортизаторах.

Индукционный счетчик имеет два электромагнита (рис. 338,а), между которыми расположен алюминиевый диск 7. Вращающий момент в приборе создается в результате взаимодействия переменных магнитных потоков Ф1 и Ф2, созданных катушками электромагнитов, с вихревыми токами Iв1 и Iв2, индуцируемыми ими в алюминиевом диске (так же, как и в обычном индукционном измерительном механизме, см. § 99).

В индукционном счетчике вращающий момент М должен быть пропорционален мощности P=UIcos?. Для этого катушку 6 одного из электромагнитов (токовую) включают последовательно с нагрузкой 5, а катушку 2 другого (катушку напряжения) — параллельно нагрузке. В этом случае магнитный поток Ф1 будет пропорционален току I в цепи нагрузки, а поток Ф2 — напряжению U, приложенному к нагрузке. Для обеспечения требуемого угла сдвига фаз ? между потоками Ф1 и Ф2 (чтобы sin? = cos?) в электромагните катушки напряжения предусмотрен магнитный шунт 3, через который часть потока Ф2 замыкается

Рис. 337. Ферродинамический счетчик электрической энергии

Рис. 337. Ферродинамический счетчик электрической энергии

Рис. 338. Индукционный счетчик электрической энергии

Рис. 338. Индукционный счетчик электрической энергии

помимо диска 7. Угол сдвига фаз между потоками Ф1 и Ф2 точно регулируется изменением положения металлического экрана 1, расположенного на пути потока, ответвляющегося через магнитный шунт 3.

Тормозной момент создается так же, как в ферродинамическом счетчике. Компенсация момента трения осуществляется путем создания небольшой несимметрии в магнитной цепи одного из электромагнитов с помощью стального винта.

Для предотвращения вращения якоря при отсутствии нагрузки под действием усилия, созданного устройством, компенсирующим трение, на оси счетчика укрепляется стальной тормозной крючок. Этот крючок притягивается к тормозному магниту 4, благодаря чему предотвращается возможность вращения подвижной системы без нагрузки.

При работе же счетчика под нагрузкой тормозной крючок практически не влияет на его показания.

Чтобы диск счетчика вращался в требуемом направлении, необходимо соблюдать определенный порядок подключения проводов к его зажимам. Нагрузочные зажимы прибора, к которым подключают провода, идущие от потребителя, обозначают буквами Я (рис. 338,б), генераторные зажимы, к которым подключают провода от источника тока или от сети переменного тока,— буквами Г.

Измерение электрического напряжения

Электрическое напряжение измеряется вольтметром.

Если измеряемое напряжение не превышает пределов измерения данного вольтметра, то оно может быть измерено путем непосредственного включения вольтметра в сеть (рис. 4).

Для расширения пределов измерения применяют добавочное сопротивление при измерении постоянного напряжения и трансформаторы напряжения (можно использовать и добавочное сопротивление) при измерении переменного напряжения (рис. 5 и 46).

Необходимо иметь в виду, что должно быть использовано то добавочное сопротивление, которое предназначено для данного вольтметра.

Рис. 4. Схема включения вольтметра непосредственно в цепь

Рис. 5. Схема включения вольтметра с добавочным сопротивлением

Рис. 6. Схема включения вольтметра с помощью трансформатора напряжения: А, Х — зажимы первичной обмотки трансформатора напряжения; а, х — зажимы вторичной обмотки трансформатора напряжения; ПР — плавкие предохранители

Измерение электрической мощности

Электрическая мощность измеряется ваттметром — прибором, имеющим две обмотки: токовую и напряжения (рис. 7).

Шкала ваттметра проградуирована в ваттах или киловаттах.

Расширение пределов измерения на постоянном токе по напряжению производится с помощью добавочных сопротивлений — шунтов. При измерениях на переменном токе расширение пределов производится с помощью трансформаторов тока и напряжения (рис. 8). При этом необходимо соблюдать правильность включения генераторных клемм (*) ваттметра.

Измерение мощности в трехфазных трехпроводных сетях производится с помощью двух однофазных ваттметров, включенных в две фазы по схеме (рис. 9). В трехфазных четырехпроводных сетях измерение активной мощности производится с помощью трех однофазных ваттметров (рис. 10) или одним трехэлементным ваттметром.

Расширение пределов измерения производится с помощью трансформаторов тока и напряжения. В этих же сетях для измерения мощности применяется трехфазный ваттметр (рис. 11).

