Как найти период зная количество колебаний и время

Как найти период зная количество колебаний и время

Период — это важная характеристика колебательного процесса, которая позволяет определить время, за которое система проходит один полный цикл своего движения. Понимание периода позволяет рассчитывать различные параметры колебательных систем, такие как частота, амплитуда и фаза. Чтобы найти период, необходимо знать время и количество колебаний системы.

Для вычисления периода системы можно воспользоваться формулой:

Период (Т) = Время (t) / Количество колебаний (N)

где Т — период, t — время, за которое система производит колебания, N — количество колебаний, произведенных системой за это время. При этом необходимо учесть, что время и период должны быть измерены в одной единице времени.

Пример использования этой формулы: если система производит 50 колебаний за 10 секунд, то период можно вычислить следующим образом: Т = 10 сек / 50 колебаний = 0,2 сек/колебание. Таким образом, период данной системы равен 0,2 секунды на одно колебание.

Как определить период колебаний по времени и количеству колебаний?

Для расчета периода колебаний можно использовать следующую формулу:

Период колебаний (T)=Время (t)/Количество колебаний (n)

Используя эту формулу, мы можем определить период колебаний, зная время и количество колебаний. Для получения более точных результатов рекомендуется проводить измерения на несколько циклов и вычислять средний период, чтобы учесть возможные погрешности.

Зная период колебаний, мы можем более детально исследовать вибрационные процессы и применять полученные данные в различных областях науки и техники, таких как физика, инженерия, музыка и многие другие.

Колебательные процессы

Колебательным процессом называется периодическое изменение одного или нескольких параметров системы около некоторого значения. Например, колебательным процессом является флаг, развевающийся на ветру. Полотнище флага совершает хаотичные движения вокруг некоторого среднего положения, задаваемого ветром. Другим примером колебательного процесса является движение нитяного маятника – если груз, подвешенный на нити, отклонить от положения равновесия и отпустить, то он начинает колебаться вокруг положения равновесия.

В первом приведенном примере колебания являются хаотичными. Во втором примере – колебания подчиняются простому закону круговых функций (синусоиды), и называются гармоническими. В высшей математике доказывается, что любые сложные колебания могут быть описаны суммой гармонических колебаний. Поэтому в первую очередь изучаются именно они.

Как найти период зная количество колебаний и время

Период гармонических колебаний

Особенностью гармонических колебаний является их большая схожесть. Каждое колебание маятника почти полностью повторяет предыдущее и последующее.

МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ период колебаний частота колебаний

В первую очередь это относится к «скорости качания». Если измерить время, за которое совершаются колебания маятника, можно убедиться, что оно для разных колебаний остается одинаковым. Взяв много маятников разных длин, можно получить различные колебания, однако, для каждого маятника время, за которое совершается любое колебание, будет постоянным.

Это время – важнейшая характеристика колебательного процесса. Оно называется периодом колебаний, обозначается латинской буквой $T$ и измеряется в секундах. Чем быстрее происходят колебания (чем короче нить маятника), тем меньше времени длится каждое колебание, и тем меньше период колебаний.

Механика Читать 0 мин.

Колебания ― это процесс, при котором состояние системы изменяется, повторяясь во времени, и смещаясь то в одну, то в другую сторону относительно состояния равновесия.

Период ― это время, через которое повторяются показатели системы, т. е. система совершает одно полное колебание. Период изменяется в секундах.

Частота ― величина обратная периоду: число полных колебаний за единицу времени. Частота измеряется в герцах [Гц] = [c-1]. Частота равна v = $frac$ , где

Если известно, что тело совершает N колебаний за время t, то частоту его колебаний можно определить как v = $frac$ , где

N ― количество колебаний;

Для описания колебательных систем, совершающих круговые процессы, удобно использовать круговую (циклическую) частоту. Циклическая частота показывает количество полных колебаний, которые происходят за 2π секунд и равна ω = 2πvили ω = $frac<2pi>$ , где

ω ― циклическая частота [рад/с];

Гармонические колебания ― колебания, в которых физические величины изменяются по закону синуса или косинуса. Кинематическое уравнение гармонических колебаний имеет вид:

ω ― циклическая частота [рад/с];

φ0 ― начальная фаза колебаний, [рад];

Смещение (x) ― это отклонение тела от положения равновесия. Смещение также является координатой тела, если отсчитывать ее от положения равновесия.

Амплитуда колебаний (A) ― максимальное отклонение колеблющейся величины от положения равновесия, т. е. максимальное смещение равно амплитуде колебаний xmax = A.

