Как ток течет по проводам

Как ток течет по проводам

Для большинства людей электрический ток — это что-то из категории магии вне Хогвартса. На самом деле, это всего лишь упорядоченность природных явлений и больше ничего. Давайте переходить в категорию разбирающегося меньшинства.

· Обновлено 31 января 2024

Электрический ток

По проводам течет электрический ток. Причем он именно «течет», практически как вода. Представим, что вы — счастливый фермер, который решил полить свой огород из шланга. Вы чуть-чуть приоткрыли кран, и вода сразу же побежала по шлангу. Медленно, но все-таки побежала.

Сила струи очень слабая. Потом вы решили, что напор нужен побольше и открыли кран на полную катушку. В результате струя хлынет с такой силой, что ни один помидор не останется без внимания, хотя в обоих случаях диаметр шланга одинаков.

А теперь представьте, что вы наполняете два ведра из двух шлангов. У зеленого напор сильнее, у желтого — слабее. Быстрее наполнится то ведро, в которое льется вода из шланга с сильным напором. Все дело в том, что объем воды за равный промежуток времени из двух разных шлангов тоже разный. Иными словами, из зеленого шланга количество молекул воды выбежит намного больше, чем из желтого за равный период времени.

Если мы возьмем проводник с током, то будет происходить то же самое: заряженные частицы будут двигаться по проводнику, как и молекулы воды. Если больше заряженных частиц будет двигаться по проводнику, то «напор» тоже увеличится.

  • Электрический ток — это направленное движение заряженных частиц.

Как ток течет по проводам

О природе электрического тока и основах электротехники

В данной короткой статье попытаюсь на пальцах объяснить основы электротехники. Для тех, кто не понимает откуда в розетке электричество, но спрашивать вроде как уже неприлично.

1. Что такое электрический ток.
«Главный инженер повернул рубильник, и электрический ток все быстрее и быстрее побежал по проводам» (с)

1.1 Пара общих слов по физике вопроса
Электрический ток — это движение заряженных частиц. Из заряженных частиц у нас имеются электроны и немножко ионы. Ионы — это атомы, которые потеряли или приобрели один или несколько электронов и поэтому потеряли электрическую нейтральность, приобрели электрический заряд. Так-то атом электрически нейтрален — заряд положительно заряженного ядра компенсируется зарядом электронной оболочки. Ионы обычно являются переносчиком заряда в электролитах, в металлических проводах носителями являются электроны. Металлы хорошо проводят ток, потому что некоторые электроны могут перескакивать от одного атому к другому. В непроводящих материалах электроны привязаны к своему атому и перемещаться не могут. (Напомню, данная статья — это объяснение физики на пальцах! Подробнее искать по «электронная теория проводимости»).

Как течет электроэнергия не по проводам? В чем ошибся автор из США?

Будем рассматривать ток в металлических проводниках, который создаётся электронами. Можно провести аналогию между электронами в проводнике и жидкости в водопроводной трубе. (На начальном этапе электричество так и считали особой жидкостью.) Как через стенки трубы вода не выливается, так и электроны не могут покинуть проводник, потому что положительно заряженные ядра атомов притянут их обратно. Электроны могут перемещаться только в внутри проводника.

1.2 Создание электрического тока.
Но просто так ток в проводнике не возникнет. Это все равно, что залить воду в кусок трубы и заварить с обоих концов. Вода никуда не потечет. В куске проводника электроны тоже не могут двигаться в одном направлении. Если электроны почему-то сдвинутся вправо, то слева возникнет нескомпенсированный положительный заряд, который потянет их обратно. Поэтому электроны могут только прыгать от одного атома к другому и обратно. Но если трубу свернуть в кольцо, то вода уже может течь вдоль трубы, если каким-то образом заставить ее двигаться. Точно также и концы проводника можно соединить друг с другом, и тогда электроны смогут перемещаться вдоль проводника, если их заставить. Если концы проводника соединены друг с другом, то получается замкнутая цепь. Постоянный ток может идти только в замкнутой цепи. Если цепь разомкнута, то ток не идет. Чтобы заставить воду течь по трубе используется насос. В электрической цепи роль насоса выполнят батарейка. Батарейка гонит электроны по проводнику и тем самым создает электрический ток. По научному батарейка называется генератором. Так в электротехнике называют насос для создания электрического тока.

