Какое основание имеет двоичная система счисления

Какое основание имеет двоичная система счисления

Вспомним материал по системам счисления. В нём говорилось, что наиболее удобной системой счисления для компьютерных систем является двоичная система. Дадим определение этой системе:

Двоичной системой счисления называется позиционная система счисления, у которой основанием является число 2.

Для записи любого числа в двоичной системе счисления используются всего лишь 2 цифры: 0 и 1.

Общая форма записи двоичных чисел

Для целых двоичных чисел можно записать:

Данная форма записи числа «подсказывает» правило перевода натуральных двоичных чисел в десятичную систему счисления: требуется вычислить сумму степеней двойки, соответствующих единицам в свёрнутой форме записи двоичного числа.

Двоичная система счисления

Но двоичная система имеет некоторые приятные особенности, т.к. коэффициентами при степенях двойки в ней могут быть только либо нули (и тогда можно просто игнорировать разряд числа, имеющий значение “0”), либо единицы (умножение на “1” также можно опустить). Т.е. достаточно просуммировать “два в соответствующей степени” только в тех позициях двоичного числа, в которых находятся единицы. Степень же, в которую нужно возводить число 2, равна номеру позиции. Арифметические операции в любой позиционной системе счисления также имеют общую логику. Таблица 4.

1“Круглые” числа в двоичной СС
1= 2 0= 1
+ 1110= 6(10)1000= 2 3= 8
10000= 2 4= 16

Каждый разряд двоичного числа имеет информационную емкость 1 бит.На основании одного двоичного разряда можно закодировать только два десятичных числа — 1=1(10), на основании двух двоичных разрядов можно закодировать уже четыре десятичных числа – 01=1(10), 11=3(10), тремя двоичными разрядами можно представить восемь десятичных чисел и т.д. в соответствии с формулой Хартли (2). Таблица 5.

2 0десятичное2 22 12 0десятичное
111117
001106
1015
2 12 0десятичное1004
1130113
1020102
0110011
0000000

Какое основание имеет двоичная система счисления

Двоичная система счисления — самое простое объяснение

Мы видим, что добавление каждого следующего разряда вдвое увеличивает количество двоичных комбинаций. Графически это может быть представлено так: Рис. 15. Каждый следующий разряд двоичного числа удваивает количество возможных комбинаций из нулей и единиц. Таблицу степеней числа 2 от 2 0 до 2 10 следует знать наизусть. Таблица 6.

N012345678910
2 N12481632641282565121024

Открытие двоичного способа представления чисел приписывают китайскому императору Фо Ги, жизнь которого относится к 4-му тысячелетию до новой эры. Известный немецкий математик Лейбниц(1646-1716) в 1697 г. разработал правила двоичной арифметики. Он подчеркивал, что»вычисление с помощью двоек, то есть 0 и 1, в вознаграждение его длиннот, является для науки основным и порождает новые открытия, которые оказываются полезными впоследствии, даже в практике чисел, а особенно в геометрии: причиной чего служит то обстоятельство, что при сведении чисел к простейшим началам, каковы 0 и 1, всюду выявляется чудесный порядок». Блестящие предсказания Лейбница сбылись только через 2,5 столетия, когда именно двоичная система счисления нашла применение в качестве универсального способа кодирования информации в компьютерах.

Двоичная система

Двоичная система счисления – позиционная система счисления с основанием 2. Также называется бинарной (binary). Она широко используется в вычислительной технике и других современных устройствах.

Двоичные системы счисления используют всего две цифры при записи информации – 0 и 1. Они появились еще в Древнем Китае, но современная binary system стала развиваться в 17 веке, а ее применение началось в середине 20-го века.

История развития

Томас Хэрриот, астроном и математик из Англии, в 1605 году впервые описал двоичное представление чисел, а Фрэнсис Бэкон, философ, создал шифр из двух символов – A и B.

В 1670-м году Хуан Карамюэль-и-Лобковиц, богослуживец из Испании, опубликовал разные способы представления чисел в системах счисления. В публикации было упомянуто и про двоичную интерпретацию.

Наиболее значительными в развитии binary system стали работы Готфрида Лейбница, математика из Германии. В 1703 году он описал двоичную арифметику – возможные математические операции с двоичными числами.

