Разбирая на детали старые или нерабочие устройства часто можно найти светодиоды. Однако в большинстве случаем на них отсутствует какая-либо маркировка или другие опознавательные знаки. Поэтому определить их параметры по справочнику попросту невозможно. Отсюда возникает вполне естественный вопрос: как определить параметры светодиода?
Опытные электронщики таким вопросом практически не задаются, поскольку могут с достаточной точностью определить параметры такого полупроводникового прибора, ориентируясь лишь на его внешний вид и зная некоторые нюансы, присущие большинству светодиодов. Эти нюансы рассмотрим и мы.
Электрические параметры светодиодов
Первым делом заметим, что светодиод характеризуется тремя электрическими параметрами (световые характеристики мы рассматривать не будем):
1) падение напряжения, измеряемое в вольтах. Когда говорят 2-х вольтный или 3-х вольтный светодиод, то это имеется в виду данный параметр;
2) номинальный ток. Часто его значение приводится в справочниках в миллиамперах. 1 мА = 0,001 А;
3) мощность рассеяния – это мощность, которую способен рассеять (выделить в окружающую среду) полупроводниковый прибор не перегреваясь. Измеряется в ваттах. Значение данного параметра с высокой точностью можно определить самостоятельно, умножив ток на напряжение.
В большинстве случае достаточно знать два первых параметра, а то и вовсе только номинальный ток.
Условно я выделил два основных способа, с помощью которых можно с высокой долей вероятности узнать или определить указанные параметры. Первый способ – информационный. Это наиболее быстрый и простой способ. Одна он не всегда дает положительный результат. Второй способ, нам – электронщикам, более интересный. Я назвал его «электрический», так как ток и напряжение будут определяться с помощью мультиметра (тестера). Рассмотрим подробно оба варианта.
Сколько вольт имеет прямое напряжение светодиода
Если изучить стандартную вольт-амперную характеристику светодиода, можно заметить на ней несколько характерных точек:
- В точке 1 p-n переход начинает открываться. Через него начинает идти ток и LED начинает светиться.
- При увеличении напряжения ток достигает рабочего значения (в данном случае 20 мА), и в точке 2 напряжение является рабочим для данного LED, яркость свечения становится оптимальной.
- При дальнейшем увеличении напряжения ток растет, и в точке 3 достигает своего максимально допустимого значения. После этого он быстро выходит из строя, а кривая ВАХ растет только теоретически (штриховой участок).
Надо заметить, что после окончания перегиба и выхода на линейный участок ВАХ имеет большую крутизну, что ведет к двум последствиям:
КАК УЗНАТЬ ПАРАМЕТРЫ ЛЮБОГО СВЕТОДИОДА
- при увеличении тока (например, при неисправности драйвера или отсутствии балластного резистора) напряжение растет слабо, поэтому можно говорить о постоянном падении напряжения на p-n переходе, независимо от рабочего тока (эффект стабилизации);
- при небольшом увеличении напряжения ток растет быстро.
Поэтому заметно увеличивать напряжение на элементе относительно рабочего нельзя.
На сколько вольт бывают светодиоды
Параметры светодиодов большей частью зависят от материала, из которого изготовлен p-n переход, хотя часть характеристик все же зависит от конструктива. Типовые значения рабочего напряжения и цвет свечения для маломощных элементов при токе 20 мА сведены в таблицу:
GaAs, GaAlAs | Инфракрасный | 1,1 – 1,6 |
GaAsP, GaP, AlInGaP | Красный | 1,5 – 2,6 |
GaAsP, GaP, AlInGaP | Оранжевый | 1,7 – 2,8 |
GaAsP, GaP, AlInGaP | Желтый | 1,7 – 2,5 |
GaP, InGaN | Зеленый | 1,7 – 4 |
ZnSe, InGaN | Голубой | 3,2 – 4,5 |
Люминофор | Белый | 2,7 – 4,3 |
Мощные осветительные светодиоды работают при больших токах. Так, кристалл популярного LED 5730 предназначен для длительной эксплуатации при токе 150 мА. Но из-за крутой ВАХ, стабилизирующей падение напряжения, его Uраб составляет около 3,2 В, что укладывается в указанное в таблице значение.
Практический метод
Самые точные данные о прямом падении напряжения на светодиоде можно получить путём проведения практических измерений. Для этого понадобится регулируемый блок питания (БП) постоянного тока с напряжение от 0 до 12 вольт, вольтметр или мультиметр и резистор на 510 Ом (можно больше). Лабораторная схема для тестирования показана на рисунке. Здесь всё просто: резистор ограничивает ток, а вольтметр отслеживает прямое напряжение светодиода. Плавно увеличивая напряжение от источника питания, наблюдают за ростом показаний на вольтметре. В момент достижения порога срабатывания светодиод начнёт излучать свет. В какой-то момент яркость достигнет номинального значения, а показания вольтметра перестанут резко нарастать. Это означает, что p-n-переход открыт, и дальнейший прирост напряжения с выхода БП будет прикладываться только к резистору.
Текущие показания на экране и будут номинальным прямым напряжением светодиода. Если ещё продолжить наращивать питание схемы, то расти будет только ток через полупроводник, а разность потенциалов на нём изменится не более чем на 0,1-0,2 вольт. Чрезмерное превышение тока приведёт к перегреву кристалла и электрическому пробою p-n-перехода.
Если рабочее напряжение на светодиоде установилось около 1,9 вольт, но при этом свечение отсутствует, то возможно тестируется инфракрасный диод. Чтобы убедиться в этом, нужно направить поток излучения на включенную фотокамеру телефона. На экране должно появиться белое пятно.
В отсутствии регулируемого блока питания можно воспользоваться «кроной» на 9 В. Также можно задействовать в измерениях сетевой адаптер на 3 или 9 вольт, который выдаёт выпрямленное стабилизированное напряжение, и пересчитать номинал сопротивления резистора.
Как определить ток
Узнать о том, какой номинальный ток имеет светодиод, не используя специальных справочников, не так просто. По внешнему виду, силу тока можно определить по колбе диода: чем она больше, тем больше ток. Если во время проверки вы пересекаете допустимую черту, цвет диода изменится. Например, изначально жёлтый цвет может перейти в белый или синий оттенок.
Большинство стандартных светодиодов рассчитаны на ток 20 мА.
Современные технологии позволяют дополнять корпус прибора новыми комплектующими. Чаще всего используются гасящие резисторы. Таким способом можно получить светодиод с напряжением 5,12 или 220 В.
Помимо этого, номинальный ток светодиода определяется тем же мультиметром. Когда лампочка загорится, обратите внимание на экран прибора, на нём будет отображено напряжение, зная его и закон Ома, можно без проблем вычислить ток светодиода.
Посмотрев видео можно понять, как проверить различные типы светодиодов при помощи мультиметра.
Напряжение светодиодных ламп
Современные светодиодные лампы, изготавливаемые для домашнего пользования и в целях промышленности, предназначены для переменного напряжения питания 110 ― 220 В. Этот показатель достигается с помощью объединения нескольких чипов. За понижение напряжения и получения постоянного тока в этом случае отвечает драйвер, встраиваемый в каждую лампу.
Сами светодиоды в лампе рассчитаны на более низкое напряжение постоянного типа. В большинстве ламп используются светодиоды SMD 5050 или SMD 2835. В китайских лампах типа Кукуруза используются LED SMD 3014. Все эти светодиоды рассчитаны на рабочее напряжение 2-3,2 В (постоянный ток), более точное значение зависит от излучаемого цвета, падение напряжение также у всех разное, от 1,8 В до 3 В.
Как узнать какой светодиод стоит в лампе?
Светодиод – полупроводниковый прибор, создающий оптическое излучение при прохождении через него электрического тока. Чтобы заменить диоды в люстре, нужно знать их технические характеристики.
На сколько вольт бывают светодиоды?
Параметры полупроводниковых приборов зависят от материала изготовления кристалла. Узнать, на сколько вольт диоды, можно по внешним характеристикам. Обращайте внимание на цвет свечения.
В таблице указано напряжение светодиодов в зависимости от материала изготовления и цвета свечения:
Если светодиод прозрачный, определить количество вольт поможет мультиметр. Чтобы узнать напряжение, следуйте инструкции:
- Выберите на мультиметре функцию «Проверка обрыва».
- Щупами прикоснитесь к выходу светодиода.
- Цвет свечения укажет на напряжение.
На какое напряжение рассчитан?
Чтобы узнать, на какое напряжение рассчитан светодиод, нужно пробовать подавать на кристалл разное напряжение, начиная от 4 В. Если полупроводниковый прибор не светится, можно повышать мощность тока вплоть до 220 В. Но помните, что это опасно. В случае ошибки велика вероятность разрушения корпуса диода.
Как заменить светодиод в лампе?
В отличие от лампочки накаливания светодиодные приборы подлежат ремонту. Рассмотрим, как поменять светодиод в лед ленте или лампе.
Вначале найдите подходящий элемент. Для этого нужно отпаять аналогичный диод из другой лампы или купить новый в магазине светотехники. Диод стоит недорого.
Итак, приступим к ремонту. Нужно выполнить действия в определенной последовательности. Следуйте инструкции:
- Выкрутите лампу из люстры и разберите ее: отделите рассеивающее стекло. Обычно оно крепится на клей к корпусу. Чтобы его отделить, достаточно легко поддеть край кончиком ножа.
- Открутите плату.
- Найдите неисправный диод: щупами мультиметра поочередности притрагивайтесь к контактам. Рабочие кристаллы будут светиться, соответственно неисправный элемент не даст эффекта. Если дома не оказалось тестера, определить перегоревший светодиод поможет визуальный осмотр. На вышедшем из строя диоде часто появляются черные точки или характерные припухлости.
- Отпаяйте неисправный элемент: снимите эластичный светофильтр, используя иглу или нож. На поверхность с кристаллом нанесите припой и гелеобразный флюс, нагрейте смесь паяльником и подождите, пока диод отделится от платы. Также удалить перегоревший прибор можно с помощью термопинцета. Конечно, не у всех дома есть подобное устройство.
- Чтобы припаять светодиод, аккуратно удалите старый припой.
- Обработайте контакты нового диода флюсом и установите элемент на место отпаянного полупроводникового прибора.
- Паяльником соедините контакты светодиода с цепочкой.
- Проверьте правильность проведенных действий. Для проверки используйте мультиметр. Если тестера нет, прикрутите плату на посадочное место, вкрутите лампу в люстру и включите светильник. Когда все диоды светятся, можно ставить рассеивающее стекло на место. Ремонт прошел успешно.
Если хотите недорого купить светодиодные светильники оптом, оформите заказ в интернет-магазине Profit Light. На выбор модные многофункциональные люстры, бра и лед ленты с гарантией. При покупке онлайн осуществляется доставка по территории России.
Измеряем прямое падение напряжения на неизвестном светодиоде
В целом данная тема уже рассматривалась достаточно часто.
Следует помнить, что для нормальной работы светодиодов важен ток потребления… и, по сути, не важно само напряжения питания — оно может быть и 5 вольт и 25 и 1025… главное, чтобы было ограничение по току потребления светодиода.
А вот падение напряжения надо знать чтобы понимать «сколько останется» напряжения после светодиода…
Например, падение напряжения на светодиоде — 4 вольта, тогда при подаче на него питания в 7 вольт (при наличии ограничения тока до рабочего параметра) светодиод загорится, но уже после него в цепи будет 3 вольта — 7-4=3
Последовательно соединенные светодиоды с таким падением напряжения в количестве 2-х штук (при таком напряжении питания — в 7 вольт) светиться уже не будут, поскольку общая сумма падения напряжения будет больше, чем сам источник питания.
Как правило у каждого светодиода есть свои паспортные характеристики, где и можно узнать как прямое падение напряжения, так и рабочий ток потребления…
Однако иногда в наличии просто имеется какая то куча светодиодов «без каких либо характеристик»… вот и надо как то выяснить те или иные параметры.
Для проверки можно использовать «мультиметр» для проверки полупроводников.
Типа такого с Али
Он вполне может показать прямое падение маломощного светодиода и еще покажет расположение анода и катода.
Кстати, мощные светодиоды он не тестирует…
По крайней мере «орлиный глаз» оказался ему не по зубам — он определял его как конденсатор.
Также прямое падение напряжение на светодиоде можно померить обычным мультиметром.
Включаем схему:
1. плюс питания — токоограничивающий резистор — анод светодиода
2. минус питания — на катод светодиода
3. к ножкам светодиода подключаем мультиметр в режиме измерения напряжения.
Подаем постоянное напряжение питания с нуля (можно и сразу подать воль от 4-х для маломощных светодиодов).
Постепенно увеличиваем напряжение питания и следим за показаниями мультиметра.
Как только показания мультиметра перестанут сильно увеличиваться в не зависимости от увеличения напряжения питания, это и будет значение прямого падения напряжения на светодиоде.
Вот пример: я на маломощный светодиод подаю через токоограничивающий резистор в 1,5кОма напряжение 9 вольт, на на самом светодиоде при этом присутствует 1,9 вольт.
1,9 вольт — это и есть прямое падение напряжения данного светодиода.
Или на примере более мощного светодиода «орлиный глаз»:
Через тот же резистор 1,5 кОма (имеющийся резистор в 33 Ом можно проигнорировать) я подаю 14 вольт.
Однако на самом светодиоде наблюдаем напряжение не более 8 вольт:
При подаче напряжения питания 12 вольт, мой светодиод «орлиный глаз» потребляет 72мА, при 13 вольтах — 90мА и начинает сильно греться — на корпусе светодиода я замерил 62 градуса после чего прекратил подачу напряжения питания.
Так что токоограничение для данного светодиода надо делать где то в пределах 70мА и резистор помощнее надо ставить или использовать регулятор тока.
А вот видео по измерениям…
0:00 — используем «тестер полупроводников»
1:20 — используем мультиметр для замера падения напряжения на маломощном светодиоде
5:17 — замер падения напряжения на «орлином глазе»
Разбор корпуса светодиода «орлиный глаз» я рассматривал в статье — Вскрытие «Орлиного глаза» в блоге.
А вот можно сделать пробник светодиодов из шприца…
А подключив к мультиметру в режиме измерения напряжения (естественно) — и падение напряжения на светодиоде:
Как узнать на сколько вольт светодиод мультиметром
Проверка светодиодов мультиметром.
Сейчас стало много техники, где применяются светодиоды и область их применения очень широка: от простого фонарика до автомобиля и даже прожектора.
Из достоинств светодиодов отметим, что в светодиоде, в отличие от лампы накаливания или люминесцентной лампы, электрический ток преобразуется непосредственно в световое излучение практически без потерь, светодиод излучает в узкой части спектра и его цвет чист, а ультрафиолетовое и инфракрасное излучения, как правило, отсутствуют. Так-же он механически прочнее ламп и весьма надежен, его срок службы может быть в сотни раз больше, чем у лампочки накаливания. А одним из немногих его недостатков является цена. Но в ближайшие пару лет этот показатель будет снижен до приемлемых цен.
Всё чаще приходится нам сталкиваться с ремонтом всевозможных приборов на светодиодах. Вот тут и возникает проблема. Как проверить светодиод? Вопрос может показаться странным! Казалось бы, ответ очевиден: мультиметром.
Те кто имеют обычный мультиметр знают, что им можно проверить любой диод, просто переведя переключатель диапазона на звуковой сигнал или просто на проверку диодов.
Но данное правило подходит для обычных диодов и очень маломощных красных и зеленых светодиодов (при проверке вы увидите их слабое свечение, если светодиод исправен).
Но такой вариант не подойдет для проверки белых, синих, а иногда и желтых светодиодов, так как их рабочее напряжение находится в пределах 3,3В.Конечно можно проверить светодиод с помощью двух последовательно включенных батареек на 1,5В, но это неоправданное усложнение. Сейчас речь идет именно о мультиметре. Практически у всех современных цифровых мультиметров есть режим измерения параметра транзисторов — hFE (h21Э). Для этого в мультиметре предусмотрена специальная колодка, куда подключаются маломощные транзисторы. Вот она то нам и нужна.
Если взять светодиод и его анодный вывод подключить к колодке PHP (транзисторы PHP структуры) — в разъём E (эмиттер), а вывод катода в разъём С (коллектор) той же PHP колодки, то если мультиметр включен — светодиод засветится.
Он будет светиться при любом положении переключателя режимов измерения и потухнет только тогда, когда мультиметр будет выключен. Данную особенность цифровых мультиметров и будем использовать при проверке светодиодов. Узнать какой из выводов у светодиода анод, а какой катод очень просто: анодный вывод более длинный, чем у катода.
После некоторых испытаний выяснился один недостаток. Чтобы проверить светодиод его приходилось выпаивать, что бывает не всегда оправдано. Было решено дополнить мультиметор модифицированными дополнительными щупами для проверки светодиодов сразу в плате.
Для изготовления этого приспособления нам понадобятся:
1 — Стандартные щупы мультиметра с обрезанными штекерами.
2 — Двусторонний текстолит.
3 — Две скрепки (в идеале еще бы хорошо иметь SMD светодиод, можно и обычный светодиод маленький как индикатор, но в наличии его не оказалось).
Из текстолита вырезаем маленький прямоугольник и припаиваем к нему с двух сторон скрепки, что бы получилась вилка, провода щупов и в идеале SMD светодиод как индикатор.(Можно припаять и обычный светодиод) Никаких дополнительных резисторов не надо.(на светодиоде при проверке будет около 2,8В но не более 3В) Вот что мы имеем в итоге:
Скрепки очень крепкие, хорошо пружинят и в итоге надежно стоят в колодке транзисторов мультиметра. Толщина текстолита как раз соответствует расстоянию между отверстий транзисторной колодки мультиметра. На фото видно, что выводы скрепок стоят не по середине. Это сделано специально, теперь текстолит еще будет выполнять роль стрелки при подсоединении вилки в разъем транзисторов, чтоб на щупах сохранялась правильная полярность.
Теперь мы можем проверять любые светодиоды, не выпаивая их из платы и не применяя дополнительных пробников или источников питания.
P/S. Было проверено немало светодиодов, ни один при проверке не сгорел.
Вопросы, как обычно, складываем тут.