Зачастую в быту можно столкнуться с ситуацией, когда выходных параметров одного имеющегося источника питания (выходного тока или напряжения) недостаточно для обеспечения электроэнергией существующей нагрузки. Если есть дополнительный блок, возникает идея сложить возможности двух БП для достижения результата. Это возможно, но не всегда.
Последовательное соединение блоков питания позволит поднять выходное напряжение. Общий выходной уровень будет равен сумме напряжений каждого источника — Uобщ=U1+U2+U3…+Un. В частном случае для соединения n блоков с одинаковым выходным напряжением U, общий уровень будет равен Uобщ=n*U. Для осуществления такого включения, плюсовой вывод одного БП соединяется с минусовым выводом соседнего и так далее. Крайние выводы получившейся цепочки подключаются к нагрузке. Например, при последовательном соединении двух источников питания с напряжением 5 и 7 вольт, на уровень на нагрузке составит 5+7=12 вольт, а если соединить три БП по 12 вольт каждый, общее напряжение составит 3*12=36 вольт.
При параллельном соединении источников питания одноименные выводы соединяются между собой – плюсовые с плюсовыми, минусовые с минусовыми. У БП с одинаковым выходным напряжением общий выходной уровень остается неизменным, зато складываются токи, отдаваемые каждым из блоков питания. Принцип сложения токов похож на сложение напряжений при последовательном соединении Iобщ=I1+I2+I3…In, или для n источников с одинаковой токоотдачей с равномерным распределением Iобщ=n*In.
В обоих случаях соединение нескольких БП увеличивает общую электрическую мощность, которая, как известно, равна произведению тока на напряжение (P=I*U). При параллельном соединении увеличивается первый множитель, при последовательном – второй.
В отличие от последовательного соединения, БП с разным выходным напряжением параллельно включать нельзя. Источник с более низким напряжением станет для второго блока питания нагрузкой, и никакого сложения токов не получится (ток пойдет от источника с большим напряжением к БП с меньшим напряжением). Если включить параллельно больше двух источников питания с разными напряжениями, картина токораспределения будет более сложной, но увеличения мощности все равно не будет.
Схема последовательного подключения
Пример практического последовательного включения рассмотрен на примере двух импульсных блоков питания. Входные цепи переменного напряжения подключаются параллельно (желательно, чтобы фазные проводники подключались к фазным, нейтральные – к нейтральным, но это не принципиально, на работоспособность влиять не будет). Так как цепь собрана последовательно, то общий ток нагрузки пойдет через оба блока питания, и максимально допустимый ток будет определяться источником с меньшей нагрузочной способностью.
ПАРАЛЛЕЛЬНОЕ ВКЛЮЧЕНИЕ БЛОКОВ ПИТАНИЯ для увеличения мощности
Этот «ИЛИ» тот?
Казалось бы, «простое» решение дилеммы прямого подключения состоит в том, чтобы всего лишь использовать диод между каждым источником питания и общей точкой, объединяющей все источники. Такой метод (Рисунок 2) обычно называют диодным «ИЛИ». Диодное «ИЛИ» очень эффективно тогда, когда нужно исключить возможность протекания тока вне общей нагрузки, но, как правило, недостаточно для устранения ошибок распределения между источниками питания с независимыми усилителями ошибки, поскольку излом характеристики проводимости диода достаточно резок для того, чтобы параметрические различия в уставках по-прежнему оставались причиной значительного дисбаланса источников.
Рисунок 2. | В принципе, выходы нескольких источников питания могут быть объединены с помощью диодов, изолирующих источники друг от друга, но при такой конфигурации возникает множество проблем, связанных с балансировкой и распределением токов. |
Как правило, диодное «ИЛИ» требуется для работающих независимо источников питания, выходные токи которых могут быть как вытекающими, так и втекающими (работа в двух квадрантах). Эффект прямого параллельного соединения таких источников питания без использования диодов будет намного хуже, чем в случае одноквадрантных источников. В то время как одноквадрантные источники питания лишь теряют точность при подключении к общей нагрузке, двухквадрантные источники будут активно бороться за контроль над общим выходным напряжением. Это приведет к превышению токов, циркулирующих в группе источников питания, над током в нагрузке, и, возможно, станет причиной немедленной перегрузки одного или нескольких источников.