В 1838 году изобретатель из Америки Самюэл Морзе создал одноименный шифр, который включал в себя всего два символа – точку и тире. Они передавались по телеграфу в виде сигналов различной длины. Азбука Морзе – это не бинарная система в строгом понимании термина, но двоичный принцип в ней использовался. Именно с ней соответствующий вариант представления записей продемонстрировал свою значимость.

Чуть позже, в 1847 году, Джордж Буль, математик из Англии, создал «булеву алгебру». В ней появились такие понятия как «ложь» и «истина», а также определенные логические законы.

В 1937 году Клод Шеннон, инженер из Америки, объединил двоичный принцип, булеву логику и электрические схемы. Он же ввел понятие «бит» – минимального количества информации, где:

  • 0 – это отсутствие тока, «ложь» (0 бит);
  • 1 – наличие тока, «истина» (1 бит).

С того самого момента бинарная система счисления стала активно применяться в вычислительной технике, включая современные компьютеры.

Числа в binary system

Двоичным числом называется число, которое состоит из двоичных цифр. Их всего две – 0 и 1. В качестве записей в binary system могут использовать разные значения: «ток есть» и «тока нет», «истина» и «ложь» и так далее.

Ниже можно увидеть числа в двоичной системе, а также их интерпретации в других системах счисления:

Двоичная система в информатике и программировании

Эта таблица поможет лучше ориентироваться в расчетах и быстрее разобраться со способами представления чисел.

Любое натуральное число может быть закодировано в бинарном представлении. Оно будет представлять собой некоторую последовательность единиц и нулей.

Особенности

У двоичной системы счисления имеются как преимущества, так и недостатки. К ее слабым сторонам относят то, что она не понятна человеку на уровне интуиции. Также сюда можно отнести следующие моменты:

  1. Неудобство работы с большими числами. Это вызвано длинной записью значения. Пример – RGB: 25510, 25510, 25510. Здесь и далее нижний индекс будет указывать на основание системы. Значения RGB обычно записываются в шестнадцатеричной форме представления: FF16, FF16, FF16. При переводе записи в бинарный вид получится 1111112, 1111112, 1111112. Такая форма записи выглядит громоздко и непонятно.
  2. Отсутствие реального применения в жизни (за исключением компьютеров и иной вычислительной техники).
  3. Долгое вычисление вручную.

Двоичная система счисления для вычислительной техники – это некий стандарт. Из него следуют преимущества рассматриваемой формы представления информации:

  • позиционная система предусматривает разряды;
  • можно осуществлять различные арифметические действия;
  • допустимо построение логики;
  • подходит для шифрования данных;
  • используется в качестве «родного» для компьютеров и других устройств.

Binary System – стандарт, используемый в ЭВМ. Он удобен при расчетах и занимает намного меньше пространства, чем остальные формы представления числовых записей.

Способы преобразования

Перевод из двоичной системы счисления в десятичную или шестнадцатеричную – не самая трудная задача. В binary system разряды нумеруются справа-налево. Пример – 10102. Разряды будут соответственно:

Для перевода двоичного значения в десятичную форму необходимо взять цифру из наименьшего разряда, умножить на основание 2 в темени текущего разряда. Далее – проделать то же самое с остальными разрядами и сложить получившиеся результаты:

10102 = 0*2 0 +1*2 1 +0*2 2 +1*2 3 = 1010.

Есть более простой поход. Если в двоичной записи попадается 0, он вычеркивается. Останется сложить разряды, которые получились после преобразований:

Перевод из десятичной в бинарную систему

Для перевода значения из десятичной формы записи в бинарную необходимо поделить его на основание 2. Деление осуществляется до тех пор, пока в результате не останется единица.

Теперь получившуюся запись из 0 и 1 требуется записать в обратном порядке. Ниже – наглядный пример с преобразованием 910:

Двоичная система в информатике и программировании

Точно также можно перевести любое другое значение. В основе операций лежит деление в столбик. С крупными значениями перевод может затянуться на долгое время.