Бывают два типа генераторов — генератор напряжения и генератор тока.
Это фундаментальная вещь на самом деле, обратите внимание! См. рисунок ниже

рис 1. Генератор напряжения величиной U

рис 2. Генератор тока величиной I

На верхней картинке изображен генератор напряжения, на нижней — генератор тока. Насос -генератор напряжения создает постоянное давление, насос-генератор тока создает постоянный поток. Верхняя цепь разомкнута, и нижняя — замкнута. Рассмотрим, какими свойствами обладает генератор напряжения. Представим следующую цепь

рис 3. Генератор напряжения величиной U с нагрузкой R1

В терминах водопроводной аналогии, генератор -это насос, создающий постоянное давление, выключатель SW1 — это клапан, открывающийперекрывающий трубу, сопротивление R1 — это кранвентиль который насколько-то приоткрыт. Этот крантель можно прикрыть — сопротивление увеличится, поток воды уменьшится. Можно открыть побольше — сопротивление уменьшится, поток воды увеличится. Вроде все интуитивно понятно. Теперь представим, что мы открываем кран все больше и больше. Тогда поток воды будет увеличиваться и увеличиваться. При этом генератор напряжения по определению поддерживает напряжение (давление) постоянным, независимо от величины потока! Если кран открыть полностью и сопротивление станет равно 0, то поток станет равным бесконечности. При этом генератор все равно будет выдавать напряжение равное U! Конечно все это происходит в идеальной модели, когда мощность генератора бесконечна. Реальные генераторы (батарейки или аккумуляторы) примерно соответствуют этой модели в определенном диапазоне напряжений и токов.

Рассмотрим теперь цепь с генератором тока.

рис 4. Генератор тока величиной I с нагрузкой R2

Что делает генератор тока? Он гонит ток! Ему сказано гнать ток величиной I, и он его гонит, невзирая на величину сопротивления (насколько открыт кран). Открыт кран полностью — ток будет равен I. Напряжение (давление) будет равно.
Закрыт кран полностью — ток все равно будет равен I! Но при этом напряжение (давление) будет равно бесконечности. Опять таки в модели.
Из этих рассуждений интуитивно понятно вытекает основной закон электротехники — Закон Ома. ( «С красной строки. Подчеркни» (с))

2. Закон Ома.

Сначала c точки зрения генератора напряжения

Если к сопротивлению R приложить напряжение U, то через сопротивление пойдет ток
I =U/R Теперь с точки зрения генератора тока

Если через сопротивление R пропускать ток I, то на сопротивлении возникнет падение напряжения U=I*R

Вот как-то надо этот момент осознать. Эти две формулировки совершенно равноправны и применение их зависит только от того, какой генератор рассматривается. Можно конечно еще записать R=U/I. Что-то вроде — если к участку цепи приложено напряжение U, и при этом в этом участке проходит ток I, то цепь имеет сопротивление R. Дальше по хорошему надо рассматривать варианты цепей с параллельным или последовательным включением резисторов, но неохота. Это чисто технические моменты. Что-то вроде

рис 5. Последовательное включение резисторов

Через данную цепь из последовательно соединенных резисторов R1 и R2 проходит ток величиной I. Какое падение напряжения будет на каждом резисторе U1 и U2?
Используйте закон Ома и все!
Эта цепь кстати с генератором тока, поскольку входная переменная здесь ток. Ну то есть самого генератора тока может и не быть, просто ток в цепи известен и считается постоянным и равным I. Поэтому как бы этот ток гонит генератор тока.
Еще — говорят «падение напряжения на резисторе», потому что «производит» напряжение (давление) генератор, а после каждого резистора напряжение будет уменьшаться, падать на этом резисторе на величину U=I*R.

Хотя пару важных практических случаев все таки рассмотрим.

1. Самая важная схема.
Самая важная схема, с которой инженеру-электронщику предстоит иметь дело постоянно на протяжении всей жизни — это делитель напряжения.
( «С красной строки. Подчеркни» (с))

3. Делитель напряжения
Схема имеет вид.

рис 6. Делитель напряжения

Делитель напряжения представляет собой два резистора, соединенных последовательно друг с другом.

Кстати, резистором называется электронный компонент (деталька), которая реализует электрическое сопротивление определенной величины . Его также (детальку) часто называют сопротивлением. Получается немного тавтология — сопротивление имеет сопротивление R. Поэтому для деталей лучше использовать название резистор. Резистор сопротивлением 1 килоом, например.

Так вот. Что же делает эта схема? Два последовательных резистора имеют некоторое эквивалентное сопротивление, назовем его R12. По цепи проходит ток I, от плюса генератора к минусу через резистор R1 и через резистор R2. При этом на резисторе R1 падает напряжение U1=I*R1, а на резисторе R2 падает напряжение U2=I*R2. Согласно закону Ома. Напряжение U=U1+U2, как видно из схемы. Таким образом U=I*R1+I*R2=I*(R1+R2).
То есть эквивалентное сопротивление последовательно соединенных резисторов равно сумме их сопротивлений.
Выражение для тока I=U/(R1+R2)
Найдем теперь, чему равно напряжение U2. U2=I*R2= U* R2/(R1+R2).

Пример картинки из интернета. Если резисторы равны, то входное напряжение Uвx делится пополам.

Второй важный случай — учет выходного сопротивления источника (генератора) и входного сопротивления приемника (цепи, к которой генератор подключен)

рис 7. Выходное сопротивление источника и входное сопротивление приемника.

Идеальный генератор напряжения имеет нулевое выходное сопротивление, то есть при нулевом сопротивлении внешней цепи величина тока будет равна бесконечности ∝. Реальный генератор напряжения обеспечить бесконечный ток не может. Поэтому при замыкании внешней цепи ток в ней будет ограничен внутренним сопротивлением генератора, на рис. обозначен буквой r.

Кстати, правильный способ проверки пальчиковых батареек, заключается в измерении тока, которые они могут отдать. То есть на тестере выставляется предел 10А, режим измерения тока, и щупы прикладываются к контактам батареи. Ток в районе 1А или больше говорит о том, что батарейка свежая. Если ток меньше 0.5А, то можно выкидывать. Или попробовать в настенных часах, может сколько-то проработает.

Если выходное сопротивление источника (внутреннее сопротивление r на рисунке) соизмеримо со входным сопротивлением приемника (R3 на рисунке), то эти резисторы будут действовать, как делитель напряжения. На приемник при этом будет поступать не полное напряжение источника U, а U1=U*R3/(r+R3). Если эта схема предназначена для измерения напряжения U, то она будет врать!

В следующих статьях планируется рассмотреть цепи с конденсаторами и индуктивностями.
Затем диоды, транзисторы и операционные усилители.

Сила тока

Сразу возникает потребность в величине, которой мы будем «напор» электрического тока измерять. Такая, чтобы она зависела от количества частиц, которые протекают по проводнику.

Сила тока — это физическая величина, которая показывает, какой заряд прошел через проводник за единицу времени.

Как обозначается сила тока?

Сила тока обозначается буквой I

Сила тока

I = q/t

Сила тока измеряется в амперах. Единица измерения выбрана не просто так.

Во-первых, она названа в честь физика Андре-Мари Ампера, который занимался изучением электрических явлений. А во-вторых, единица этой величины выбрана на основе явления взаимодействия двух проводников.

Андре-Мари Ампер

Здесь аналогии с водопроводом провести, увы, не получится. Шланги с водой не притягиваются и не отталкиваются вблизи друг друга (а жаль, было бы забавно).