Рис. 7. Схема включения однофазного ваттметра: 1 — последовательная (токовая) катушка; 2 — параллельная (напряжения) катушка; rg — добавочное сопротивление

Рис. 8. Схема включения ваттметра с помощью трансформаторов тока и напряжения

Рис. 9. Схема измерения активной мощности в трехфазной трехпроводной сети двумя ваттметрами: Робщ = Р1 + Р2

Рис. 10. Схема измерения активной мощности в трехфазной четырехпроводной сети тремя ваттметрами: Робщ = Р1 + Р2 + Р3

Рис. 11. Схема включения трехфазного ферродинамического ваттметра

Разновидности

Сначала измеряется напряжение, затем сила тока, а потом на основе этих данных измеряется мощность. По методу измерения, преобразования параметров и выдачи результата ваттметры разделяются на цифровые и аналоговые виды.

Аналоговые ваттметры разделены на самопишущие и показывающие приборы. Они определяют активную мощность участка схемы. Экран ваттметра оснащен шкалой и стрелкой. Шкала отградуирована по делениям и величинам мощности, в ваттах.

Конструктивные особенности и принцип работы

Аналоговые ваттметры имеют широкое распространение, точное измерение, и являются устройствами электродинамической системы.

Принцип их действия основывается на взаимодействии между собой двух катушек. Одна катушка неподвижная, с толстым проводом обмотки, малым числом витков и небольшим сопротивлением. Она подключена по последовательной схеме с потребителем. Вторая катушка двигается. Ее обмотка состоит из тонкого проводника, имеющего значительное число витков, ее сопротивление большое. Она подключена по параллельной схеме с потребителем, снабжена дополнительным сопротивлением во избежание короткого замыкания обмоток.

При включении устройства в сеть, в обмотках возникают магнитные поля, взаимодействие которых образует момент вращения, отклоняющий двигающуюся обмотку с прикрепленной стрелкой, на расчетный угол. Значение угла зависит от произведения напряжения и силы тока в конкретный момент времени.

Главным принципом действия ваттметра цифрового типа является предварительный замер напряжения и силы тока. Для этих целей подключаются: по последовательной схеме к потребителю нагрузки – датчик тока, по параллельной схеме датчик напряжения. Эти датчики обычно изготавливаются из термисторов, термопар, измеряющих трансформаторов.

Мгновенные параметры измеренных напряжения и тока, путем преобразователя, поступают к внутреннему микропроцессору. В нем происходит вычисление мощности. На экране показывается результат информации, а также передается на внешние приборы.

Vattmetry skhema

Приборы электродинамического типа, которые имеют широкое применение, подходят для переменного и постоянного тока. Ваттметры индуктивного типа применяются только для переменного тока.

Сфера использования

Основная сфера использования ваттметров – это отрасли промышленности в электроэнергетике, машиностроении, ремонта электрических устройств. Также часто применяют ваттметры и в быту. Их покупают специалисты по электронике, компьютерному оборудованию, радиолюбители – для расчета экономии потребления электрической энергии.

Ваттметры используют для:
  • Вычисления мощности устройств.
  • Проведения тестов электрических цепей, некоторых их участков.
  • Проведения испытаний электроустановок, в качестве индикаторов.
  • Проверка действия электрооборудования.
  • Учет потребления электроэнергии.
Некоторые варианты приборов (ваттметров).
Бытовые приборы китайского производства

В инструкции описаны все режимы работы этого устройства, технические характеристики.

Vattmetry bytovoi 1

По сути это прибор, измеряющий мощность различных электрических потребителей. Как он работает? Вставляете его в розетку, а в розетку этого прибора вставляете вилку потребителя, мощность которого вы хотите замерить. Этим прибором вы измерите мощность какого-либо потребителя в течение определенного времени и потом с помощью него вы можете даже рассчитать, например, сколько денег тратит за электроэнергию ваш холодильник или любой другой прибор.

В устройстве есть встроенный аккумулятор. Он нужен для запоминания мощности, которую вы замерили, и потом будете использовать для расчета цены. Передняя панель прибора имеет пять кнопок: переключение режимов, указатель цены, переключатель вверх-вниз, кнопка сброса, если прибор поймал какой-либо глюк.

На корпусе указаны характеристики прибора:
  • Рабочее напряжение 230 вольт.
  • Частота 50 герц.
  • Максимальный ток 16 ампер.
  • Диапазон измеряемой мощности 0-3600 ватт.
Работа прибора.

Вставляем его в розетку.

Vattmetry bytovoi 2

Включим в него настольную светодиодную лампу.

Vattmetry bytovoi 3

На дисплее сразу пошло время, в течение которого измеряется мощность потребителя, в данном случае лампы. 0,4 ватта – это мощность отключенной лампы. Включаем лампу, в рабочем режиме она потребляет 10,3 ватта. Цену за киловатт мы не указывали, поэтому там стоят нули.

У нас лампа может менять мощность света. При увеличении света лампы показания мощности увеличиваются. При включении второго режима вверху также показано время работы, во втором поле киловатт часы, так как прибор пока не проработал даже одного часа, то показаны нули. Внизу показано количество дней, в течение которых измерялся этот потребитель.

В следующем режиме во втором поле показано напряжение электросети, внизу показана частота тока. Вверху дисплея при всех режимах показывается время. При переходе на следующий режим в центре показывается сила тока. Внизу показывается параметр некоего фактора, о котором пока нет данных, так как производитель прибора китайский.

На пятом режиме показана мощность минимальная. На шестом режиме – максимальная мощность.

Интересно будет посмотреть показания этих режимов при работе компьютера. Например, в спящем режиме, при обычном открытом рабочем столе, либо при запуске мощной игры.

В следующем режиме устанавливается стоимость электроэнергии кнопками установки, для расчета стоимости расхода энергии. Так вы можете измерить и рассчитать потребление любого из домашних бытовых приборов и устройств, и будете знать, какие устройства у вас экономные, а какие слишком много потребляют электричества.

Такой прибор имеет невысокую стоимость, около 14 долларов. Это небольшая цена для того, чтобы оптимизировать затраты, рассчитав мощность потребления устройств.

Цифровой прибор многофункциональный СМ 3010

SM 3010

Ваттметр служит для проведения замера напряжения, частоты, мощности, постоянного и переменного тока с одной фазой. А также, предназначен для контроля подобных приборов с меньшей точностью.

Диапазон замеров тока 0,002 — 10 ампер.

Замеры напряжения:
  • Постоянного от 1 до 1000 вольт.
  • Переменного от 1 до 700 вольт.
  • Частота измеряется в интервале 40-5000 герц.
Погрешность измерения:
  • Тока, напряжения, мощности постоянного тока +0,1%.
  • Тока, напряжения, мощности переменного тока +0,1% в интервале частот 40-1500 герц.
  • Относительная погрешность замера частоты в интервале 40-5000 герц +0,003%.

Габариты корпуса прибора 225 х 100 х 205 мм. Вес 1 кг. Мощность потребления менее 5 ватт.

Измерительное устройство ЦП 8506 – 120

TsP 8506 – 120

Служит для проведения замеров мощности активной и реактивной 3-фазной сети переменного тока, показывает текущее значение параметра мощности на индикаторе, преобразует в сигнал аналогового вида.

Произведенные замеры показываются в форме цифр на индикаторах в единицах величин, которые входят на устройство, либо на вход трансформатора тока или напряжения. При этом учитывается коэффициент трансформации. Цифровой дисплей разделен на четыре разряда.

Назначение устройства – для проведения замеров активной и реактивной мощностей в 3-фазных сетях электрического тока частотой 50 герц.

Технические данные
  • Коэффициент мощности – 1.
  • Размеры корпуса 120 х 120 х 150 мм.
  • Высота цифр на дисплее 20 мм.
  • Наибольший интервал показаний 9999.
  • Степень точности: 0,5.
  • Время проведения преобразования: менее 0,5 с.
  • Температура работы: от +5 до + 40 градусов.
  • Класс защиты корпуса и панели: IР 40.
  • Мощность потребления: 5 ватт.
  • Вес менее 1,2 кг.
Похожие темы:
  • Токоизмерительные клещи. Устройство и виды. Как выбрать
  • Фазометры. Виды и работа. Устройство и применение. Особенности
  • Мультиметры. Виды и работа. Применение и измерение
  • Инструмент для электрика. Приборы и вспомогательный инструмент
  • Осциллографы. Виды и особенности, Устройство и принцип действия
  • Вольтметры. Виды и работа. Устройство и маркировка. Особенности
  • Амперметры. Виды и работа. Устройство и применение. Особенности

Фазометр — электроизмерительный прибор, предназначенный для измерения углов сдвига фаз между

Фазометр — электроизмерительный прибор, предназначенный для измерения углов сдвига фаз между двумя изменяющимися периодически электрическими

колебаниями, например в трёхфазной системе электроснабжения.

Применение фазометров Фазометры очень часто применяются в электроустановках для определения коэффициента

Применение фазометров
Фазометры очень часто применяются в электроустановках для определения коэффициента реактивной

мощности cos φ (отсюда идёт его жаргонное название «Косинусофиметр», в виду незнания персоналом, обслуживающим электроустановки, правильного названия прибора).
Фазометры находят применение при разработке, регулировке и эксплуатации электронных и электротехнических аппаратов и устройств.

Рис– 1. Трехфазный фазометр Ц-302/1

Оцените статью
TutShema
Добавить комментарий