Как устроен трехфазный асинхронный двигатель с короткозамкнутым ротором

Как устроен трехфазный асинхронный двигатель с короткозамкнутым ротором

Электрические машины переменного тока получили широкое распространение за счет регулируемой скорости вращения. Но их запуск сопровождается перегрузками с превышением номинальной мощности до 10 раз, и всегда есть риск перегорания витков. В качестве решения проблемы используется асинхронный электродвигатель с короткозамкнутым ротором. Ниже будет рассмотрена его особенность и конструктивные преимущества.

Электромоторы работают путем преобразования электрического тока в механическую энергию. При работе на статоре возбуждается магнитное поле — электродвижущая сила. Она инициирует вращение вала, к которому присоединяются рабочие механизмы.

По способу возбуждения и приведения в движение существует различие двух видов электродвигателей:

  • Синхронные.
    Магнитное поле статора и подвижный механизм вращаются с одной скоростью. Поэтому для запуска достаточно подать номинальный ток на обмотку якоря и статора. Эти двигатели не получили широкого распространения из-за существенного ограничения — невозможность регулирования скорости вращения в процессе работы.
  • Асинхронные.
    У данных электромоторов скорость вращения магнитного поля выше по отношению к якорю. Избыточный угловой запас позволяет регулировать крутящий момент работающего агрегата.

Благодаря этому можно использовать асинхронные моторы с несколькими скоростными режимами. Но остается проблема с избытком мощности при запуске.

Как устроен трехфазный асинхронный двигатель с короткозамкнутым ротором

Как устроен асинхронный электродвигатель

Эти электрические машины отличаются практичностью и возможностью изменять скорость вращения в процессе работы. Но в первичной конструкции они имели два недостатка:

  1. Вынужденная подача тока с превышением номинальной мощности для запуска.
  2. Эффект скольжения — подача различного тока на обмотку возбуждения статора и якоря.

Первая проблема решена плавным пуском. Со второй сложнее — снижение тока на статоре асинхронного двигателя приводит к спаду и на якоре. Исключением являются электрические машины с независимым возбуждением обмоток. Но их конструкция усложнена и включает дополнительные компоненты, а с ними большее число возможных поломок.

В качестве простого и эффективного решения проблемы избыточной ЭДС на статоре были разработаны асинхронные двигатели с короткозамкнутым ротором. В отличие от других типов агрегатов, основное назначение имеет статор.

Конструкция

В каждом электромоторе есть две важных рабочих детали: ротор и статор. Они заключены в защитный кожух. Для охлаждения проводников обмотки на валу ротора установлен вентилятор. Это общий принцип строения всех типов электродвигателей.

Принцип работы асинхронного электродвигателя

Конструкции статоров рассматриваемых электродвигателей ничем не отличаются от строения этих деталей в других типах электромоторов, работающих в сетях переменного тока. Сердечники статора, предназначенного для работы при трехфазном напряжении, располагаются по кругу под углом 120º. На них устанавливаются обмотки из изолированной медной проволоки определённого сечения, которые соединяются треугольником или звездой. Конструкция магнитопровода статора жёстко крепится на стенках цилиндрического корпуса.

Строение электродвигателя понятно из рисунка 1. Обратите внимание на конструкцию обмоток без сердечника в короткозамкнутом роторе.

Строение асинхронного двигателя с КЗ Ротором

Немного по-другому устроен ротор. Конструкция его обмотки очень похожа на беличью клетку. Она состоит из алюминиевых стержней, концы которых замыкают короткозамыкающие кольца. В двигателях большой мощности в качестве короткозамкнутых обмоток ротора можно увидеть применение медных стержней. У этого металла низкое удельное сопротивление, но он дороже алюминия. К тому же медь быстрее плавится, а это не желательно, так как вихревые токи могут сильно нагревать сердечник.

Конструктивно стержни расположены поверх сердечников ротора, которые состоят из трансформаторной стали. При изготовлении роторов сердечники монтируют на валу, а проводники обмотки впрессовывают (заливают) в пазы магнитопровода. При этом нет необходимости в изоляции пазов сердечника. На рисунке 2 показано фото ротора с КЗ обмотками.

Ротор асинхронного двигателя с КЗ обмотками

Пластины магнитопроводов таких роторов не требуют лаковой изоляции поверхностей. Они очень просты в изготовлении, что удешевляет себестоимость асинхронных электродвигателей, доля которых составляет до 90% от общего числа электромоторов.

Ротор асинхронно вращается внутри статора. Между этими деталями устанавливаются минимальные расстояния в виде воздушных зазоров. Оптимальный зазор находится в пределах от 0,5 мм до 2 мм.

В зависимости от количества используемых фаз асинхронные электродвигатели можно разделить на три типа:

  • однофазные;
  • двухфазные;
  • трёхфазные.

Они отличаются количеством и расположением обмоток статора. Модели с трехфазными обмотками отличаются высокой стабильностью работы при номинальной нагрузке. У них лучшие пусковые характеристики. Зачастую такие электродвигатели используют простую схему пуска.

Двухфазные двигатели имеют две перпендикулярно расположенных обмотки статора, на каждую из которых поступает переменный ток. Их часто используют в однофазных сетях – одну обмотку подключают напрямую к фазе, а для питания второй применяют фазосдвигающий конденсатор. Без этой детали вращение вала асинхронного электродвигателя самостоятельно не начнётся. В связи с тем, что конденсатор является неотъемлемой частью двухфазного электромотора, такие двигатели ещё называют конденсаторными.

В конструкции однофазного электродвигателя используют только одну рабочую обмотку. Для запуска вращения ротора применяют пусковую катушку индуктивности, которую через конденсатор кратковременно подключают к сети, либо замыкают накоротко. Эти маломощные моторчики используются в качестве электрических приводов некоторых бытовых приборов.

Принцип работы

Функционирование асинхронного двигателя осуществляется на основе свойства трёхфазного тока, способного создавать в обмотках статора вращающее магнитное поле. В рассматриваемых электродвигателях синхронная частота вращения электромагнитного поля связана прямо пропорциональной зависимостью с собственной частотой переменного тока.

Существует обратно пропорциональная зависимость частоты вращения от количества пар полюсов в обмотках статора. Учитывая то, что сдвиг фаз составляет 60º, зависимость частоты вращения ротора (в об/мин.) можно выразить формулой:

В результате действия магнитной индукции на сердечник ротора, в нём возникнет ЭДС, которая, в свою очередь, вызывает появление электрического тока в замкнутом проводнике. Возникнет сила Ампера, под действием которой замкнутый контур начнёт вращение вдогонку за магнитным полем. В номинальном режиме работы частота вращения ротора немного отстаёт от скорости вращения создаваемого в статоре магнитного поля. При совпадении частот происходит прекращение магнитного потока, ток исчезает в обмотках ротора, вследствие чего прекращается действие силы. Как только скорость вращения вала отстанет, переменными токами магнитных полей, возобновляется действие амперовой силы.

Разницу частот вращения магнитных полей называют частотой скольжения: ns=n1–n2, а относительную величину s, характеризующую отставание, называют скольжением.

s = 100% * ( ns / n1) = 100% * (n1 — n2) / n1 , где ns – частота скольжения; n1, n2 – частоты вращений статорных и роторных магнитных полей соответственно.

С целью уменьшения гармоник ЭДС и сглаживания пульсаций момента силы, стержни короткозамкнутых витков немного скашивают. Взгляните ещё раз на рис. 2 и обратите внимание на расположение стержней, выполняющих роль обмоток ротора, относительно оси вращения.

Скольжение зависит от того, какую механическую нагрузку приложено к валу двигателя. В асинхронных электромоторах изменение параметров скольжения происходит в диапазоне от 0 до 1. Причём в режиме холостого хода набравший обороты ротор почти не испытывает активного сопротивления. S приближается к нулю.

Увеличение нагрузки способствует увеличению скольжения, которое может достигнуть единицы, в момент остановки двигателя из-за перегрузки. Такое состояние равносильно режиму короткого замыкания и может вывести устройство из строя.

Относительная величина отставания соответствующая номинальной нагрузке электрической машины называется номинальным скольжением. Для маломощных электромоторов и двигателей средней мощности этот показатель изменяется в небольших пределах – от 8% до 2%. При неподвижности ротора электродвигателя скольжение стремится к 0, а при работе на холостом ходу оно приближается к 100%.

Во время запуска электромотора его обмотки испытывают нагрузку, что приводит к резкому увеличению пусковых токов. При достижении номинальных мощностей электрические двигатели с короткозамкнутыми витками самостоятельно восстанавливают номинальную частоту ротора.

Обратите внимание на кривую крутящего момента скольжения, изображённую на рис. 3.

Кривая крутящего момента скольжения

При увеличении крутящего момента коэффициент s изменяется от 1 до 0 (см. отрезок «моторная область»). Возрастает также скорость вращения вала. Если скорость вращения вала превысит номинальную частоту, то крутящий момент станет отрицательным, а двигатель перейдёт в режим генерации (отрезок «генерирующая область»). В таком режиме ротор будет испытывать магнитное сопротивление, что приведёт к торможению мотора. Колебательный процесс будет повторяться, пока не стабилизируется крутящий момент, а скольжение не приблизится к номинальному значению.

Трехфазный асинхронный электродвигатель с короткозамкнутым ротором

Устройство. Трехфазный асинхронный электродвигатель с короткозамкнутым ротором состоит из корпуса 7, неподвижного статора 6, вращающего ротора и двух подшипниковых щитов 4 с подшипниками качения или скольжения, расположенными в центре щитов (рис. 1). Статор двигателя состоит из сердечника 6 и трехфазной обмотки 8. Корпус изготовляется из чугуна или из алюминиевых сплавов.

Сердечник статора (рис. 2, а) набирается из штампованных листов электротехнической стали толщиной 0,3 или 0,5 мм, изолированных друг от друга покраской лаком для уменьшения потерь на вихревые токи. На внутренней поверхности сердечника имеются открытые пазы для укладки в них трехфазной обмотки, выполненной из изолированного провода. Оси обмоток расположены симметрично под углом 120° друг к другу.

Ротор (рис. 2, б) асинхронного электродвигателя состоит из вала, опирающегося на подшипники, сердечника и обмотки. Сердечник ротора набирается из штампованных листов электротехнической стали. На внешней поверхности сердечника имеются пазы, в которых размещаются медные или алюминиевые стержни обмотки ротора без изоляции. Концы стержней путем сварки или литья под давлением соединяются с кольцами. В результате получается короткозамкнутая обмотка ротора, напоминающая беличье колесо (рис. 3).

Рис. 1 Устройство трехфазного электродвигателя

  • 1 — вал ротора,
  • 2 — крышка подшипника,
  • 3 — подшипник,
  • 4 — подшипниковый щит,
  • 5 — пакет ротора,
  • 6 — сердечник статора,
  • 7 — корпус,
  • 8 — обмотка,
  • 9 — кожух вентилятора,
  • 10 — вентилятор,
  • 11 — коробка выводов.

Рис. 2, а Статор асинхронного электродвигателя 1 — сердечник, 2 — скоба, 3 — паз. Рис. 2, б Ротор короткозамкнутый

Рис. 3 Короткозамкнутая обмотка ротора асинхронного электродвигателя

Каждая обмотка-фаза электродвигателя переменного тока имеет маркировку, приведенную ниже.

Принцип действия

Принцип действия асинхронного электродвигателя основан на взаимодействии индуктированного тока ротора с магнитным потоком статора. При включении обмотки трехфазного двигателя под напряжение источника трехфазного переменного тока внутри расточки статора образуется вращающееся магнитное поле, частота вращения которого равна

n1 = 60fp ,

где n1 — частота вращения магнитного поля, об/мин; f — частота тока, Гц; p — число пар магнитных полюсов двигателя.

Силовые линии вращающегося магнитного поля пересекают стержни короткозамкнутой обмотки ротора, и в них индуктируется ЭДС, которая вызывает появление тока и магнитного потока в роторе двигателя.

Взаимодействие магнитного поля статора с магнитным потоком ротора создает механический вращающий момент, под действием которого ротор начинает вращаться. Частота вращения ротора несколько меньше частоты вращения магнитного поля. Поэтому двигатель называется асинхронным.

Величина, характеризующая отставание ротора от магнитного поля в относительных единицах, называется скольжением, подсчитывают ее по формуле

S = (n1−n2)/n1,

где S — скольжение (относительная угловая скорость); n1 — частота вращения магнитного поля, об/мин; n2 — номинальная частота вращения ротора, об/мин.

Для включения двигателя в сеть его статорные обмотки должны быть соединены в «звезду» или «треугольник».

Рис. 4 Схемы соединения: а — треугольник, б — звезда.

Для включения двигателя по схеме «треугольник» нужно начало первой обмотки соединить с концом второй, начало второй обмотки — с концом третьей и начало третьей — с концом первой. Места соединения обмоток подключают к трем фазам сети (рис. 4, а).

Чтобы двигатель включить в сеть по схеме «звезда», нужно все концы обмоток соединить электрически в одну точку, а все начала обмоток присоединить к фазам сети (рис. 4, б).

Схемы включения всегда приводятся на обратной стороне крышки, закрывающей коробку выводов электродвигателя.

Для изменения направления вращения трехфазного асинхронного электродвигателя достаточно поменять местами две любых фазы сети независимо от схемы включения электродвигателя. Для быстрого изменения направления вращения двигателя применяют реверсивные рубильники, пакетные выключатели или реверсивные магнитные пускатели.

Трехфазный асинхронный электродвигатель с короткозамкнутым ротором наряду с простотой конструкции, высокой надежностью в работе, долговечностью, низкой стоимостью и универсальностью, обладает одним существенным недостатком: при его пуске возникает пусковой ток, значение которого в 5-7 раз больше номинального. Большой пусковой ток, на который электрическая сеть обычно не рассчитана, вызывает значительное снижение напряжения, что, в свою очередь, отрицательно влияет на устойчивую работу соседних электроприемников.

Чтобы уменьшить пусковые токи трехфазных асинхронных короткозамкнутых двигателей больших мощностей, их включают с помощью переключателя схем со «звезды» на «треугольник». При этом сначала обмотки двигателя соединяются по схеме «звезда», потом, после того как ротор двигателя наберет номинальную частоту вращения, его обмотки переключаются в схему «треугольник».

Снижение пускового тока двигателя при переключении его обмоток со звезды на треугольник происходит потому, что вместо предназначенной для данного напряжения сети схемы «треугольник» каждая обмотка двигателя включается на напряжение в √3 раз меньшее, а потребляемый ток снижается в три раза. Снижается также в три раза и мощность, развиваемая электродвигателем при пуске. Поэтому изложенный способ снижения пускового тока можно использовать лишь при нагрузке не более 1/3 номинальной.

На каждом электрическом двигателе должен быть технический паспорт в виде металлической пластинки, укрепленной на его корпусе. В паспорте трехфазного асинхронного электродвигателя приводятся его основные технические данные, тип электродвигателя, заводской номер, соответствие стандартам, номинальные: напряжение, ток, мощность, частота вращения, коэффициент мощности, коэффициент полезного действия, масса и др.

На практике получили распространение трехфазные асинхронные короткозамкнутые электродвигатели серий: А, А2, 4А, АИР и др.

Оцените статью
TutShema
Добавить комментарий