Кроме того, если диоды имеют отрицательный температурный коэффициент порога проводимости, они даже будут способствовать нарушению распределения токов в группе источников. Один из способов смягчения этой проблемы заключается в использовании выпрямителей с положительным температурным коэффициентом – на диодах Шоттки, или на полевых транзисторах, выполняющих функции диодов в схеме активного «ИЛИ», однако диоды могут снизить общий КПД за счет прямого падения напряжения, а активное «ИЛИ» может увеличить стоимость и сложность схемы.
В некоторых случаях диодное «ИЛИ» может способствовать повышению надежность на системном уровне. Особенно интересен случай, когда в одном из блоков питания происходит короткое замыкание выходного полевого транзистора или конденсатора, что может поставить под угрозу работу общей шины выходного напряжения. Диоды схемы «ИЛИ» быстро отсекут короткое замыкание от общей выходной шины и обеспечат устойчивость и надежность системы.
Кто здесь главный?
Чтобы надежно и предсказуемо функционировать в общей группе, источники питания, как правило, должны специально проектироваться для параллельной работы. Необходимы синхронизация при запуске, координация цепей защиты от неисправностей и стабильность контура обратной связи.
Для группы источников питания, соединенных параллельно с целью увеличения полезного тока нагрузки, требуется использование таких методов управления петлей обратной связи, которые учитывают совместную работу источников. Распространенной стратегией является включение источников питания без внутренних усилителей сигналов ошибки, когда вместо этого все источники объединяются в группу с общим входом управления, подключенным к одному усилителю ошибки. Этот усилитель регулирует выходное напряжение системы, а затем его сигнал обратной связи распределяется между всеми источниками питания в системе.
Основным преимуществом этой популярной стратегии управления является отличная стабилизация выходного напряжения. Кроме того, ошибки распределения уходят на второй план перед производственным разбросом коэффициентов усиления широтно-импульсных модуляторов преобразователей. С другой стороны, использование одного усилителя ошибки и однопроводной шины управления создает уязвимую для неисправностей точку, которая может стать источником проблем в некоторых высоконадежных системах. Кроме того, параметрические отклонения в модуляторе трудно контролировать, что вынуждает производителя к компромиссному решению в пользу управления распределением токов нагрузки.
В варианте с общей петлей регулирования ошибки распределения токов можно сделать минимальными, если жестко ограничить разброс параметров цепей управления источников. Во избежание перегрузки какого-либо источника в группе из-за больших ошибок распределения необходимо либо снизить расчетную нагрузку группы, либо использовать определенные меры противодействия. Для выравнивания ошибок распределения токов, обусловленных разбросом параметров цепей управления, может использоваться заводская регулировка для калибровки выходных ошибок (дорогостоящий метод), или добавление в каждый источник массива локального контура стабилизации тока (что увеличит сложность схемы и количество компонентов). Для измерения тока этих локальных петель, как правило, к источнику питания добавляют резистивный шунт.
Еще один проблемой, возникающей в случае группирования изолированных источников питания, имеющих собственные узлы управления с опорными уровнями на первичной стороне DC/DC преобразователя, является передача сигнала усилителя ошибки через изолирующий барьер между первичной и вторичной частями схемы. Использование изоляции часто увеличивает стоимость решения, отбирает существенную часть ценной площади печатной платы и, в зависимости от используемых для изоляции компонентов, может неблагоприятно влиять на надежность.
Вторая стратегия организации контура управления, позволяющая объединять источники в параллельные группы, основана на использовании сопротивлений силовых проводников в качестве балластных резисторов для метода, изображенного на Рисунке 1. При реализации технологии, называемой «droop-share» (распределенное снижение напряжения), каждый источник питания имеет свое опорное напряжение и интегрированный усилитель ошибки, но вслед за увеличением тока нагрузки опорное напряжение намеренно и линейно снижается на некоторую определенную величину.