Из бинарной в шестнадцатеричную

Чтобы перевести значение из бинарной формы записи в шестнадцатеричную, потребуется выполнить немало расчетов. Разделить их можно условно на два этапа:

  1. Перевод заданного значения из бинарной формы в десятичную запись.
  2. Преобразование полученного результата в шестнадцатеричный формат.

Примером послужит 10111012 = 9310. Полученное десятичное значение необходимо преобразовать в шестнадцатеричное. Для этого 93 требуется делить в столбик до тех пор, пока остаток окажется меньше 16. Все остатки после произведенных расчетов записываются в обратном порядке. Результат – 9310 = 5D16.

Дробные значения переводятся из бинарной формы представления в шестнадцатеричную точно также. Целые части записываются по уже известным принципам. В случае с дробной частью необходимо многократно и последовательно умножать ее до тех пор, пока она не станет равна нулю. Обычно такие расчеты производятся при помощи специальных калькуляторов. Вручную их практически не считают.

Перевод двоичных чисел в десятичную систему счисления

Обратный перевод двоичного числа в десятичную систему производится также строго по правилу перевода.

Сначала нумеруются разряды двоичного числа справа налево, начиная с нулевого, а затем каждая цифра двоичного числа умножается на основание двоичной системы, то есть на два, возведенной в степень соответствующего разряда. Полученные произведения суммируются, и получается десятичное число.

Например: двоичное число 1110001 в десятичной системе равно 113.

Нумеруем разряды числа, начиная с нуля: 1(6) 1(5) 1(4) 0(3) 0(2) 0(1) 1(0).

Каждую цифру двоичного числа умножаем на два в степени разряда и суммируем:

1*2 6 + 1*2 5 + 1*2 4 +0*2 3 + 0*2 2 + 0*2 1 + 1*2 0 = 64 + 32 + 16 + 0 + 0 + 0 +1 = 113

Следует помнить, что любое число в степени ноль равно единице.

Двоичная система счисления была описана Готфридом Вильгельмом Лейбницем в 18 веке. На это его вдохновили гексограммы из китайской книги Перемен, которые соответствовали двоичным числам от 0 до 111111.

Перевод чисел из двоичной системы счисления в десятичную

В двоичной системе счисления с увеличением значения количество разрядов растет очень быстро. Как определить, что значит двоичное число 10001001? Нам сложно понять, сколько это, мы привыкли мыслить в десятичной системе. Поэтому часто используется перевод двоичных чисел в десятичные.

В десятичной системе счисления любое число можно представить в форме суммы единиц, десяток, сотен и так далее. Например:

5476 = 5000 + 400 + 70 + 6

Можно пойти еще дальше и разложить число, используя основание системы счисления, возводимое в показатель степени, равный разряду цифры, уменьшенному на единицу:

5476 = 5 * 10 3 + 4 * 10 2 + 7 * 10 1 + 6 * 10 0

После равенства числа 5, 4, 7 и 6 – это набор цифр из которых состоит число 5476. Все эти цифры умножаются на десять, возведенную в ту или иную степень. Десять – это основание десятичной системы счисления. Степень, в которую возводится десятка – это разряд цифры за минусом единицы. Так, например, 6 находится в первом разряде, поэтому она умножается на 10 (1-1) . Натуральное число в нулевой степени равно единице. Таким образом, мы умножаем 6 на 1.

Точно также производится разложение числа в двоичной системы счисления, кроме того, что основанием выступает двойка, а не десятка. Здесь до знака равенства число представлено в двоичной системе счисления, после «равно» запись идет в десятичной:

10001001 = 1 * 2 7 + 0 * 2 6 + 0 * 2 5 + 0 * 2 4 + 1 * 2 3 + 0 * 2 2 + 0 * 2 1 + 1 * 2 0

Результат вычислений дает десятичное число, количественно равное двоичному 10001001:

1*2 7 + 0*2 6 + 0*2 5 + 0*2 4 + 1*2 3 + 0*2 2 + 0*2 1 + 1*2 0 =
= 128 + 0 + 0 + 0 + 8 + 0 + 0 + 1 = 137

То есть число 10001001 по основанию 2 равно числу 137 по основанию 10:

Почему двоичная система счисления так распространена?

