Начнём с терминологии.
Электрический ток – это направленное движение заряженных частиц, при котором происходит перенос заряда из одной области электрической цепи в другую.
Силой электрического тока (I) является величина, которая численно равна количеству заряда Δq, протекающего через заданное поперечное сечение проводника S за единицу времени Δt: I = Δq/Δt .
Напряжение электрического тока между точками A и B электрической цепи — физическая величина, значение которой равно работе эффективного электрического поля, совершаемой при переносе единичного пробного заряда из точки A в точку B.
Омическое (активное) сопротивление – это сопротивление цепи постоянному току, вызывающее безвозвратные потери энергии постоянного тока.
Теперь можно переходить к закону Ома.
Закон Ома был установлен экспериментальным путём в 1826 году немецким физиком Георгом Омом и назван в его честь. По большому счёту, Закон Ома не является фундаментальным законом природы и может быть применим в ограниченных случаях, определяющих зависимость между электрическими величинами, такими как: напряжение, сопротивление и сила тока исключительно для проводников, обладающих постоянным сопротивлением. При расчёте напряжений и токов в нелинейных цепях, к примеру, таких, которые содержат полупроводниковые или электровакуумные приборы, этот закон в простейшем виде уже использоваться не может.
Тем не менее, закон Ома был и остаётся основным законом электротехники, устанавливающим прямую связь силы электрического тока с сопротивлением и напряжением, и является самым востребованным как для начинающего радиолюбителя, так идля профессионального разработчика.
Формулировка закона Ома для участка цепи может звучать так: Сила тока в проводнике прямо пропорциональна напряжению (разности потенциалов) на его концах и обратно пропорциональна сопротивлению этого проводника и записана в следующем виде: I=U/R,
где: I – сила тока в проводнике, измеряемая в амперах [А];
U – напряжение (разность потенциалов) в вольтах [В];
R – электрическое сопротивление проводника в омах [Ом].
Производные от этой формулы приобретают такой же незамысловатый вид:
R=U/I и U=R×I.
Зная любые 2 из 3-ёх приведённых параметров, можно произвести также расчёт величины мощности, рассеиваемой на сопротивлении нагрузки.
Мощность является функцией протекающего черех нагрузку тока I(А) и приложенного напряжения U(В) и вычисляется по следующим формулам, также являющимся производными от основной формулы закона Ома:
P(Вт) = U(В)×I(А) = I 2 (А)×R(Ом) = U 2 (В)/R(Ом)
Формулы, описывающие закон Ома, настолько просты, что не стоят выеденного яйца и, возможно, вообще не заслуживают отдельной крупной статьи на страницах уважающего себя сайта.
Что такое напряжение, ток, сопротивление, Закон Ома — поймёт даже ребенок
Не заслуживают, так не заслуживают. Деревянные счёты Вам в помощь, уважаемые дамы и рыцари! Считайте, однако учитывайте размерность, не стирайте из памяти:
Единицы измерения напряжения: 1 В = 1000 мВ = 1000000 мкВ;
Единицы измерения силы тока: 1 А = 1000 мА = 1000000 мкА;
Единицы измерения сопротивления: 1 Ом = 0.001 кОм = 0.000001 МОм;
Единицы измерения мощности: 1 Вт = 1000 мВт = 100000 мкВт.
Ну и так, на всякий случай, чисто для проверки полученных результатов, приведём незамысловатый калькулятор, позволяющий в онлайн режиме проверить расчёты, связанные со знанием формул закона Ома.
Калькулятор для проверки результатов расчёта закона Ома
Вводить в калькулятор нужно только два имеющихся у Вас параметра, остальные посчитаются сами.
Все наши расчёты проводились при условии, что значение внешнего сопротивления R значительно превышает внутреннее сопротивление источника напряжения rвнутр .
Если это условие не соблюдается, то под величиной R следует принять сумму внешнего и внутреннего сопротивлений: R = Rвнешн + rвнутр .
После этого закон приобретает более солидное название – закон Ома для полной цепи, а формула становится: I=U/(R+r) .
Для многозвенной цепи необходимо преобразовать её к эквивалентному виду:
Значения последовательно соединённых резисторов просто суммируются, в то время как значения параллельно соединённых резисторов определяются исходя из формулы: 1/Rll = 1/R4+1/R5 .
Онлайн калькулятор для расчёта величин сопротивлений при параллельном соединении нескольких резисторов можно найти на странице ссылка на страницу.
Теперь, что касается закона Ома для переменного тока.