Начальная фаза колебаний (φ0) определяет смещение в начальный момент времени, выраженное в радианах.

Фаза колебаний (φ) или полная фаза колебаний, определяет смещение в данный момент времени, выраженное в радианах. Фаза колебаний равна φ = ωt + φ0, где

φ ― полная фаза колебаний [рад];

φ0 ― начальная фаза колебаний, [рад];

ω ― циклическая частота [рад/с];

Пример анализа гармонических колебаний точки

Рассмотрим гармонические колебания, в которых уравнение движения точки имеет вид x(t) = Asin(ωt), где

ω ― циклическая частота [рад/с].

Из уравнения x(t) = Asin(ωt) следует, что начального смещения нет (φ0 = 0) и колебания начинаются из положения равновесия. Смещение x достигает максимального значения xmax и равно амплитуде xmax = A, в тот момент, когда модуль синуса равен единице |sin(ωt)| = 1. Когда x = A фаза колебаний равна φ = $frac<pi> +2pi n$ когда x = –A фаза колебаний принимает значения φ = $frac<3pi> +2pi n$ , где n = 0, 1 , 2, … N.

График колебания координаты точки имеет вид:

Определим уравнение и график колебания скорости. Скорость ― это производная координаты по времени: v = xt’, где

v ― скорость движения точки [м/с];

Так как закон изменения координаты нам известен x(t) = Asin(ωt), скорость движения колеблющейся точки: v = xt’ = |Asin(ωt)|’t = Acos(ωt).

Уравнение скорости точки равно v(t) = Acos(ωt), где

v ― скорость движения точки [м/с];

ω ― циклическая частота [рад/с];

Сравнив уравнение v(t) = Aωcos(ωt) с кинематическим уравнением гармонических колебаний, легко заметить, что Aω ― амплитуда изменения скорости, а ωt ― фаза колебаний скорости. Таким образом, максимальное значение скорости равно vmax = Aω, и оно достигается при | cos(ωt) | = 1, т. е. тогда, когда фаза колебаний скорости равна φ = πn, где n = 0, 1, 2, … N.

График колебания скорости точки имеет вид:

Аналогично определяются уравнение и график колебания ускорения точки, которая движется по гармоническому закону.

Ускорение ― это производная скорости по времени: a = vt’, где

a ― ускорение движения точки [м/с2];

v ― скорость движения точки [м/с];

Так как закон изменения скорости был определен выше v(t) = Aωcos(ωt), определим ускорения движения колеблющейся точки: a = vt’ = [Aωcos(ωt)]t’ = –Aω2sin(ωt).

Уравнение ускорения точки равно a(t) = –Aω2sin(ωt), где

a ― ускорение движения точки [м/с2];

ω ― циклическая частота [рад/с];

Модуль ускорения точки максимален, когда |sin(ωt)| = 1 ― тогда же, когда достигает максимума смещение точки. Максимальное ускорение, т. е. амплитуда ускорения точки равна amax = Aω2.

График колебания ускорения точки имеет вид:

Во время гармонических колебаний, формы энергии колебательной системы все время находятся в процессе взаимной трансформации. В механической колебательной системе преобразуется механическая энергия: потенциальная энергия ― в кинетическую, а затем кинетическая энергия ― вновь в потенциальную. Полная механическая энергия колеблющейся системы постоянна, и в любой момент времени справедлив закон сохранения энергии E = EП + EK, где

E ― полная механическая энергия системы, E = const, [Дж];

EП ― потенциальная энергия системы, изменяющаяся во времени, [Дж];

EK ― кинетическая энергия системы, изменяющаяся во времени, [Дж].

Рассмотрим изменение потенциальной энергии пружинного маятника, который колеблется по гармоническому уравнению x(t) = Asin(ωt).

Потенциальная энергия деформированной пружины равна EП = $frac$ , где

EП ― потенциальная энергия деформированной пружины, [Дж];

k ― коэффициент упругости пружины [Н/м];

x ― деформация пружины (величина ее удлинения или сжатия) [м].

У пружинного маятника деформация пружины ― переменная величина, которая зависит от времени. Кинематическое уравнение движения точки, принадлежащей этому маятнику ― x(t) = Asin(ωt). Следовательно, потенциальную энергию пружинного маятника можно записать как EП = $frac$ = $frac$ = $frac cdot A^2 sin^2 (omega t)$ .

Уравнение потенциальной энергии пружинного маятника EП = $frac cdot A^2 sin^2 (omega t)$ , где

EП ― потенциальная энергия пружинного маятника, [Дж];

k ― коэффициент упругости пружины [Н/м];

ω ― циклическая частота [рад/с];

Амплитуда потенциальной энергии пружинного маятника равна EПmax = $fracA^2$ , где

EПmax ― максимальная потенциальная энергия пружинного маятника, [Дж];

k ― коэффициент упругости пружины [Н/м];

Потенциальная энергия пружинного маятника равна нулю, когда sin(ωt) = 0 ― когда маятник проходит положение равновесия, и максимальна, когда sin(ωt) = 1 ― когда маятник находится в крайних положениях, т. е. когда его смещение равно амплитуде.

График колебаний потенциальной энергии пружинного маятника:

Рассмотрим изменение кинетической энергии маятника. Кинетическая энергия тела равна Eк = $frac$ , где

Eк ― кинетическая энергия тела, [Дж];

v ― скорость движения тела, [м/с].

У тела, которое совершает колебательные движения, скорость ― переменная величина.

Выше было показано, что если уравнение движения точки имеет вид x(t) = Asin(ωt), то уравнение скорости точки v(t) = Aωcos(ωt). Таким образом, кинетическая энергия маятника равна Eк = $frac$ = $frac cdot (Aomegacos(omega t))^2$ = $frac cdot A^2 omega^2 cos^2 (omega t)$ .

Уравнение кинетической энергии маятника Eк = $frac cdot A^2 omega^2 cos^2 (omega t)$ , где

Eк ― кинетическая энергия маятника, [Дж];

ω ― циклическая частота [рад/с];

Амплитуда кинетической энергии маятника равна EКmax = $frac cdot A^2 omega^2$ , где

EКmax ― максимальная кинетическая энергия маятника, [Дж];

ω ― циклическая частота [рад/с].

Максимальная кинетическая энергия маятника достигается тогда, когда cos2(ωt) = 1 ― маятник проходит положение равновесия, и она равна нулю, когда маятник находится в крайнем положении.

График колебаний кинетической энергии маятника:

Математический маятник ― это колебательная система, состоящая из материальной точки, подвешенной на нерастяжимой нити или стержне.

Период колебаний математического маятника равен T = $2pi sqrt>$ , где

l ― длина нити математического маятника [м];

g ― ускорение свободного падения [м/с2].

Период колебаний пружинного маятника равен T = $2pi sqrt>$ , где

Существует особый тип колебаний ― вынужденные колебания. Вынужденные колебания происходят только под постоянным периодическим внешним воздействием и их характеристики зависят от характеристик этого воздействия.

Если частота внешнего воздействия, которое вызывает вынужденные колебания, совпадает с собственной внутренней частотой колебательной системы ― возникает явление резонанса. При резонансе резко возрастает амплитуда колебаний системы. Частота, при которой возникает явление резонанса, называется резонансной частотой.

На рисунке показан график резонансной кривой ― увеличение амплитуды при совпадении частоты внешнего воздействия с внутренней частотой системы.

Вынужденные колебания

А вот вынужденные колебания восполняют запас энергии внешним воздействием. Если это происходит каждый период, то колебания вообще затухать не будут.

Вынужденные колебания — это колебания, которые происходят под действием внешней периодически меняющейся силы.

Частота, с которой эта сила воздействует, равна частоте, с которой система будет колебаться.

Например, качели. Если вас кто-то будет на них качать, каждый раз давая толчок, когда вы приходите в одну и ту же точку — такое колебание будет считаться вынужденным.

Это колебание все еще будет считаться вынужденным, если вас будут раскачивать из положения равновесия. Просто в данном случае амплитуда (о которой речь пойдет чуть ниже) будет увеличиваться с каждым колебанием.

Автоколебания

Иногда вынужденному колебанию не нужно внешнего воздействия, чтобы случиться. Бывают такие системы, в которых это внешние воздействие возникает само из-за способности регулировать поступление энергии от постоянного источника.

У автоколебательной системы есть три важных составляющих:

  • сама колебательная система
  • источник энергии
  • устройство обратной связи, обеспечивающей связь между источником и системой

Часы с кукушкой — пример автоколебательной системы. Гиря на ниточке (цепочке) стремится вращать зубчатое колесо (храповик). При колебаниях маятника анкер цепляет за зубец, и вращение приостанавливается.

Но в результате маятник получает толчок, компенсирующий потери энергии из-за трения. Потенциальная энергия гири, которая постепенно опускается, расходуется на поддержание незатухающих колебаний.

часы с маятником

Период колебаний, формула

Повторяющиеся движения или процессы, которые воспроизводят все состояния предыдущего цикла являются периодическими. Одной из характеристик периодических процессов или колебаний является период.

Период колебаний — Это время за которое периодический процесс проходит полностью один цикл.

Период колебаний, формула

Для того чтобы найти период колебаний, необходимо взять определенный временной интервал и подсчитать количество циклов, после чего воспользоваться формулой:

∆tNf
определенный временной интервал,секунд
количество циклов,шт.
частота колебаний (число циклов в одну секунду),Герц

[ T = frac<∆t> = frac ]

Период колебаний: основные характеристики

Период колебаний (обозначается буквой T) измеряется в секундах.

В физике период колебаний связан с частотой колебаний (ν) следующей зависимостью:

Также единица измерения периода в физике — это герц (Гц), названный в честь немецкого учёного Генриха Герца.

  • Внимательно определите значения λ и V перед расчетами;
  • При измерении периода обращайте внимание на точность временных данных;
  • Перед использованием формулы удостоверьтесь в соответствии единиц измерения.

Период колебаний является важной физической величиной, позволяющей оценить частоту колебательных процессов в физике. Рассчитывая период, необходимо учитывать параметры длины волны и скорости распространения волны, а также точность измерения времени.

  • Как определить среднюю температуру воздуха за год
  • Как определить среднегодовое количество атмосферных осадков
  • Как вычислить среднюю температуру воздуха
  • Как найти среднюю температуру воздуха за сутки
  • Как вычисляют количество осадков за год
  • Как посчитать средние дневные продажи
  • Как читать Климатограммы 7 класс
  • Как определить годовое количество осадков по Климатограмме

Для того чтобы найти период колебаний указанной частицы, необходимо использовать формулу: T = λ / V. Где λ — длина волны, связанная с данной частицей (λ = 6,6 м), а V — скорость распространения волны (V = 330 м/с). Подставив указанные значения в формулу, получим: T = λ / V = 6,6 / 330 = 0,02 с = 20 мс. Таким образом, период колебаний данной частицы составляет 20 миллисекунд. Этот результат позволяет определить, сколько времени требуется для завершения одного полного цикла колебаний этой частицы. Таким образом, формула позволяет оценить период времени, который затрачивает частица на завершение одного цикла колебаний, и может быть использована для дальнейших расчетов и анализа характеристик колебательных процессов.

Физика: формула периода колебаний

Период колебаний — минимальное время, за которое циклически движущаяся система возвращается в исходное состояние.

Период колебаний можно найти как

где $t$ — время всех колебаний, $n$ — их количество.

Закономерности, связанные с колебаниями, удобно изучать с помощью модели движущегося в горизонтальной плоскости пружинного маятника, поскольку внутри такой системы действует всего одна сила — сила упругости пружины (ее весом и силами сопротивления среды можно пренебречь). Такое устройство относится к т.н. линейным гармоническим осцилляторам — системам, графиком зависимости скорости тела от времени для которых является синусоида.

Функция силы от времени, действующая в пружинном маятнике, может быть выражена как:

Статья: Физика: формула периода колебаний

Найди решение своей задачи среди 1 000 000 ответов

$F(t) = m cdot a (t) = -m cdot omega^2 cdot x$ (t), где:

  • $m$ — масса,
  • $a$ — ускорение,
  • $omega$ — круговая частота гармонических колебаний,
  • $x$ — приращение длины в данный момент времени.

Сила упругости зависит лишь от коэффициента упругости пружины и растяжения пружины:

Объединив эти две формулы, получим:

$m cdot a = -kx = m cdot omega_0^2 cdot x$,

Величина $omega_0$ называется собственной частотой колебательной пружинного маятника. Ее можно выразить, исходя из вышеизложенного, как

Период колебаний связан с собственной частотой отношением

где $2pi$ — длина одного цикла, выраженная в радианах. Из этого можно выразить период как зависимость от массы и упругости:

$T = 2pi cdot sqrtfrac$.

Для других колебательных систем класса гармонических осцилляторов (математического маятника, крутильного маятника) периоды колебаний находятся аналогично. Различаются лишь системы сил, действующие на тело. Так, период колебаний математического маятника зависит (при небольших углах отклонения от вертикали) от длины подвеса.

Найти жёсткость пружины пружинного маятника с грузом массой 0,1 кг, если период его колебаний составляет 1 с.

Подставляем значения в формулу:

$1 = 2 cdot 3,14 cdot sqrtfrac$

$1^2 = 4 cdot 3,14^2 cdot frac$

Ответ: ,628 frac$.

Оцените статью
TutShema
Добавить комментарий