Когда ток проходит по двум параллельным проводникам в одном направлении, проводники притягиваются. А когда в противоположном направлении (по этим же проводникам) — отталкиваются.

два параллельных проводника

За единицу силы тока 1 А принимают силу тока, при которой два параллельных проводника длиной 1 м, расположенные на расстоянии 1 м друг от друга в вакууме, взаимодействуют с силой 0,0000002 Н.

Задача

Найти силу тока в цепи, если за 2 секунды в ней проходит заряд, равный 300 мКл.

Решение:

Возьмем формулу силы тока

I = 300 мКл / 2 с = 150 мА

Ответ: сила тока в цепи равна 150 мА

Чтобы хорошо запомнить теорию, нужно много практики. Классический курс по физике для 10 класса в онлайн-школе Skysmart — отличная возможность попрактиковаться в решении задач.

Проводники и диэлектрики

Некоторые делят мир на черное и белое, а мы — на проводники и диэлектрики.

  • Проводники — это материалы, которые проводят электрический ток. Самыми лучшими проводниками являются металлы.
  • Диэлектрики — материалы, которые не проводят электрический ток. Изи!

Медь, железо, алюминий, олово, свинец, золото, серебро, хром, никель, вольфрам

Воздух, дистиллированная вода, поливинилхлорид, янтарь, стекло, резина, полиэтилен, полипропилен, полиамид, сухое дерево, каучук

То, что диэлектрик не проводит электрический ток, не значит, что он не может накапливать заряд. Накопление заряда не зависит от возможности его передавать.

Электрический ток. Электрическая цепь. Гальванические элементы. Аккумуляторы

Электрические заряды могут быть разными. Это могут быть электроны или ионы (положительно или отрицательно заряженные).
Чтобы получить электрический ток в проводнике, надо создать в нём электрическое поле. Под действием поля электрические заряды начнут перемещаться, возникнет электрический ток.

Обрати внимание!
Условия существования электрического тока:

• наличие свободных электрических зарядов;
• наличие электрического поля, которое обеспечивает движение зарядов;
• замкнутая электрическая цепь.

Электрическое поле создают источники электрического тока.

Источник тока — это устройство, в котором происходит преобразование какого-либо вида энергии в электрическую энергию.

В любом источнике тока совершается работа по разделению положительно и отрицательно заряженных частиц, которые накапливаются на полюсах источника.

Существуют различные виды источников тока:

• Механический источник тока — механическая энергия преобразуется в электрическую энергию. Сюда относятся: электрофорная машина, динамо-машина, генераторы.

скачанные файлы.jpg

Рис. (1). Электрофорная машина

Диски электрофорной машины приводятся во вращение в противоположных направлениях. В результате трения щёток о диски на кондукторах машины накапливаются заряды противоположного знака.

• Тепловой источник тока — внутренняя энергия преобразуется в электрическую энергию.
Рис. (2). Тепловой источник тока

К нему относится термоэлемент. Две проволоки из разных металлов спаяны с одного края. Затем место спая нагревают, тогда между другими концами этих проволок появляется напряжение.

• Световой источник тока — энергия света преобразуется в электрическую энергию. Сюда относится фотоэлемент.

Рис. (3). Световой источник тока

При освещении некоторых полупроводников световая энергия превращается в электрическую. Из фотоэлементов составлены солнечные батареи.

• Химический источник тока — внутренняя энергия преобразуется в электрическую в результате протекающих химических реакций.
Примером такого источника является гальванический элемент.

Рис. (4). Химический источник тока

Угольный стержень У (с металлической крышкой М) помещают в полотняный мешочек, наполненный смесью оксида марганца с углём С, а затем в цинковый сосуд Ц. Оставшееся пространство заполняют желеобразным раствором соли Р. При протекании химической реакции цинк заряжается отрицательно (отрицательный электрод), а угольный стержень — положительно (положительный электрод). Между заряженным угольным стержнем и цинковым сосудом возникает электрическое поле.

Из нескольких гальванических элементов можно составить батарею.

Источники тока на основе гальванических элементов применяются в бытовых автономных электроприборах, источниках бесперебойного питания. Они являются одноразовыми. В быту часто используют батарейки, которые можно подзаряжать многократно. Их называют аккумуляторами.

Простейший аккумулятор состоит из сосуда, наполненного слабым раствором серной кислоты в воде, в который опущены две свинцовые пластины (электроды). Чтобы аккумулятор стал источником тока, его надо зарядить. Если обе пластины соединить с полюсами какого-либо источника электрической энергии, то электрический ток, проходя через раствор, зарядит один электрод положительно, а другой — отрицательно. Такие аккумуляторы называют кислотными или свинцовыми. Кроме них ещё существуют щелочные или железоникелевые аккумуляторы. В металлогидридных аккумуляторах отрицательный электрод состоит из порошкообразного железа, а положительный из гидроокиси никеля с добавками графита и окиси бария. Электролитом служит раствор едкого калия с добавками моногидрата лития.
Аккумуляторы используют в автомобилях, электромобилях, сотовых телефонах, железнодорожных вагонах и даже на искусственных спутниках Земли.
Наряду с источниками тока существуют различные потребители электроэнергии: лампы, пылесосы, компьютеры и многие другие.

Элементы электрической цепи:

  • источник напряжения;
  • потребители: резисторы, лампы, реостат.
  • измерительные приборы: вольтметр, амперметр, ваттметр, омметр;
  • соединительные провода;
  • ключи для размыкания и переключения цепи.

Для поддержания электрического тока в цепи необходимы источники электрической энергии: источники электрического тока, источники электрического напряжения.

Источник ЭДС (идеальный источник напряжения) — двухполюсник, на зажимах которого электродвижущая сила (и напряжение) всегда поддерживается постоянным значением.

Источник электрического тока — двухполюсник, создающий ток постоянного значения, не зависящего от значения сопротивления на подключенной нагрузке. Внутреннее сопротивление такого источника приближается к бесконечности.

Необходимое условие существования тока — замкнутая цепь! Это означает, что все элементы цепи должны быть проводниками электричества и в цепи не должно быть разрывов. В случае размыкания цепи ток прекращает течь. Именно размыкание цепи и лежит в основе работы всех реле, кнопок и выключателей.

Порядок сборки электрической цепи указывается на специальном чертеже, который принято называть схемой.

Как ток течет по проводам

Начнем с начала. У всех дома есть электрические розетки. Возьмем два гвоздя… Впрочем, нет, давайте сначала подойдем с теоретической стороны, к практике приступим несколько позже.

Радиоэлектроника, электротехника, электрика — всего этого не могло бы быть, если бы не было электрического тока. И уж коль скоро Вы решились познать науку Радиоэлектронику, надо бы разобраться в начале, а что, собственно, такое — электрический ток. В учебнике физики дано такое определение: электрический ток — это направленное движение заряженных частиц. Движущиеся заряженные частицы — это электроны, причем их заряд отрицателен. Есть еще протоны — частицы с положительным зарядом и нейтроны — с нейтральным зарядом, но ни те ни другие не движутся. Значит, говоря об электрическом токе, мы будем иметь ввиду некую оголтелую толпу именно электронов, несущихся из пункта А в пункт Б, с очень большой скоростью… Это в общем.

Даже под самым наисовременнейшим микроскопом, нам ни за что не разглядеть электрон. А уж пощупать его — тем более никак. Вы, уважаемый читатель, можете, конечно возразить, мол, если сунуть два гвоздя в розетку, а потом за них схватиться — вот тут то как раз и можно очень мило все пощупать. Да еще как пощупать. «А вот ни фига» — отвечу я. То мы почувствуем — это всего лишь результат прохождения тока через живые ткани организма. А один отдельно взятый электрон пощупать НЕЛЬЗЯ! К чему все это? Да к тому, что в физике полно таких вот виртуальных вещей: они как бы есть, но на что они похожи — никто толком не знает. Как же тогда можно их изучать. Вот поэтому физику и чтят в народе наукой темной и безнадежно свирепой. А меж тем, дело решается очень просто. Надо только найти что-то более знакомое, то, что каждый человек тысячу раз видел, щупал, нюхал, пробовал на зуб и т.д. Причем, это что-то по поведению должно быть похожим на то, что мы изучаем. В данный момент мы изучаем электрический ток. Давайте попробуем подобрать что-то такое, что на него похоже, и что каждый видел.

Вот часто говорят: «ток течет». Это наводит на хорошую аналогию. А не сравнить ли нам электрический ток с током воды? Итак. Ток течет по проводам — вода течет по трубам. Ток течет от «+» к «-» — вода течет сверху вниз… Как видим — общего много. Поехали!

Для начала, давайте соберем хитроумную экспериментально-научную установку для выяснения свойств электрического тока на водяной модели. Для этого нам потребуется:
— 2 одинаковые пластиковые бутылки любого объема с пробками,
— кусок тонкого шланга (примерно 30 см).
— два гвоздя.

Отрезаем у бутылок дно, в пробочке ковыряем (сверлим) дырочки, вставляем туда концы шланга. Подвешиваем конструкцию на стенку при помощи гвоздей на одном уровне:

Приступаем к проведению научных экспериментов.
После каждого эксперимента мы будем делать вывод на основании полученных результатов. Если эксперименты и выводы покажутся Вам идиотскими — не удивляйтесь. Оно так и есть — все до идиотизма просто! Значит все у нас получится :).

Эксперимент 1.
Заполним левую бутылку водой (правая пока пуста), и смотрим, что происходит.
А происходит вот чего: вода начинает перетекать по шлангу из левой бутылки в правую. Сначала, когда в правой бутылке еще почти нет воды, а левая полна до краев — скорость перетекания воды большая. Но постепенно, по мере того, как заполняется правая и опустошается левая бутылка, скорость уменьшается. В тот момент, когда уровни воды в обеих бутылках сравняются, скорость станет равна нулю. Иначе говоря, ток воды в шланге исчезнет.
Вывод 1: Вода течет из бутылки, уровень воды в которой больше.
Вывод 2: Чем больше разность уровней — тем сильнее ток воды в шланге
Вывод 3: Если уровни равны, вода не течет вообще.

Эксперимент 2. Для него нам понадобится секундомер.
Перельем воду из правой бутылки в левую. То есть, снова сделаем так, чтобы в левой было много, а в правой — ничего. Запустим секундомер. Когда уровни в бутылках уровняются — остановим секундомер. Время запишем.
Повторим то же самое, но слегка зажмем шланг (но так, чтобы вода могла течь).
Сравним результаты измерений времени в первом и втором опыте. Время 2-го опыта, очевидно, будет больше.
Вывод: Чем тоньше шланг — тем меньше в нем сила водяного тока.

По результатам проделанных экспериментов, подведем итоги. А именно — выясним, от чего зависит сила тока в шланге.
Итак,

1. Чем больше разность уровней в бутылках — тем больше сила тока.
2. Чем сильнее сжат шланг, то есть, чем больше сопротивление шланга текущей по нему воде — тем меньше сила тока.

Объединим это в один закон:
Чем больше разность уровней и чем меньше сопротивление — тем больше сила тока

Как настраивают музыкальные инструменты?

Перед началом концерта музыканты симфонического оркестра настраивают свои инструменты по единственной ноте, играемой гобоистом. Проделав это, музыканты могут быть уверены в возможности достижения гармонии. Однако, когда расстраивается такой инструмент, как…

Как работает генератор переменного тока?

Генератор превращает механическую энергию в электрическую путем вращения проволочной катушки в магнитном поле. Электрический ток вырабатывается и тогда, когда силовые линии движущегося магнита пересекают витки проволочной катушки

Направление тока в проводнике, как, откуда и куда течет электрический ток в проводниках.

Направление тока в проводнике, как, откуда и куда течет электрический ток

Электрический ток представляет собой упорядоченное движение заряженных частиц. В твердых телах это движение электронов (отрицательно заряженных частиц) в жидких и газообразных телах это движение ионов (положительно заряженных частиц). Более того ток бывает постоянным и переменным, и у них совсем разное движение электрических зарядов. Чтобы хорошо понять и усвоить тему движение тока в проводниках пожалуй сначала нужно более подробно разобраться с основами электрофизики. Именно с этого я и начну.

Итак, как вообще происходит движение электрического тока? Известно, что вещества состоят из атомов. Это элементарные частицы вещества. Строение атома напоминает нашу солнечную систему, где в центре расположено ядро атома. Оно состоит из плотно прижатых друг к другу протонов (положительных электрических частиц) и нейтронов (электрически нейтральных частиц). Вокруг этого ядра с огромной скоростью по своим орбитам вращаются электроны (более мелкие частицы, имеющие отрицательный заряд). У разных веществ количество электронов и орбит, по которым они вращаются, может быть различным. Атомы твердых веществ имеют так называемую кристаллическую решетку. Это структура вещества, по которой в определенной порядке располагаются атомы относительно друг друга.

как возникает электрический ток, в каком направлении он движентся, течёт

А где же тут может возникнуть электрический ток? Оказывается, что у некоторых веществ (проводников тока) электроны, что наиболее удалены от своего ядра, могут отрываться от атома и переходить на соседний атом. Это движение электронов называется свободным. Просто электроны перемещаются внутри вещества от одного атома к другому. Но вот если к этому веществу (электрическому проводнику) подключить внешнее электромагнитное поле, тем самым создав электрическую цепь, то все свободные электроны начнут двигаться в одном направлении. Именно это и есть движение электрического тока внутри проводника.

Теперь давайте разберемся с тем, что собой представляет постоянный и переменный ток. Итак, постоянный ток всегда движется только в одном направлении. Как говорилось в самом начале — в твердых телах движутся электроны, а в жидких и газообразных движутся ионы. Электроны, это отрицательно заряженные частицы. Следовательно, в твердых телах электрический ток течет от минуса к плюсу источника питания (перемещаются электроны по электрической цепи). В жидкостях и газах ток движется сразу в двух направлениях, а точнее, одновременно, электроны текут к плюсу, а ионы (отдельные атомы, что не связаны между собой кристаллической решеткой, они каждый сам по себе) текут к минусу источника питания.

в какую сторону идёт ток в проводах, электрических цепях, схемах

Учеными же было принято официально считать, что движение происходит от плюса к минусу (наоборот, чем это происходит в действительности). Так что, с научной точки зрения правильно говорить, что электрический ток движется от плюса к минусу, а с реальной точки зрения (электрофизическая природа) правильнее полагать, что ток течет от минуса к плюсу (в твердых телах). Наверное это сделано для какого-то удобства.

Теперь, что касается переменного электрического тока. Тут уже немного все сложнее. Если в случае постоянного тока движение заряженных частиц имеет только одно направление (физически электроны со знаком минус текут к плюсу), то при переменном токе направление движения периодически меняется на противоположное. Вы наверное слышали, что в обычной городской электросети переменное напряжение величиной 220 вольт и стандартной частотой 50 герц. Так вот эти 50 герц говорят о том, что электрический ток за одну секунду успевает 50 раз пройти полный цикл, имеющий синусоидальную форму. Фактически за одну секунду направление тока меняется аж 100 раз (за один цикл меняется два раза).

P.S. Направление тока в электрических схемах имеет важное значение. Во многих случаях если схема рассчитана на одно направление тока, а вы случайно его поменяете на противоположный или вместо постоянного тока подключите переменный, то скорее всего устройство просто выйдет из строя. Многие полупроводники, что работают в схемах, при обратном направлении тока могут пробиваться и сгорать. Так что при подключении электрического питания направление тока должно быть вами строго соблюдаться.

Оцените статью
TutShema
Добавить комментарий