Если внешнее сопротивление у нас чисто активное (не содержит ёмкостей и индуктивностей), то формула, приведённая выше, остаётся в силе.
Единственное, что надо иметь в виду для правильной интерпретации закона Ома для переменного тока – под значением U следует понимать действующее (эффективное) значение амплитуды переменного сигнала.
А что такое действующее (эффективное) значение и как оно связано с амплитудой сигнала переменного тока?
Приведём диаграммы для нескольких различных форм сигнала.
Слева направо нарисованы диаграммы синусоидального сигнала, меандра (прямоугольный сигнал со скважностью, равной 2), сигнала треугольной формы, сигнала пилообразной формы.
Глядя на рисунок можно осмыслить, что амплитудное значение приведённых сигналов – это максимальное значение, которого достигает амплитуда в пределах положительной, или отрицательной (в наших случаях они равны) полуволны.
Рассчитать действующее значение напряжение интересующей нас формы можно по следующим соотношениям:
1. Для синуса – U = Uд = Uа/√2;
2. для треугольника и пилы – U = Uд = Uа/√3;
3. для меандра – U = Uд = Uа.
С этим разобрались!
А теперь посмотрим, как будет выглядеть формула закона Ома при наличии индуктивности или ёмкости в цепи переменного тока.
В общем случае выглядеть это будет так:
А формула остаётся прежней, просто в качестве сопротивления R выступает полное сопротивление цепи Z, состоящее из активного, ёмкостного и индуктивного сопротивлений.
Поскольку фазы протекающего через эти элементы тока не одинаковы, то простым арифметическим сложением сопротивлений этих трёх элементов обойтись не удаётся, и формула приобретает вид: .
Реактивные сопротивления конденсаторов и индуктивностей мы с Вами уже рассчитывали на странице – (ссылка на страницу) и знаем, что величины эти зависят от частоты, протекающего через них тока и описываются формулами:
XC = 1/(2πƒС) , XL = 2πƒL .
Нарисуем ещё один калькулятор для расчёта полного сопротивления цепи для переменного тока.
Количество вводимых элементов должно быть не менее одного, при наличии индуктивного или емкостного элемента – необходимо указать значение частоты f .
Онлайн расчёт полного сопротивления цепи
А теперь рассмотрим практический пример применения закона Ома для цепей переменного тока и рассчитаем простой бестрансформаторный источник питания.
Токозадающими цепями в данной схеме являются элементы R1 и С1.
Допустим, нас интересует выходное напряжение Uвых = 12 вольт при токе нагрузки 100 мА.
Выбираем стабилитрон Д815Д с напряжением стабилизации 12В и максимально допустимым током стабилизации 1,4А.
Зададимся током через стабилитрон с некоторым запасом – 200мА.
С учётом падения напряжения на стабилитроне, напряжение на токозадающей цепи равно 220в – 12в = 208в.
Теперь рассчитаем сопротивление этой цепи Z для получения тока, равного 200мА:
Z = 208в/200мА = 1,04кОм.
Резистор R1 является токоограничивающим и выбирается в пределах 10. 100 Ом в зависимости от максимального тока нагрузки.
Зададимся номиналами R1 = 30 Ом, С1 = 1 Мкф, частотой сети f = 50 Гц и подставим всё это хозяйство в калькулятор.
Получили полное сопротивление цепи, равное 3.183кОм. Многовато будет – надо увеличивать ёмкость С1.
Поигрались туда-сюда, нашли нужное значение ёмкости – 3,18 Мкф, при котором Z = 1,04кОм.
Всё – закон Ома выполнил свою функцию, расчёт закончен.
![]() | ![]() |
Электрический ток. Закон Ома для участка цепи и полной цепи постоянного и переменного токов
Онлайн расчёт электрических величин напряжения, тока и мощности с резистивными, ёмкостными и индуктивными элементами. Закон Ома простыми словами, теория и практика для начинающих
Начнём с терминологии.
Электрический ток – это направленное движение заряженных частиц, при котором происходит перенос заряда из одной области электрической цепи в другую.
Силой электрического тока (I) является величина, которая численно равна количеству заряда Δq, протекающего через заданное поперечное сечение проводника S за единицу времени Δt: I = Δq/Δt .
Напряжение электрического тока между точками A и B электрической цепи — физическая величина, значение которой равно работе эффективного электрического поля, совершаемой при переносе единичного пробного заряда из точки A в точку B.