Дело в том, что двоичная система счисления – это язык современной вычислительной техники.

Когда любые данные сохраняются на компьютере, они кодируются числами. С числами же компьютер выполняет операции, изменяя эти данные.

Допустим, у нас есть десятичное число 14, которое требуется сохранить в компьютерной памяти. Мы задействуем участок памяти, в данном случае состоящий как минимум из двух элементов, отводимых под разряды. В одном из разрядов мы сохраняем десятичное число 1, в другом – число 4.

Элемент памяти – это физическое устройство. Если проектировать его для хранения десятичной цифры, потребуется создать такое устройство, которое может находиться в десяти разных физических состояниях и способно переключаться между ними. Каждое из этих состояний будет соответствовать числу от 0 до 9.

Создать такой элемент памяти возможно, однако сложнее и дороже, чем создать элемент, способный находиться только в двух состояниях. Одно состояние сопоставить нулю, второе – единице. Кроме того, подобное хранение данных является более надежным.

Поэтому оказалось проще перевести число 14 в двоичную систему счисления, получив число 1110, и именно его сохранить в памяти. И пусть даже при этом будут задействованы не два, а четыре разряда, то есть четыре элементарных единиц памяти.

Таблица и алфавит

Алфавит двоичной системы счисления состоит всего из двух знаков: 0 и 1 . Однако это нисколько не усложняет выполнение арифметических действий.

Кроме того, двоичная система является самой удобной для быстрого перевода в другие системы счисления.

Так, чтобы перевести двоичное число в десятичное, необходимо найти значение его развернутой формы . Например:

1001102 = 1 ∙ 2 5 + 0 ∙ 2 4 + 0 ∙ 2 3 + 1 ∙ 2 2 + 1 ∙ 2 2 + 0 ∙ 2 0 = 32 + 0 + 0 + 4 + 2 + 0 = 3810

Чтобы наоборот перевести число в двоичную из десятичной, необходимо выполнить его деление на 2 с остатком, а затем записать все остатки в обратном порядке, начиная с частного:

Делимое 38 19 9 4 2
Делитель22222
Частное199421
Остаток01100

Для перевода в другие системы необходимо:

  • Перевести двоичный код в десятичный.
  • Выполнить деление десятичного числа на основание той системы, в которую требуется перевести.

Однако можно воспользоваться и более быстрым и удобным способом: разделить знаки двоичного числа на условные группы слева на право (для восьмеричной — по 3 знака; для шестнадцатеричной — по 4 знака), а затем воспользоваться таблицей перевода:

Двоичная Восьмеричная Шестнадцатеричная
000
00111
01022
01133
10044
10155
11066
11177
10008
10019
1010A
1011B
1100C
1101D
1110E
1111F

110010012 = 11 001 001 = 011 001 001 = 3118

110010012 = 1100 1001 = С916

Представление двоичных чисел

В двоичной системе также существует понятие «отрицательных» чисел. И для того, чтобы провести какую-либо операцию с ними в двоичном коде, необходимо представить его в виде дополнительного кода. Запись положительного числа при этом не меняется ни для одного из кодов.

Чтобы найти дополнительный код отрицательного числа, необходимо воспользоваться его прямым и дополнительным кодами.

Прямой код предполагает приписывание единицы в начале без изменений записи:

A > 0Aпр = 0A1010112; Aпр = 01010112
A ≤ 0Aпр = 1|A|-1010112; Aпр = 11010112

Для записи обратного кода цифры заменяют на противоположное значение, первую единицу от прямого кода оставляют без изменений:

A > 0Aобр = 0A1010112; Aобр = 01010112
A ≤ 0Aобр = 1 A-1010112; Aобр = 10101002

Дополнительный код предполагает использование обратного кода, с той лишь разницей, что к отрицательному числу прибавляют единицу:

A > 0Aдоп = 0A1010112; Aдоп = 01010112
A ≤ 0Aдоп = 1 A + 1-1010112; Aдоп = 10101012

Какое основание имеет двоичная система счисления

Двоичной системой счисления называется позиционная система счисления с основанием 2.

Двоичный алфавит : 0 и 1.