Запараллеливание источников питания может оказывать негативное влияние на переходную характеристику и качество стабилизации выходного напряжения. В методе droop-share для распределения мощности между модулями в группе намеренно используется обратная характеристика регулирования. Из-за этого стабильность выходного напряжения группы droop-share, как правило, бывает хуже, чем у группы, созданной с одним традиционным усилителем ошибки. Если это нежелательно, для эффективной компенсации отрицательного наклона характеристики управления можно использовать внешний контур регулирования. Получающаяся погрешность статического регулирования идентична погрешности для случая традиционного усилителя ошибки, так как внешний контур сам по себе является интегратором ошибки.
Заключение
Несмотря на широкое использование параллельного соединения ИП, рекомендуется избегать конфигурации PP. Вместо этого предпочтительно использовать соединение SC, что дает лучшую стабильность в использовании ИП.
Конфигурация PR полезна во многих критически важных приложениях, и мы настоятельно рекомендуем разработчикам именно это соединение. Рассмотрите этот вариант, используя адекватное соединение оценки потребляемой мощности и избыточности (посредством внутреннего ORing или внешнего резервирования).
194044, Санкт-Петербург
Большой Сампсониевский проспект, д. 45А оф. 134
Показать карту
Показать карту
Просим обратить Ваше внимание на то, что данный сайт носит информационный характер и не является публичной офертой, определяемой положениями Статьи 437 Гражданского кодекса Российской Федерации. Цены в каталоге указаны без НДС. Для получения детальной информации о стоимости компонентов и сроках поставки обращайтесь к нашим менеджерам.
Параллельное соединение элементов.
При параллельном соединении элементов питания, их одноименные выводы соединяются вместе, то есть плюс к плюсу, минус к минусу (рис 3.12).
Рисунок 3.11.Параллельное соединение элементов питания.
В этом случае общий ток будет равен сумме токов каждого элемента:
Общее напряжение при параллельном включении источников питания будет равно напряжению каждого отдельного источника.
Еобщ = Е1 = Е2 = Е3.
Последовательно-параллельное соединение элементов напряжения.
Источники питания включают по последовательно-параллельной схеме для увеличения, как тока, так и напряжения. При этом основываются на том, что параллельное включение увеличивает силу тока, а последовательное увеличивает общее напряжение. На рисунке 3.13 показаны примеры последовательно-параллельных схем включения элементов питания.
Рисунок 3.11.Последовательно-параллельное соединение элементов питания.
ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!
Как изменять параметры?
Если параметры нагрузки и ИП различаются кратно, то вполне логичным решением выступает объединение нескольких ИП в единую группу. Наиболее часто источники тока (ИТ) соединяют последовательно или параллельно. Также возможно и смешанное присоединение, однако его практикуют гораздо реже.
В зависимости от вида используемых ИП разнятся и особенности их объединения. Разберёмся в этом.
Химические электроисточники
Устройства, в которых электрогенерация основана на электрохимических процессах окисления и восстановления, называют химическими источниками тока (ХИТ). К ним относятся гальванические элементы (ГЭ), а также аккумуляторные батареи (АКБ).
ХИТ — это удобный переносной аккумулятор электроэнергии, применяемый для электропитания разных типов оборудования. Он обеспечивает автономное функционирование многих установок без необходимости их прямого подключения к стационарной электрической сети.
Вот примеры, где установки этого типа наиболее востребованы:
- Портативная электроника: наушники, пульты дистанционного управления, игровые приставки, фотоаппараты, видеокамеры, переносные аудиоплееры;
- Мобильные телефоны и планшеты;
- Ноутбуки, неттопы и планшетные компьютеры;
- Классические автомобили, электромобили, а также специализированный автономный электрифицированный транспорт: электрокар, электротележка, электротягач;
- Электронные игрушки: роботы, радиоуправляемые автомобили, другие развивающие и обучающие интерактивные игрушки;
- Ручные и стационарные фонари, светильники, прожекторы;
- Бытовая техника: часы, беспроводные мыши и клавиатуры, пульты управления бытовой техникой, термометры, метеостанции;
- Медицинские приборы: слуховые аппараты, глюкометры, тонометры, а также портативные мониторы сердечного ритма.
Это лишь некоторые области применения химических ИТ. При этом очень часто в приборах используется несколько однотипных элементов, объединённых в единое устройство. Для определения необходимости сооружения такой сборки вначале оценивают параметры потребителя. Если они не соответствуют друг другу, то пользуясь основными законами электротехники, делают необходимые расчёты, а затем сооружают необходимый тип присоединения.
Последовательное присоединение ХИТ
Этот вид объединения является самым часто встречающимся. Это связано с тем, что для электропитания большинства потребителей, номинального ЭДС батареи бывает недостаточно. Так, для зажигания светодиода нужно подавать от 2 до 4 вольт, а для питания микромоторов — от 3 до 9 В.
Так как классическая батарея имеет невысокий ЭДС, всего 1,5 В, то увеличить его можно, достаточно подключить их друг за другом. Аналогично объединяют и аккумуляторные батареи. При этом нужно помнить, что общая емкость аккумуляторов при последовательном соединении не изменяется и будет равна ёмкости одиночного ГЭ.
Параллельное присоединение химических ИТ
Основная цель включения в параллель — это увеличение отдаваемой мощности. Суммарная величина ЭДС при параллельном соединении остаётся неизменной, а отдаваемая сила тока кратно увеличивается. При этом параллельное соединение батареек очень редко используется. Причина этому — разнообразие их типоразмеров, от G13 до D. Такое многообразие дает возможность подобрать батарейку с требуемой отдаваемой мощностью.
В случае с аккумуляторными батареями запараллеливание встречается чаще. Оно увеличивает суммарную ёмкость АКБ соответственно числу присоединённых ГЭ.
Смешанное соединение источников тока
Смешанная сборка ГЭ на практике никогда не выполняется. В первую очередь это обусловлено разнообразием их типоразмеров. Объединение АКБ по смешанной схеме используют чаще. Это позволяет не только нарастить ёмкость общей сборки, но и её ЭДС, а также сохранить компактность в одном из габаритных размеров аккумулятора.
Наиболее часто такую сборку можно увидеть в АКБ ноутбуков, электромобилей, а также в тяговых аккумуляторах электропогрузчиков.
Особенности соединения ХИТ
При сооружении последовательной сборки химических ИТ должно соблюдаться одно простое правило. Оно заключается в том, что плюс первой батареи присоединяется к минусу второй, а плюс второй — с минусом третьей и так далее. Это правило выполняют с каждым последующим ХИТ, независимо от их числа.
При запараллеливании правила присоединения несколько иные. При такой схеме в один узел объединяют все одноимённые полюса источников электротока.
При сооружении смешанной сборки всегда должно использоваться одинаковое число запараллеленных ГЭ.
Также общими для всех способов объединения считаются условия:
- Один тип используемых ХИТ. Это связано с тем, что элементы могут обладать различным номинальным и зарядным напряжением, иметь различие в границах рабочих напряжений, а также различные допустимые токи заряда и разряда;
- Иметь одинаковый уровень заряда.Это относится не только к АКБ, но и ГЭ. Из-за различия в уровнях заряда легко допустить переразряд одного из компонента сборки, что привёдет к его выходу из строя, протечке электролита, а также нарушению функционирования всей конструкции;
- Одинаковая емкость. Существенное несовпадение ёмкостей приводит к постоянной недозарядке аккумулятора, имеющего большую ёмкость. А длительная работа в таком режиме ведёт к его быстрой деградации;
- Совпадение номинального ЭДС. Объединение ИП отличающихся номинальных напряжений приводит к тому, что элемент сборки, имеющий меньший ЭДС, будет постоянно находиться в режиме заряда. При этом подаваемый на него потенциал, существенно превышает допустимый, что быстро выведет его из строя.