Омическое (активное) сопротивление – это сопротивление цепи постоянному току, вызывающее безвозвратные потери энергии постоянного тока.
Теперь можно переходить к закону Ома.
Закон Ома был установлен экспериментальным путём в 1826 году немецким физиком Георгом Омом и назван в его честь. По большому счёту, Закон Ома не является фундаментальным законом природы и может быть применим в ограниченных случаях, определяющих зависимость между электрическими величинами, такими как: напряжение, сопротивление и сила тока исключительно для проводников, обладающих постоянным сопротивлением. При расчёте напряжений и токов в нелинейных цепях, к примеру, таких, которые содержат полупроводниковые или электровакуумные приборы, этот закон в простейшем виде уже использоваться не может.
Тем не менее, закон Ома был и остаётся основным законом электротехники, устанавливающим прямую связь силы электрического тока с сопротивлением и напряжением, и является самым востребованным как для начинающего радиолюбителя, так идля профессионального разработчика.
Формулировка закона Ома для участка цепи может звучать так: Сила тока в проводнике прямо пропорциональна напряжению (разности потенциалов) на его концах и обратно пропорциональна сопротивлению этого проводника и записана в следующем виде: I=U/R,
где: I – сила тока в проводнике, измеряемая в амперах [А];
U – напряжение (разность потенциалов) в вольтах [В];
R – электрическое сопротивление проводника в омах [Ом].
Производные от этой формулы приобретают такой же незамысловатый вид:
R=U/I и U=R×I.
Зная любые 2 из 3-ёх приведённых параметров, можно произвести также расчёт величины мощности, рассеиваемой на сопротивлении нагрузки.
Мощность является функцией протекающего черех нагрузку тока I(А) и приложенного напряжения U(В) и вычисляется по следующим формулам, также являющимся производными от основной формулы закона Ома:
P(Вт) = U(В)×I(А) = I 2 (А)×R(Ом) = U 2 (В)/R(Ом)
Формулы, описывающие закон Ома, настолько просты, что не стоят выеденного яйца и, возможно, вообще не заслуживают отдельной крупной статьи на страницах уважающего себя сайта.
Не заслуживают, так не заслуживают. Деревянные счёты Вам в помощь, уважаемые дамы и рыцари! Считайте, однако учитывайте размерность, не стирайте из памяти:
Единицы измерения напряжения: 1 В = 1000 мВ = 1000000 мкВ;
Единицы измерения силы тока: 1 А = 1000 мА = 1000000 мкА;
Единицы измерения сопротивления: 1 Ом = 0.001 кОм = 0.000001 МОм;
Единицы измерения мощности: 1 Вт = 1000 мВт = 100000 мкВт.
Ну и так, на всякий случай, чисто для проверки полученных результатов, приведём незамысловатый калькулятор, позволяющий в онлайн режиме проверить расчёты, связанные со знанием формул закона Ома.
Калькулятор для проверки результатов расчёта закона Ома
Вводить в калькулятор нужно только два имеющихся у Вас параметра, остальные посчитаются сами.
Все наши расчёты проводились при условии, что значение внешнего сопротивления R значительно превышает внутреннее сопротивление источника напряжения rвнутр .
Если это условие не соблюдается, то под величиной R следует принять сумму внешнего и внутреннего сопротивлений: R = Rвнешн + rвнутр .
После этого закон приобретает более солидное название – закон Ома для полной цепи, а формула становится: I=U/(R+r) .
Для многозвенной цепи необходимо преобразовать её к эквивалентному виду:
Значения последовательно соединённых резисторов просто суммируются, в то время как значения параллельно соединённых резисторов определяются исходя из формулы: 1/Rll = 1/R4+1/R5 .
Онлайн калькулятор для расчёта величин сопротивлений при параллельном соединении нескольких резисторов можно найти на странице ссылка на страницу.
Теперь, что касается закона Ома для переменного тока.
Если внешнее сопротивление у нас чисто активное (не содержит ёмкостей и индуктивностей), то формула, приведённая выше, остаётся в силе.
Единственное, что надо иметь в виду для правильной интерпретации закона Ома для переменного тока – под значением U следует понимать действующее (эффективное) значение амплитуды переменного сигнала.
А что такое действующее (эффективное) значение и как оно связано с амплитудой сигнала переменного тока?
Приведём диаграммы для нескольких различных форм сигнала.
Слева направо нарисованы диаграммы синусоидального сигнала, меандра (прямоугольный сигнал со скважностью, равной 2), сигнала треугольной формы, сигнала пилообразной формы.
Глядя на рисунок можно осмыслить, что амплитудное значение приведённых сигналов – это максимальное значение, которого достигает амплитуда в пределах положительной, или отрицательной (в наших случаях они равны) полуволны.
Рассчитать действующее значение напряжение интересующей нас формы можно по следующим соотношениям:
1. Для синуса – U = Uд = Uа/√2;
2. для треугольника и пилы – U = Uд = Uа/√3;
3. для меандра – U = Uд = Uа.
С этим разобрались!
А теперь посмотрим, как будет выглядеть формула закона Ома при наличии индуктивности или ёмкости в цепи переменного тока.
В общем случае выглядеть это будет так:
А формула остаётся прежней, просто в качестве сопротивления R выступает полное сопротивление цепи Z, состоящее из активного, ёмкостного и индуктивного сопротивлений.
Поскольку фазы протекающего через эти элементы тока не одинаковы, то простым арифметическим сложением сопротивлений этих трёх элементов обойтись не удаётся, и формула приобретает вид: .
Реактивные сопротивления конденсаторов и индуктивностей мы с Вами уже рассчитывали на странице – (ссылка на страницу) и знаем, что величины эти зависят от частоты, протекающего через них тока и описываются формулами:
XC = 1/(2πƒС) , XL = 2πƒL .
Нарисуем ещё один калькулятор для расчёта полного сопротивления цепи для переменного тока.
Количество вводимых элементов должно быть не менее одного, при наличии индуктивного или емкостного элемента – необходимо указать значение частоты f .
Онлайн расчёт полного сопротивления цепи
А теперь рассмотрим практический пример применения закона Ома для цепей переменного тока и рассчитаем простой бестрансформаторный источник питания.
Токозадающими цепями в данной схеме являются элементы R1 и С1.
Допустим, нас интересует выходное напряжение Uвых = 12 вольт при токе нагрузки 100 мА.
Выбираем стабилитрон Д815Д с напряжением стабилизации 12В и максимально допустимым током стабилизации 1,4А.
Зададимся током через стабилитрон с некоторым запасом – 200мА.
С учётом падения напряжения на стабилитроне, напряжение на токозадающей цепи равно 220в – 12в = 208в.
Теперь рассчитаем сопротивление этой цепи Z для получения тока, равного 200мА:
Z = 208в/200мА = 1,04кОм.
Резистор R1 является токоограничивающим и выбирается в пределах 10. 100 Ом в зависимости от максимального тока нагрузки.
Зададимся номиналами R1 = 30 Ом, С1 = 1 Мкф, частотой сети f = 50 Гц и подставим всё это хозяйство в калькулятор.
Получили полное сопротивление цепи, равное 3.183кОм. Многовато будет – надо увеличивать ёмкость С1.
Поигрались туда-сюда, нашли нужное значение ёмкости – 3,18 Мкф, при котором Z = 1,04кОм.
Всё – закон Ома выполнил свою функцию, расчёт закончен.
Формулы расчета мощности
Мощность — это физическая величина, равная отношению количества работы ко времени совершения этой работы.
Мощность электрического тока (P) — это величина, характеризующая скорость преобразования электрической энергии в другие виды энергии. Международная единица измерения — Ватт (Вт/W).
— Мощность по току и напряжению (постоянный ток): P = I × U
— Мощность по току и напряжению (переменный ток однофазный): P = I × U × cos φ
— Мощность по току и напряжению (переменный ток трехфазный): P = I × U × cos φ × √3
— Мощность по току и сопротивлению: P = I 2 × R
— Мощность по напряжению и сопротивлению: P = U 2 / R
- I – сила тока, А;
- U – напряжение, В;
- R – сопротивление, Ом;
- cos φ – коэффициент мощности.
Расчет косинуса фи (cos φ)
φ – угол сдвига между фазой тока и напряжения, причем если последний опережает ток сдвиг считается положительным, если отстает, то отрицательным.
cos φ – безразмерная величина, которая равна отношению активной мощности к полной и показывает насколько эффективно используется энергия.
Формула расчета косинуса фи: cos φ = S / P
- S – полная мощность, ВА (Вольт-ампер);
- P – активная мощность, Вт.
Активная мощность (P) — реальная, полезная, настоящая мощность, эта нагрузка поглощает всю энергию и превращает ее в полезную работу, например, свет от лампочки. Сдвиг по фазе отсутствует.
Формула расчета активной мощности: P (Вт) = I × U × cos φ
Реактивная мощность (Q) — безваттная (бесполезная) мощность, которая характеризуется тем, что не участвует в работе, а передается обратно к источнику. Наличие реактивной составляющей считается вредной характеристикой цепи, поскольку главная цель существующего электроснабжения — это сокращение издержек, а не перекачивание ее туда и обратно. Такой эффект создают катушки и конденсаторы.
Формула расчета реактивной мощности: P (ВАР) = I × U × sin φ
Полная мощность электроприбора (S) — это суммарная величина, которая включает в себе как активную, так и реактивную составляющие мощности.
Формула расчета полной мощности: S (ВА) = I × U или S = √( P 2 + Q 2 )
Примеры задач
Для примера рассмотрим вычисление на участках электрической цепи с последовательным и параллельным соединением элементов. Первый вариант предусматривает ситуацию, когда все детали соединяются друг за другом от одного полюса источника питания до другого.
Как видите на рисунке, в качестве источника мы используем батарейку с номинальным напряжением 9 В и три резистора по 10, 20 и 30 Ом соответственно. Так как номинальный ток нам не известен, расчет произведем через напряжение и сопротивление:
P = U 2 /R = 81 / (10+20+30) = 1.35 Вт
Для параллельной схемы подключения возьмем в качестве примера участок цепи с двумя резисторами и одним источником тока:
Как видите, для удобства расчетов нам нужно привести параллельно подключенные резисторы к схеме замещения, из чего получится:
Тогда искомый номинал нагрузки мы можем узнать через значение тока и сопротивления:
P = I 2 *R = 25*6 = 150 Вт
Где можно применить калькулятор
Калькулятор мощности электрического тока можно применить во многих областях, где необходимо рассчитывать электрическую мощность или силу тока. Некоторые примеры:
- Для расчета мощности электропотребления домашних приборов, таких как холодильники, кондиционеры, компьютеры и другие устройства.
- В инженерии и строительстве, для расчета мощности электрооборудования и распределения нагрузки на электрические системы.
- В промышленности, для расчета мощности электродвигателей, генераторов и другого оборудования.
- В научных исследованиях, для измерения силы тока в электрических цепях и для расчета мощности, потребляемой электронными устройствами.
- В обучении и образовании, для демонстрации принципов электрической мощности и силы тока, а также для проведения лабораторных работ.
Калькулятор мощности электрического тока может быть полезным инструментом во многих сферах жизни и работы, где требуется работа с электроэнергией.
Как вычислить мощность электрического тока самостоятельно
Мощность электрического тока может быть вычислена с использованием формулы:
где P — мощность, измеряемая в ваттах (W), I — сила тока, измеряемая в амперах (A), V — напряжение, измеряемое в вольтах (V).
Для того, чтобы вычислить мощность, необходимо знать значения силы тока и напряжения.
Если у вас есть информация о силе тока, вы можете вычислить мощность, умножив значение силы тока на значение напряжения. Например, если сила тока равна 5 амперам, а напряжение равно 10 вольтам, мощность равна:
P = 5 A * 10 V = 50 Вт
Если у вас есть информация только о напряжении и сопротивлении, вы можете использовать закон Ома для вычисления силы тока, а затем использовать полученное значение для расчета мощности. Формула закона Ома выглядит следующим образом:
где R — сопротивление, измеряемое в омах (Ω).
Например, если напряжение равно 10 вольтам, а сопротивление равно 2 омам, сила тока равна:
I = 10 V / 2 Ω = 5 A
Затем, используя значение силы тока и значение напряжения, можно вычислить мощность, как описано выше.
Но в любом случае, для безопасной работы с электрическими цепями, лучше обратиться к профессионалам, особенно если вы не имеете достаточных знаний в этой области.
Как посчитать мощность тока
Чтобы посчитать мощность тока (электрическую мощность) воспользуйтесь нашим очень удобным онлайн калькулятором:
Мощность тока (Р) или электрическая мощность — физическая величина, которая характеризует скорость передачи или преобразования электрической энергии. В системе СИ единицей измерения мощности тока является ватт (Вт).
Формула мощности электрического тока. Как узнать, найти, вычислить, рассчитать мощность.
Электрическая мощность является одной из наиболее важных и значимых характеристик, которая показывает величину, силу той электротехники, систем, цепей, что работают, выполняя ту или иную функцию. Естественно, как и любая другая физическая величина электрическая мощность должна иметь свою меру, благодаря которой появляется возможность ее рассчитывать, делая заведомо точные, экономичные, эффективные устройства, системы и т.д. Для расчетов существуют определенные формулы, по которым и находятся нужные значения мощности.
Формула мощности тока (электрического) достаточно проста и выражается как произведение напряжения на силу тока. То есть, чтобы найти электрическую мощность достаточно просто напряжение умножить на ток. Если воспользоваться законом ома, то ее можно найти и через сопротивление. В этом случае электрическая мощность будет равна силе тока в квадрате умноженный на сопротивление или же напряжение в квадрате деленное на сопротивление.
Напомню, что при использовании формул подразумевается применение основных единиц измерения физических величин. В нашем случае основными единицами будут:
Электрическая мощность — Ватт;
Сила тока — Ампер;
Напряжение — Вольт;
Сопротивление — Ом.
Исходя из этого формула мощности электрического тока будет звучать так — 1 Ватт равен 1 Вольт умноженный на 1 Ампер. Думаю вы смысл поняли. Меньшими единицами измерения мощности является милливатты (1000 мВт = 1 Вт), большими единицами являются киловатты и мегаватты (1 кВт = 1000 Вт, 1 МВт = 1000 000 Вт). Милливатты это достаточно маленькая мощность, ее используют в электронике, радиотехнике. К примеру мощность слухового аппарата измеряется именно в милливаттах. Мощность в ваттах можно встретить в звуковых усилителях, у небольших блоках питания, мини электродвигателях. Киловатты это мощность, которая часто встречается в бытовых и технических устройствах (электрочайники, электродвигатели, обогреватели и т.д.). Мегаватты это уже достаточно большая мощность, ее можно встретить на электроподстанциях, электростанциях, у потребителях электроэнергии размером с город и т.д.
Если говорить о формуле более научной, которая электрическую мощность тока выражает через работу и время, то она будет звучать так — электрическая мощность равна отношению работы тока на участке цепи ко времени, в течении которого совершается эта работа.
То есть, работа деленная на время будет определять мощность. Кроме этого часто путают такие величины как ватты и ватт-час. В ваттах измеряется электрическая мощность — скорость изменения энергии (передачи, преобразования, потребления). А ватт-час являются единицей измерения самой энергии (работы). В ватт-часах выражается энергия, произведенная (переданная, преобразованная, потребленной) за определенное время.
Мощность также разделяется на активную и реактивную. Активная мощность — часть полной мощности, что удалось передать в нагрузку за период переменного тока. Она равна произведению действующих значений напряжения и тока на cosφ (косинус угла сдвига фаз между ними). Электрическая мощность, что не была передана в нагрузку, а привела к некоторым потерям (на излучение, нагрев) называется реактивной мощностью. Она равна произведению действующих значений напряжения и тока на sinφ (синус угла сдвига фаз между ними).
P.S. Электрическая мощность является одной из главных величин и характеристик, используемые в электротехнике. Именно ее мы узнаем при покупки того или иного электрического устройства. Ведь она определяет силу, с которой электротехника может работать. К примеру электродрель. Если мы купим дрель недостаточной мощности, то она просто не сможет обеспечить нам нормальную работу при сверлении. Хотя гнаться за слишком большой мощностью также не следует, ведь это ведет к излишней трате электроэнергии, за которую вы будете платить. Так что у всего должна быть своя мера и мощность.
Электрическая мощность
Мощность представляет собой скалярную физическую величину, равную скорости изменения, передачи или потребления энергии в физической системе. В электродинамике мощность — физическая величина, характеризующая скорость передачи, преобразования или потребления электрической энергии. В системе СИ единицей электрической мощности является ватт (Вт), определяемый как 1 джоуль в секунду. Скорость передачи электрической энергии равна одному ватту, если один джоуль энергии расходуется на перемещение одного кулона заряда в течение одной секунды.
Более подробную информацию о мощности вы найдете в нашем Конвертере единиц мощности.
Расчет электрической мощности на постоянном токе
Мощность, необходимая для перемещения определенного числа кулонов в секунду (то есть для создания тока I в амперах) через элемент схемы с разностью потенциалов U пропорциональна току и напряжению, то есть
В правой части этого уравнения находится произведение джоулей на кулоны (напряжение в вольтах) на кулоны в секунду (ток в амперах), в результате получаются джоули в секунду, как и ожидалось. Это уравнение определяет мощность, поглощенную в нагрузке, выраженную через напряжение на выводах нагрузки и протекающий через нее ток. Это уравнение используется в нашем калькуляторе вместе с уравнением закона Ома.
Источник: