При прохождении тока по проводнику, можно наблюдать его различные действия: тепловое, химическое, магнитное или световое. Тепловое действие тока проявляется в том, что среда, в которой он протекает, нагревается. Оно может проявляться как в твердых телах, так в жидкостях и газах.
На данном уроке мы более подробно рассмотрим именно тепловое действие тока, разберем физику происходящих процессов и познакомимся с законом Джоуля-Ленца. Этот закон позволит нам узнать, какие проводники нагреваются больше других и от чего зависит количество энергии, которое идет на нагрев.
Нагревание проводника при прохождении по нему электрического тока
Как можно объяснить нагревание проводника электрическим током?
При прохождении электрического тока по проводнику его температура увеличивается — он нагревается. Что при этом происходит внутри проводника?
Под действием электрического поля в металлическом проводнике возникает электрический ток. Свободные электроны начинают упорядоченно двигаться. При этом сохраняется и хаотичность их движения.
При таком движении они (свободные электроны) взаимодействуют с ионами, находящимися в узлах кристаллической решетки проводника. В ходе этого взаимодействия свободные электроны передают ионам свою кинетическую энергию. Например, это происходит при соударении с ними.
Так, энергия электрического поля переходит во внутреннюю энергию проводника. Его температура увеличивается.
При протекании электрического тока по проводнику его внутренняя энергия увеличивается.
В растворах солей, кислот, щелочей свободными заряженными частицами являются ионы. Они также будут взаимодействовать с атомами вещества.
Закон Джоуля-Ленца
На примере многих бытовых приборов понятно, что если через участок цепи проходит электроток и при этом не совершается какая-либо работа, то происходит нагревание проводника. Иногда оно идет на пользу — например, в лампе накаливания или в аппарате дуговой сварки. Но в других случаях тепловой эффект нежелателен — например, перегрев электрической проводки в здании может вызвать пожар. Поэтому в наших интересах управлять таким эффектом, и правило Джоуля-Ленца определяет, от чего зависит тепловое действие тока.
Правило было сформулировано в результате опытов двух ученых — англичанина Джеймса Прескотта Джоуля и российского физика Эмилия Христиановича Ленца. Поскольку ученые работали независимо друг от друга, новый закон назвали двойным именем.
Закон Джоуля-Ленца кратко: нагревание проводника или полупроводника прямо пропорционально его сопротивлению, времени действия тока и квадрату силы тока.
Поскольку сопротивление проводника определяют такие характеристики, как его длина, площадь и проводимость, верны следующие утверждения:
Это поможет тебе понять Физику — Работа и Мощность Электрического Тока и Закон Джоуля-Ленца
- количество теплоты в проводнике снижается при увеличении площади его сечения;
- тепловой эффект снижается при уменьшении длины проводника.
Это легко проиллюстрировать, подключив к источнику питания две лампы с разным сопротивлением вначале последовательно, а после — параллельно. При последовательном подключении лампа с большим сопротивлением будет светить ярче, а при параллельном — наоборот.
Природа тепла в проводниках
Разберемся, как происходит нагрев проводника и каким образом этот процесс отвечает формулировке законе Джоуля-Ленца. Как известно, электрический ток представляет собой направленный поток электронов, если речь идет о металлах, и направленный поток ионов — если о растворах электролитов. Проводником называют такой металл, в котором много свободных электронов.
При подключении проводника к сети электроны начинают двигаться в одном направлении под действием электрического поля. При движении они сталкиваются с атомами проводника и передают им свою кинетическую энергию. Чем выше скорость заряженных частиц, тем чаще происходят такие столкновения и больше выделяется кинетической энергии. Часть этой энергии трансформируется в тепло, поэтому проводник нагревается.
Высокая сила тока означает, что через сечение проводника проходит много свободных электронов и столкновения происходят часто. Соответственно, частицам проводника передается много энергии, и он греется сильнее. Именно поэтому в законе Ленца-Джоуля говорится о том, что количество выделяемой теплоты пропорционально квадрату силы тока.
Теперь представим, что мы соединили в одну цепь последовательно два проводника, при этом у второго сечение больше, чем у первого. Во втором столкновений частиц будет меньше, а значит — выделится меньше тепла. Вспоминаем, что удельное сопротивление проводника обратно пропорционально его сечению. Чем меньше сечение материала, тем выше его сопротивление и тем сильнее он нагревается. Вот мы и описали тепловое действие тока в соответствии с законом Джоуля-Ленца.
Курсы подготовки к ОГЭ по физике помогут снять стресс перед экзаменом и получить высокий балл.
Количество теплоты, выделяемое проводником с током
Тепловое действие тока обусловлено тем, что свободные электроны, двигаясь с большой скорость, взаимодействуют с ионами металлов, ионами солей в растворах кислот и щелочей. Ионы начинают усиленно колебаться, двигаться, вращаться, то есть их энергия тоже повышается. Проводник или электролит нагревается.
Например, спираль лампочки раскаляется до такой температуры, что начинает излучать свет.
Электрическая энергия превращается в тепловую энергию проводника; часть рассеивается, часть используется в бытовых целях (для нагревания).
Работа, которую совершает электрический ток, определяется количеством теплоты, выделяемой проводником: Q = A , где (A) — работа тока, (Q) — количество теплоты.
Работу тока рассчитывают по формуле: A = U ⋅ I ⋅ t . Тогда количество теплоты, исходя из закона сохранения энергии, также будет равно: Q = U ⋅ I ⋅ t .
Согласно закону Ома U = IR . Подставляя эту формулу в предыдущую, получим: Q = I 2 ⋅ R ⋅ t .
Количество теплоты, которое выделяется в проводнике с током, прямо пропорционально квадрату силы тока, сопротивлению проводника и времени протекания тока.
В процессе своих экспериментов получили такой же результат Джеймс Джоуль в Англии и Эмилий Христианович Ленц в России. В их честь закон имеет двойное название: закон Джоуля-Ленца.
Джоуль Джеймс Прескотт ((1818—1889)) — английский физик, член Лондонского королевского общества. Он внёс значительный вклад в исследование электромагнетизма и тепловых явлений, в создание физики низких температур, в обоснование закона сохранения и превращения энергии. Именем Джоуля назвали единицу измерения работы и энергии в системе СИ.
Эмилий Христианович Ленц ((1804—1865)) — российский физик и электротехник, академик Петербургской Академии наук ((1830)), ректор Санкт-Петербургского университета (с (1863)). Результатом его исследований стало открытие взаимосвязей (на «языке математики») между электрическими и термодинамическими параметрами, между электрическими и магнитными параметрами при протекании тока в проводнике.
Преобразование электрической энергии в тепловую широко используется в электрических печах и различных электронагревательных приборах.
Состояние сети, когда по проводам и приборам проходит ток больше допустимого значения, называется перегрузкой. Опасность этого явления в тепловом действии тока, ведь при большой перегрузке изоляция проводников легко воспламеняется. Перегрузка может возникнуть при подключении устройств большой мощности через удлинитель (смотри рисунок и никогда так не делай!).
Для примера, перегрузка проводов на (25)% приводит к сокращению срока их службы где-то с (20) лет до (3—5) месяцев, а перегрузка проводов на (50)% — до нескольких часов.
Работа и мощность тока
Работу электрического поля по перемещению свободных зарядов в проводнике называют работой тока. При перемещении заряда q вдоль проводника поле совершает работу A = qU (см. § 53), где U – разность потенциалов на концах проводника. Поскольку q = It, работу тока можно записать в виде
Закон Джоуля-Ленца
Рассмотрим практически важный случай, когда основным действием тока является тепловое действие. В таком случае согласно закону сохранения энергии количество теплоты, выделившееся в проводнике, равно работе тока: Q = A. Поэтому
? 1. Докажите, что количество теплоты Q, выделившееся в проводнике с током, выражается также формулами
Q = I 2 Rt, (2)
Q = (U 2 /R)t. (3)
Подсказка. Воспользуйтесь формулой (1) и законом Ома для участка цепи.
Мы вывели формулы (1) – (3), используя закон сохранения энергии, но исторически соотношение Q = I 2 Rt независимо друг от друга установили на опыте российский ученый Эмилий Христианович Ленц и английский ученый Дж. Джоуль за несколько лет до открытия закона сохранения энергии.
Закон Джоуля – Ленца: количество теплоты, выделившееся за время t в проводнике сопротивлением R, сила тока в котором равна I, выражается формулой
Применение закона Джоуля – Ленца к последовательно и параллельно соединенным проводникам
Выясним, в каких случаях для сравнения количества теплоты, выделившейся в проводниках, удобнее пользоваться формулой (2), а в каких случаях – формулой (3).
Формулу Q = I 2 Rt удобно применять, когда сила тока в проводниках одинакова, то есть когда они соединены последовательно (рис. 58.1).
Из этой формулы видно, что при последовательном соединении проводников большее количество теплоты выделяется в проводнике, сопротивление которого больше. При этом
Формулу Q = (U 2 /R)t удобно применять, когда напряжение на концах проводников одинаково, то есть когда они соединены параллельно (рис. 58.2).
Из этой формулы видно, что при параллельном соединении проводников большее количество теплоты выделяется в проводнике, сопротивление которого меньше. При этом
? 2. При последовательном соединении в первом проводнике выделилось в 3 раза большее количество теплоты, чем во втором. В каком проводнике выделится большее количество теплоты при их параллельном соединении? Во сколько раз большее?
? 3. Имеются два проводника сопротивлением R1 = 1 Ом и R2 = 2 Ом. Их подключают к источнику напряжения 6 В. Какое количество теплоты выделится за 10 с, если:
а) подключить только первый проводник?
б) подключить только второй проводник?
в) подключить оба проводника последовательно?
г) подключить оба проводника параллельно?
д) чему равно отношение значений количества теплоты Q1/Q2, если проводники включены последовательно? Параллельно?
Поставим опыт
Будем включать в сеть две лампы накаливания с разными сопротивлениями нити накала параллельно и последовательно (рис. 58.3, а, б). Мы увидим, что при параллельном соединении ламп ярче светит одна лампа, а при последовательном – другая.
? 4. У какой из ламп (1 или 2) сопротивление больше? Поясните ваш ответ.
? 5. Объясните, почему при последовательном соединении накал нити каждой лампы меньше, чем накал этой же лампы при параллельном соединении.
? 6. Почему при включении лампы в осветительную сеть нить накала раскаляется добела, а последовательно соединенные в нею соединительные провода почти не нагреваются?
Мощность тока
Мощностью тока P называют отношение работы тока A к промежутку времени t, в течение которого эта работа совершена:
Единица мощности – ватт (Вт). Мощность тока равна Вт, если совершаемая током за 1 с работа равна 1 Дж. Часто используют производные единицы, например киловатт (кВт).
? 7. Докажите, что мощность тока можно выразить формулами
P = IU, (5)
P = I 2 R, (6)
P = U 2 /R. (7)
Подсказка. Воспользуйтесь формулой (4) и законом Ома для участка цепи.
? 8. Какой из формул (5) – (7) удобнее пользоваться при сравнении мощности тока:
а) в последовательно соединенных проводниках?
б) в параллельно соединенных проводниках?
? 9. Имеются проводники сопротивлением R1 и R2. Объясните, почему при последовательном соединении этих проводников
а при параллельном
? 10. Сопротивление первого резистора 100 Ом, а второго – 400 Ом. В каком резисторе мощность тока будет больше и во сколько раз больше, если включить их в цепь с заданным напряжением:
а) последовательно?
б) параллельно?
в) Чему будет равна мощность тока в каждом резисторе при параллельном соединении, если напряжение в цепи 200 В?
г) Чему при том же напряжении цепи равна суммарная мощность тока в двух резисторах, если они соединены: последовательно? параллельно?
Мощностью электроприбора называют мощность тока в этом приборе. Так, мощность электрочайника – примерно 2 кВт.
Обычно мощность прибора указывают на самом приборе.
Ниже приведены примерные значения мощности некоторых приборов.
Лампа карманного фонарика: около 1 Вт
Лампы осветительные энергосберегающие: 9-20 Вт
Лампы накаливания осветительные: 25-150 Вт
Электронагреватель: 200-1000 Вт
Электрочайник: до 2000 Вт
Все электроприборы в квартире включаются параллельно, поэтому напряжение на них одинакова.
? 11. В сеть напряжением 220 В включен электрочайник мощностью 2 кВт.
а) Чему равно сопротивление нагревательного элемента в рабочем режиме (когда чайник включен)?
б) Чему равна при этом сила тока?
? 12. На цоколе первой лампы написано «40 Вт», а на цоколе второй – «100 Вт». Это – значения мощности ламп в рабочем режиме (при раскаленной нити накала).
а) Чему равно сопротивление нити накала каждой лампы в рабочем режиме, если напряжение в цепи 220 В?
б) Какая из ламп будет светить ярче, если соединить эти лампы последовательно и подключить к той же сети? Будет ли эта лампа светить так же ярко, как и при параллельном подключении?
? 13. В электронагревателе имеются два нагревательных элемента сопротивлением R1 и R2, причем R1 > R2. Используя переключатель, элементы нагревателя можно включать в сеть по отдельности, а также последовательно или параллельно. Напряжение в сети равно U.
а) При каком включении элементов мощность нагревателя будет максимальной? Чему она при этом будет равна?
б) При каком включении элементов мощность нагревателя будет минимальной (но не равной нулю)? Чему она при этом будет равна?
в) Чему равно отношение R1/R2, если максимальная мощность в 4,5 раза больше минимальной?
Правила Кирхгофа
I1
I2 I3
В основе расчета электрических цепей лежат два правила Кирхгофа: 1) АЛГЕБРАИЧЕСКАЯ СУММА ТОКОВ, СХОДЯЩИХСЯ В УЗЛЕ, РАВНА НУЛЮ, т. е. . (39)
Току, текущему к узлу, приписывается один знак («+» или «-«), а току, текущему от узла, — другой знак; таким образом, для направлений токов в узле электрической схемы, пред- ставленном на рис. 6, имеем .
2) В ЛЮБОМ ЗАМКНУТОМ КОНТУРЕ АЛГЕБРАИЧЕСКАЯ СУММА НАПРЯЖЕНИЙ НА ВСЕХ УЧАСТКАХ ЭТОГО КОНТУРА РАВНА АЛГЕБРАИЧЕСКОЙ СУММЕ ЭДС, ВСТРЕЧАЮЩИХСЯ В ЭТОМ КОНТУРЕ (40)
При этом также следует придерживаться правила знаков: токи, текущие вдоль выбранного направления обхода контура считаются положительными, а идущие против направления обхода — отрицательными. Соответственно положительными считаются ЭДС тех источников, которые вызывают ток, совпадающий по направлению с обходом контура (см. рис.7), где обозначает направление обхода контура .
Q = I 2 Rt , где
Q — количество выделяемой теплоты (в Джоулях)
I — сила тока (в Амперах)
R — сопротивление проводника (в Омах)
t — время прохождения (в секундах)
♦ Закон Джоуля–Ленца : количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления проводника и времени прохождения тока.
В XIX в. независимо друг от друга англичанин Д. Джоуль и россиянин Э. Ленц изучали нагревание проводников при прохождении электрического тока и опытным путём обнаружили закономерность: количество теплоты, выделяющееся при прохождении тока по проводнику, равно произведению квадрата силы тока, сопротивления проводника и времени: Q = I 2 Rt (в случае постоянных силы тока и сопротивления). Эту закономерность называют законом Джоуля-Ленца. Данный закон дает количественную оценку теплового действия электрического тока.
Применяя закон Ома, можно получить эквивалентные формулы: Q = IUt , Q= U 2 t/R
Примеры решения задач по физике на эту тему смотрите в конспекте «Решение ЗАДАЧ на Закон Джоуля-Ленца»
Где применяется закон Джоуля-Ленца ?
1. Например, в лампах накаливания и в электронагревательных приборах применяется закон Джоуля-Ленца. В них используют нагревательный элемент, который является проводником с высоким сопротивлением. За счет этого элемента можно добиться локализованного выделения тепла на определенном участке. Выделение тепла будет появляться при повышении сопротивления, увеличении длины проводника, выбором определенного сплава.
2. Одной из областей применения закона Джоуля-Ленца является снижение потерь энергии. Тепловое действие силы тока ведет к потерям энергии. При передаче электроэнергии, передаваемая мощность линейно зависит от напряжения и силы тока, а сила нагрева зависит от силы тока квадратично, поэтому если повышать напряжение, при этом понижая силу тока перед подачей электроэнергии, то это будет более выгодно. Но повышение напряжения ведет к снижению электробезопасности. Для повышения уровня электробезопасности повышают сопротивление нагрузки соответственно повышению напряжения в сети.
3. Также закон Джоуля-Ленца влияет на выбор проводов для цепей. Потому что при неправильном подборе проводов возможен сильный нагрев проводника, а также его возгорание. Это происходит когда сила тока превышает предельно допустимые значения и выделяется слишком много энергии.
Нагревание проводов является вредным, поскольку приводит к потерям электроэнергии при передаче ее от источника к потребителю. Для уменьшения этих потерь силу тока уменьшают, повышая напряжение источника с тем, чтобы передаваемая мощность осталась прежней. Чтобы избежать электрического пробоя изоляции проводов, их поднимают на большую высоту на мачтах высоковольтных линий электропередач, связывающих крупные электростанции с городами и поселками, отстоящими от них на десятки и сотни километров.
Вы смотрели конспект урока физики в 8 классе «Закон Джоуля-Ленца и его применение».
Выберите дальнейшие действия:
- Посмотреть «Решение ЗАДАЧ на Закон Джоуля-Ленца»
- Вернуться к Списку конспектов по Физике.
- Проверить свои знания по Физике.
- Смотреть следующий конспект «Работа и мощность электрического тока».
Работа электрического тока. Закон Джоуля-Ленца.
Для определения работы, которая совершается током, проходящим по некоторому участку цепи, нужно воспользоваться определением напряжения: .
Для определения работы, которая совершается током, проходящим по некоторому участку цепи, нужно воспользоваться определением напряжения: . Значит,
где А — работа тока; q — электрический заряд, который прошел за определенное время через исследуемый участок цепи. Подставив в последнее равенство формулу q = It, имеем:
Работа электрического тока на участке цепи является произведением напряжения на концах этого участка на силу тока и на время, на протяжении которого совершалась работа.
Закон Джоуля-Ленца .
Закон Джоуля — Ленца гласит: количество теплоты, которое выделяется в проводнике на участке электрической цепи с сопротивлением R при протекании по нему постоянного тока I в течение времени t равно произведению квадрата тока на сопротивление и время:
Закон был установлен в 1841 г. английским физиком Дж. П. Джоулем, а в 1842 г. подтвержден точными опытами русского ученого Э. X. Ленца. Само же явление нагрева проводника при прохождении по нему тока было открыто еще в 1800 г. французским ученым А. Фуркруа, которому удалось раскалить железную спираль, пропустив через нее электрический ток.
Из закона Джоуля — Ленца видно, что при последовательном соединении проводников, поскольку ток в цепи всюду одинаков, максимальное количество тепла будет выделяться на проводнике с наибольшим сопротивлением. Это применяется в технике, например, для распыления металлов.
При параллельном соединении каждый проводник находятся под одинаковым напряжением, но токи в них разные. Из формулы (Q = I 2 Rt) видно, что, так как, согласно закону Ома , то
Следовательно, на проводнике с меньшим сопротивлением будет выделяться больше тепла.
Если в формуле (А = IUt) выразить U через IR, воспользовавшись законом Ома, получим Закон Джоуля — Ленца. Это лишний раз подтверждает тот факт, что работа тока расходуется на выделение тепла на активном сопротивлении в цепи.