Для целых двоичных чисел можно записать:

Правило перевода целых десятичных чисел в двоичную систему счисления

Компактное оформление

Двоичная арифметика

Двоичная арифметика намного проще десятичной, т.к. перенос возникает в единственном случае — при двух единицах в одноименных разрядах.

Двоичное сложение

При сложении столбиком двух цифр справа налево в двоичной системе счисления, как в любой позиционной системе, в следующий разряд может переходить только единица. Результат сложения двух положительных чисел имеет либо столько же цифр, сколько у максимального из двух слагаемых, либо на одну цифру больше, но этой цифрой может быть только единица.

Двоичное вычитание

При выполнении операции вычитания всегда из большего по абсолютной величине числа вычитается меньшее и у результата ставится соответствующий знак.

Двоичное умножение

Операция умножения выполняется с использованием таблицы умножения по обычной схеме (применяемой в десятичной системе счисления) с последовательным умножением множимого на очередную цифру множителя.

Рассмотрим примеры на умножение.

При выполнении умножения в примере 2 складываются три единицы 1+1+1=11 в соответствующем разряде пишется 1, а другая единица переносится в старший разряд.

В двоичной системе счисления операция умножения сводится к сдвигам множимого и сложению промежуточных результатов.

Двоичное деление

Операция деления выполняется по алгоритму, подобному алгоритму выполнения операции деления в десятичной системе счисления.

Рассмотрим примеры на деление

Таблица и алфавит

Алфавит двоичной системы счисления состоит всего из двух знаков: 0 и 1 . Однако это нисколько не усложняет выполнение арифметических действий.

Кроме того, двоичная система является самой удобной для быстрого перевода в другие системы счисления.

Так, чтобы перевести двоичное число в десятичное, необходимо найти значение его развернутой формы . Например:

1001102 = 1 ∙ 2 5 + 0 ∙ 2 4 + 0 ∙ 2 3 + 1 ∙ 2 2 + 1 ∙ 2 2 + 0 ∙ 2 0 = 32 + 0 + 0 + 4 + 2 + 0 = 3810

Чтобы наоборот перевести число в двоичную из десятичной, необходимо выполнить его деление на 2 с остатком, а затем записать все остатки в обратном порядке, начиная с частного:

Делимое 38 19 9 4 2
Делитель22222
Частное199421
Остаток01100

Для перевода в другие системы необходимо:

  • Перевести двоичный код в десятичный.
  • Выполнить деление десятичного числа на основание той системы, в которую требуется перевести.

Однако можно воспользоваться и более быстрым и удобным способом: разделить знаки двоичного числа на условные группы слева на право (для восьмеричной — по 3 знака; для шестнадцатеричной — по 4 знака), а затем воспользоваться таблицей перевода:

Двоичная Восьмеричная Шестнадцатеричная
000
00111
01022
01133
10044
10155
11066
11177
10008
10019
1010A
1011B
1100C
1101D
1110E
1111F

110010012 = 11 001 001 = 011 001 001 = 3118

110010012 = 1100 1001 = С916

Представление двоичных чисел

В двоичной системе также существует понятие «отрицательных» чисел. И для того, чтобы провести какую-либо операцию с ними в двоичном коде, необходимо представить его в виде дополнительного кода. Запись положительного числа при этом не меняется ни для одного из кодов.

Чтобы найти дополнительный код отрицательного числа, необходимо воспользоваться его прямым и дополнительным кодами.

Прямой код предполагает приписывание единицы в начале без изменений записи:

A > 0Aпр = 0A1010112; Aпр = 01010112
A ≤ 0Aпр = 1|A|-1010112; Aпр = 11010112

Для записи обратного кода цифры заменяют на противоположное значение, первую единицу от прямого кода оставляют без изменений:

A > 0Aобр = 0A1010112; Aобр = 01010112
A ≤ 0Aобр = 1 A-1010112; Aобр = 10101002

Дополнительный код предполагает использование обратного кода, с той лишь разницей, что к отрицательному числу прибавляют единицу:

A > 0Aдоп = 0A1010112; Aдоп = 01010112
A ≤ 0Aдоп = 1 A + 1-1010112; Aдоп = 10101012
Оцените статью
TutShema
Добавить комментарий