- Подключение через проводники достаточного сечения. Для выполнения любого типа соединения нужно знать, какие токи будут протекать по проводникам. В соответствии с этим и выбирать проводники соответствующего размера, пропускная способность которых будет достаточной. В противном случае велика вероятность перегрева проводов с риском образованием пожара.
Параллельное соединение элементов питания.
Так, например, если необходимо обеспечить значительный ток для аппарата применяют параллельное соединение батареек. В таком случае общее напряжение составной батареи будет равно напряжению одного элемента питания, а разрядный ток будет во столько раз больше, сколько батареек применяется.
На рисунке составная батарея из трёх 1,5 вольтовых батареек G1, G2, G3. Если учесть, что среднее значение разрядного тока для 1 батарейки формата АА 7-7,5 mA (при сопротивлении нагрузки 200 Ом), то разрядный ток составной батареи составит 3 * 7,5 = 22,5 mA. Вот так, приходится брать количеством.
Последовательное соединение элементов питания.
Бывает, что необходимо обеспечит напряжение 4,5 – 6 вольт, применяя батарейки на 1,5 вольта. В таком случае нужно соединить батарейки последовательно, как на рисунке.
Разрядный ток такой составной батареи составит значение для одного элемента, а общее напряжение будет равно сумме напряжений трёх батареек. Для трёх элементов формата АА (“пальчиковых”) разрядный ток составит 7-7,5 mA (при сопротивлении нагрузки 200 Ом), а суммарное напряжение – 4,5 Вольт.
Схемы соединения аккумуляторов: параллельное и последовательное подключение, как сделать правильно
Объединенная группа аккумуляторов называется батареей элементов или просто гальванической батареей. Существуют два основных способа соединения элементов в батареи: последовательное и параллельное соединения.
В рамках данной статьи рассмотрим особенности последовательного и параллельного соединения аккумуляторов. Есть разные ситуации, когда может потребоваться увеличить общую емкость или поднять напряжение, прибегнув к параллельному или последовательному соединению нескольких аккумуляторов в батарею, и всегда нужно помнить о нюансах.
Параллельное соединение предполагает объединение положительных клемм аккумуляторов с общей плюсовой точкой схемы, а всех отрицательных — с общим минусом, т. е. все положительные выводы элементов присоединить к одному общему проводу, а все отрицательные выводы — к другому общему проводу. Концы общих проводов такой батареи присоединяются к внешней цепи — к приемнику.
Сущность последовательного способа соединения аккумуляторов, как это вытекает из самого его названия, заключается в том, что все взятые элементы соединяются между собою в одну последовательную цепочку, т. е. положительный полюс каждого элемента соединяется с отрицательным полюсом каждого последующего элемента.
В результате такого соединения получается одна общая батарея, у которой у одного крайнего элемента остается свободным отрицательный, а у второго — положительный выводы. При помощи их батарея и включается во внешнюю цепь — в приемник. Далее поговорим об этом более подробно.
Параллельное соединение аккумуляторов дает объединение емкостей, и при равном исходном напряжении на каждом из аккумуляторов, входящих в собираемую из них батарею, емкость составной батареи оказывается равной сумме емкостей этих аккумуляторов. При равных емкостях объединяемых аккумуляторов, для нахождения емкости батареи достаточно умножить количество составляющих батарею аккумуляторов на емкость одного аккумулятора в сборке.
Сколько бы элементов мы ни соединяли параллельно, общее их напряжение всегда будет равно напряжению одного элемента, но зато сила разрядного тока может быть увеличена во столько раз, сколько элементов будет входить в состав батареи, если только все элементы в батарее однотипные.
Соединяя аккумуляторы последовательно, получают батарею той же емкости, что и емкость одного из аккумуляторов, входящих в батарею, при условии, что емкости равны. При этом напряжение батареи будет равно сумме напряжений каждого из составляющих батарею аккумуляторов.
Ежели последовательно соединяются аккумуляторы равной емкости и равного на момент соединения напряжения, тогда напряжение батареи, полученной путем последовательного соединения, будет равно произведению напряжения одного аккумулятора и количества аккумуляторов, составляющих последовательную цепь.
При последовательном соединении элементов складываются и величины их внутренних сопротивлений. Поэтому от составленной батареи независимо от величины ее напряжения можно потреблять только такой же силы ток, на какой рассчитан один элемент, входящий в состав данной батареи. Это и понятно, так как при последовательном соединении через каждый элемент проходит тот ток, какой проходит и через всю батарею.
Таким образом, путем последовательного соединения элементов, увеличивая их общее количество, можно повысить напряжение батареи до любых пределов, но сила разрядного тока батареи останется такой же, как и у одного отдельного элемента, входящего в ее состав.
И при параллельном, и при последовательном соединении, общая энергия батареи оказывается равной сумме энергий всех аккумуляторов, составляющих батарею.
Итак, для чего же аккумуляторы объединяют в батареи? Все дело в том, что в любой схеме существуют потери, связанные с нагревом проводников. И при одном и том же сопротивлении проводника, если требуется передать определенную мощность, гораздо выгоднее передавать мощность при высоком напряжении, тогда ток потребуется меньший, и омические потери будут меньше.
По этой причине мощные источники бесперебойного питания используют батареи последовательно соединенных аккумуляторов на общее напряжение в несколько десятков вольт, а не параллельную цепь на 12 вольт. Чем выше напряжение источника, тем выше КПД преобразователя.
Когда нужен значительный ток, а одного имеющегося в наличии аккумулятора для поставленной цели не достаточно, увеличивают емкость батареи, прибегая к параллельному соединению нескольких аккумуляторов.
Не всегда экономически выгодно заменять аккумулятор на новый, обладающий большей емкостью, и иногда достаточно присоединить параллельно еще один, и повысить емкость источника до необходимой. Некоторые источники бесперебойного питания имеют отсеки для установки дополнительных аккумуляторов параллельно уже имеющемуся, с целью повысить энергетический ресурс преобразователя.
Что следует учитывать при объединении аккумуляторов в последовательную цепь? Аккумуляторы различной емкости (изготовленные по одной и той же технологии, например свинцово-кислотные) отличаются внутренним сопротивлением. Чем выше емкость, тем меньше внутреннее сопротивление, зависимость здесь почти обратно пропорциональная.
По этой причине, если последовательно соединить аккумуляторы разной емкости, и замкнуть цепь нагрузки или зарядную цепь, то ток по цепи пойдет везде одинаковый, а вот падения напряжений будут разными. И на каком-то из аккумуляторов батареи напряжение при зарядке окажется намного выше номинала, что опасно, а при разрядке — намного ниже нижнего предела, что вредно. Рассмотрим далее пример, покажем, чем это чревато.
Пусть в нашем распоряжении 10 аккумуляторов, номинальное напряжение каждого 12 вольт, 9 из них имеют емкость 20 ампер-часов, а один — 10 ампер-часов. Мы решили соединить их последовательно, и заряжать от зарядного устройства с контролем зарядного тока, выставили ток на 2 ампера. Зарядное устройство настроено так, что прекратит зарядку когда напряжение батареи пересечет отметку в 138 вольт, исходя из среднего значения в 13,8 вольт на каждый аккумулятор последовательной батареи. Что произойдет?
Для каждого аккумулятора производитель предоставляет зарядную характеристику, где можно увидеть, каким током и на протяжении какого времени нужно заряжать аккумулятор.
Очевидно, аккумулятор в 2 раза меньшей емкости при токе в 2 ампера примет столько же энергии, что и аккумуляторы большей емкости, но рост напряжения на нем будет идти примерно втрое быстрее. Так, уже через 3 часа маленький аккумулятор возьмет свое, в то же самое время большие аккумуляторы еще 6 часов должны будут заряжаться.
Но напряжение на маленьком аккумуляторе уже пошло через край, его бы нужно перевести в режим стабилизации напряжения, на наш зарядный прибор этого не делает. В конце концов система рекомбинации газов в аккумуляторе вдвое меньшей емкости не выдержит, клапаны сорвет, и аккумулятор начнет терять влагу, терять емкость, при этом большие аккумуляторы все еще будут недозаряжены.
Вывод: заряжать последовательно можно только аккумуляторы равной емкости, одной и той же технологии, одного и того же состояния разряда.
Теперь допустим, что мы разряжаем эту же последовательную цепь. Изначально на каждом аккумуляторе 13,8 вольт, а разрядный ток составляет 2 ампера. Защита от глубокого разряда разомкнет цепь при 72 вольтах, то есть предполагается не менее 7,2 вольт на аккумулятор. Через 4 часа маленький аккумулятор полностью разрядится, а на больших еще будет по 12 вольт, и защита от глубокого разряда не уследит подвоха. Маленький аккумулятор уже необратимо потеряет часть своей емкости.
Вот почему последовательно можно соединять лишь аккумуляторы равных емкостей, если не хотите их испортить. Лучше всего последовательно соединять аккумуляторы из одной партии, и проверить предварительно их емкости тестером АКБ, дабы убедиться, что емкости аккумуляторов, из которых вы собираетесь собрать последовательную батарею, почти равны.
А вот параллельно соединять аккумуляторы разной емкости допустимо. Разумеется, при условии равенства напряжений на их клеммах. При параллельном соединении емкости аккумуляторов не будут играть роли, поскольку внутренние сопротивления аккумуляторов окажутся подключены параллельно, и максимальный ток заряда или разряда будет у каждого аккумулятора свой, они будут работать синхронно.
Однако для клемм аккумуляторов и для каждого конкретного аккумулятора ограничения по току имеются, клеммы могут и не выдержать длительный ток, который в принципе способен дать аккумулятор, об этом важно не забывать. В технической документации к аккумулятору эти параметры указаны.
Если в момент соединения двух аккумуляторов, сильно различающихся по емкости, их напряжения отличаются значительно, неизбежна кратковременная перегрузка по току одного из аккумуляторов. Если напряжение выше у аккумулятора меньшей емкости, то перераспределение заряда в момент соединения вызовет кратковременный ток короткого замыкания в нем, и может быстро привести к его разрушению.
Если напряжение выше у аккумулятора большей емкости, то опять же под угрозой аккумулятор меньшей емкости, ибо он станет принимать заряд в режиме перегрузки. Поэтому лучше всего соединять параллельно аккумуляторы, предварительно выровняв напряжения на них, а уже следующим шагом объединять в батарею.
Таблица сравнения схем соединения аккумуляторов
Характеристика | Параллельное подключение аккумуляторов | Последовательное подключение аккумуляторов | Смешанное подключение аккумуляторов |
Напряжение | Не меняется | Сумма напряжений каждого аккумулятора | Зависит от конкретной схемы |
Емкость | Сумма емкостей каждого аккумулятора | Не меняется | Зависит от конкретной схемы |
Ток зарядки/разрядки | Разделяется между аккумуляторами | Тот же ток через все аккумуляторы | Зависит от конкретной схемы |
Длительность работы | Увеличивается | Не меняется | Зависит от конкретной схемы |
Сложность монтажа | Низкая | Высокая | Высокая |
Риск перегрузки аккумуляторов | Низкий | Высокий | Зависит от конкретной схемы |
Надежность | Высокая | Низкая | Зависит от конкретной схемы |
Контроль заряда/разряда | Простой | Простой | Сложный |
Использование неоднородных аккумуляторов | Возможно | Невозможно | Возможно |
Зависимость от конкретной схемы в таблице относится к смешанному подключению, поскольку оно может иметь различные конфигурации.
Надеемся, что наша статья была для вас полезной, и теперь вы знаете, как можно, а как нельзя соединять аккумуляторы и для каких целей это обычно делают.
- Механические и электрические характеристики асинхронных электродвигателей
- Электрические кабели, провода и шнуры — в чем различие
- Расчет токов короткого замыкания для начинающих электриков
Надеюсь, что эта статья была для вас полезной. Смотрите также другие статьи в категории Электрическая энергия в быту и на производстве » В помощь начинающим электрикам
Подписывайтесь на наш канал в Telegram: Домашняя электрика
Поделитесь этой статьей с друзьями: