Реле — электрический аппарат, предназначенный для коммутации электрических цепей (скачкообразного изменения выходных величин) при заданных изменениях электрических или не электрических входных величин.
Электромагнитные реле бывают самых различных конструкций. В наиболее распространенной конструкции электрический ток (соответствующего напряжения), проходя через катушку, создает магнитный поток в цепи сердечник — ярмо — якорь, в результате чего якорь притягивается к сердечнику. Это вызывает изменение положения контактов: замыкается один и размыкается другой.
В других конструкциях подвижный сердечник втягивается в катушку. В герметических реле трубчатого типа магнитный поток, создаваемый катушкой, действует непосредственно на контактные пружины, выполненные из магнитомягкого материала, вызывая их срабатывание. Такие контакты могут действовать под влиянием магнитного поля от постоянного магнита или под влиянием общего поля от постоянного магнита и катушки.
Релейные элементы (реле) находят широкое применение в схемах управления и автоматики, так как с их помощью можно:
- управлять большими мощностями на выходе при малых по мощности входных сигналах;
- выполнять логические операции;
- создавать многофункциональные релейные устройства;
- осуществлять коммутацию электрических цепей;
- фиксировать отклонения контролируемого параметра от заданного уровня;
- выполнять функции запоминающего элемента и т. д.
Первое реле было изобретено американцем Дж. Генри в 1831 г. и базировалась на электромагнитном принципе действия, следует отметить что первое реле было не коммутационным, а первое коммутационное реле изобретено американцем С. Бризом Морзе в 1837 г. которое в последствии он использовал в телеграфном аппарате.
Слово реле возникло от английского relay, что означало смену уставших почтовых лошадей на станциях или передачу эстафеты (relay) уставшим спортсменом.
На использовании электромагнитных реле построены все схемы автоматики с релейно-контактным управлением. До начал массового использования программируемых логических контроллеров реле были самыми важными элементами автоматики.
А вы это занете?
Реле классифицируются по различным признакам:
- по виду входных физических величин, на которые они реагируют;
- по функциям,
- которые они выполняют в системах управления;
- по конструкции и т. д.
По виду физических величин различают электрические, механические, тепловые, оптические, магнитные, акустические и т.д. реле. При этом следует отметить, что реле может реагировать не только на значение конкретной величины, но и на разность значений (дифференциальные реле), на изменение знака величины (поляризованные реле) или на скорость изменения входной величины.
Урок 23. Как работает РЕЛЕ электромагнитное
Реле обычно состоит из трех основных функциональных элементов: воспринимающего, промежуточного и исполнительного.
Воспринимающий (первичный) элемент воспринимает контролируемую величину и преобразует её в другую физическую величину.
Промежуточный элемент сравнивает значение этой величины с заданным значением и при его превышении передает первичное воздействие на исполнительный элемент.
Исполнительный элемент осуществляет передачу воздействия от реле в управляемые цепи. Все эти элементы могут быть явно выраженными или объединёнными друг с другом.
Воспринимающий элемент в зависимости от назначения реле и рода физической величины, на которую он реагирует, может иметь различные исполнения, как по принципу действия, так и по устройству.
Например, в реле максимального тока или реле напряжения воспринимающий элемент выполнен в виде электромагнита, в реле давления – в виде мембраны или сильфона, в реле уровня – в вице поплавка и т.д.
По устройству исполнительного элемента реле подразделяются на контактные и бесконтактные.
Контактные реле воздействуют на управляемую цепь с помощью электрических контактов, замкнутое или разомкнутое состояние которых позволяет обеспечить или полное замыкание или полный механический разрыв выходной цепи.
Бесконтактные реле воздействуют на управляемую цепь путём резкого (скачкообразного) изменения параметров выходных электрических цепей (сопротивления, индуктивности, емкости) или изменения уровня напряжения (тока).
Основные характеристики реле определяются зависимостями между параметрами выходной и входной величины.
Различают следующие основные характеристики реле.
1. Величина срабатывания Хср реле – значение параметра входной величины, при которой реле включается. При Х < Хср выходная величина равна Уmin, при Х >Хср величина У скачком изменяется от Уmin до Уmax и реле включается. Величина срабатывания, на которую отрегулировано реле, называется уставкой.
2. Мощность срабатывания Рср реле – минимальная мощность, которую необходимо подвести к воспринимающему органу для перевода его из состояния покоя в рабочее состояние.
3. Управляемая мощность Рупр – мощность, которой управляют коммутирующие органы реле в процессе переключении. По мощности управления различают реле цепей малой мощности (до 25 Вт), реле цепей средней мощности (до 100 Вт) и реле цепей повышенной мощности (свыше 100 Вт), которые относятся к силовым реле и называются контакторами.
4. Время срабатывания tср реле – промежуток времени от подачи на вход реле сигнала Хср до начала воздействия на управляемую цепь. По времени срабатывания различают нормальные, быстродействующие, замедленные реле и реле времени. Обычно для нормальных реле tср = 50…150 мс, для быстродействующих реле tср -1 с.
Принцип действия и устройство электромагнитных реле
Электромагнитные реле, благодаря простому принципу действия и высокой надежности, получили самое широкое применение в системах автоматики и в схемах защиты электроустановок. Электромагнитные реле делятся на реле постоянного и переменного тока.
Реле постоянного тока делятся на нейтральные и поляризованные. Нейтральные реле одинаково реагируют на постоянный ток обоих направлений, протекающий по его обмотке, а поляризованные реле реагируют на полярность управляющего сигнала.
Работа электромагнитных реле основана на использовании электромагнитных сил, возникающих в металлическом сердечнике при прохождении тока по виткам его катушки. Детали реле монтируются на основании и закрываются крышкой.
Над сердечником электромагнита установлен подвижный якорь (пластина) с одним или несколькими контактами. Напротив них находятся соответствующие парные неподвижные контакты.
В исходном положении якорь удерживается пружиной. При подаче напряжения электромагнит притягивает якорь, преодолевая её усилие, и замыкает или размыкает контакты в зависимости от конструкции реле. После отключения напряжения пружина возвращает якорь в исходное положение.
В некоторые модели, могут быть встроены электронные элементы. Это резистор, подключенный к обмотке катушки для более чёткого срабатывания реле, или (и) конденсатор, параллельный контактам для снижения искрения и помех.
Управляемая цепь электрически никак не связана с управляющей, более того в управляемой цепи величина тока может быть намного больше чем в управляющей. То есть реле по сути выполняют роль усилителя тока, напряжения и мощности в электрической цепи.
Когда через катушку электромагнитного реле начинает течь управляющий ток, якорь подтягивается к сердечнику с катушкой и замыкает подвижные контакты. Это запускает управляемое устройство в работу. В то же время для притяжения якоря достаточно гораздо меньшего управляющего тока, чем ток, протекающий по цепи управляющего устройства.
Контакты замыкающий и размыкающий известны в отечественной литературе как нормально открытые (НО) и нормально замкнутые (НЗ) соответственно. «Нормальным» считается состояние обесточенного реле или ненажажой кнопки. Можно привести следующее мнемоническое правило: «Реле (кнопка) находится в нормальном состоянии, если лежит на складе».
Реле переменного тока срабатывают при подаче на их обмотки тока определенной частоты, то есть основным источником энергии является сеть переменного тока.
Конструкция реле переменного тока напоминает конструкцию реле постоянного тока, только сердечник и якорь изготавливаются из листов электротехнической стали, чтобы уменьшить потери на гистерезис и вихревые токи.
Достоинства и недостатки электромагнитных реле
Электромагнитное реле обладает рядом преимуществ, отсутствующих у полупроводниковых конкурентов:
- способность коммутации нагрузок мощностью до 4 кВт при объеме реле менее 10 см3;
- устойчивость к импульсным перенапряжениям и разрушающим помехам, появляющимся при разрядах молний и в результате коммутационных процессов в высоковольтной электротехнике;
- исключительная электрическая изоляция между управляющей цепью (катушкой) и контактной группой — последний стандарт 5 кВ является недоступной мечтой для подавляющего большинства полупроводниковых ключей;
- малое падение напряжения на замкнутых контактах, и, как следствие, малое выделение тепла: при коммутации тока 10 А малогабаритное реле суммарно рассеивает на катушке и контактах менее 0,5 Вт, в то время как симисторное реле отдает в атмосферу более 15 Вт, что, во-первых, требует интенсивного охлаждения, а во-вторых, усугубляет парниковый эффект на планете;
- экстремально низкая цена электромагнитных реле по сравнению с полупроводниковыми ключами
Отмечая достоинства электромеханики, отметим и недостатки реле: малая скорость работы, ограниченный (хотя и очень большой) электрический и механический ресурс, создание радиопомех при замыкании и размыкании контактов и, наконец, последнее и самое неприятное свойство — проблемы при коммутации индуктивных нагрузок и высоковольтных нагрузок на постоянном токе.
Типовая практика применения мощных электромагнитных реле — это коммутация нагрузок на переменном токе 220 В или на постоянном токе от 5 до 24 В при токах коммутации до 10–16 А.
Обычными нагрузками для контактных групп мощных реле являются нагреватели, маломощные электродвигатели (например, вентиляторы и сервоприводы), лампы накаливания, электромагниты и прочие активные, индуктивные и емкостные потребители электрической мощности в диапазоне от 1 Вт до 2–3 кВт.
Поляризованные электромагнитные реле
Разновидностью электромагнитных реле являются поляризованные электромагнитные реле. Их принципиальное отличие от нейтральных реле состоит в способности реагировать на полярность управляющего сигнала.
Твердотельные реле
В настоящее время все чаще функции реле выполняют полупроводниковые схемы — твердотельные реле (SSR — Solid-State-Relay).
Как работает SSR? Входной ток протекает через оптоэлектронную систему, которая дополнительно обеспечивает разделение входной и выходной цепи и управляет силовой цепью. Конечный эффект такой же, как и в случае с электромагнитным реле — после подачи напряжения на вход включается выход. Единственное отличие состоит в том, что в случае твердотельного реле нагрузка переключается электронными компонентами.
Поскольку это полупроводниковый переключающий элемент, он не содержит (в отличие от электромагнитного реле) каких-либо движущихся частей, которые могут изнашиваться при частом переключении. Другими преимуществами являются бесшумность работы и меньшие размеры при той же мощности переключения. И последнее, но не менее важное: скорость переключения выше, чем у электромагнитных реле.
С другой стороны, недостатком твердотельных реле является более высокое падение напряжения на переключающем элементе и, как правило, необходимость охлаждения такого реле с помощью дополнительного пассивного радиатора. Другим недостатком, связанным с меньшим расширением SSR на практике, является более высокая цена по сравнению с электромагнитными реле.
В отличие от полупроводников в твердотельном реле, электромагнитное реле позволяет гальванически (электрически) разделить цепь управления и цепь управления (смотрите — Что такое гальваническая развязка).
Твердотельные реле часто используется в автоматическом управлении электрическим нагревом, когда нагреватель включается и выключается через короткие переменные интервалы (широко-импульсная модуляция, ШИМ) для регулирования температуры нагревателей.
При выборе решения для вашего проекта стоит обратить внимание на важные отличия твердотельных реле SSR от электромагнитных EMR. Обе группы характеризуются совершенно разными свойствами, связанными с их устройством. Зная особенности реле, можно осознанно использовать их преимущества, выбирая решение, соответствующее конкретным условиям, продиктованным спецификой анализируемого процесса.
В частности, стоит ответить на следующие вопросы:
- Как часто должно переключаться реле?
- Это приложение, которое требует очень частого переключения?
- В каких условиях окружающей среды будет работать ваше реле?
- Требуется ли бесшумная работа реле?
- Требуется ли вашему приложению быстрое время отклика и высокая частота переключений?
- Достаточно ли места в шкафу управления для радиатора и достаточной вентиляции?
При выборе реле также помните о теплоотводе!
Чтобы обеспечить правильную работу твердотельных реле, выделяемое ими тепло должно правильно отводиться. Количество выделяемого тепла зависит от величины тока нагрузки (на выбор радиатора также влияет температура окружающей среды).
Максимальная температура, которую может «выдержать» система SCR, составляет 125°С. Если температура продолжит расти, реле выйдет из строя. Чтобы этого не произошло, реле монтируют на правильно подобранные радиаторы, благодаря которым тепло отводится в окружающую среду.
Реле с радиаторами должны быть установлены на необходимых расстояниях друг от друга и, конечно же, внутри шкафа управления должна быть обеспечена достаточная вентиляция.
Самые распространенные серии электромагнитных реле управления
Реле промежуточное серии РПЛ . Реле предназначены для применения в качестве комплектующих изделий в стационарных установках, в основном в схемах управления электроприводами при напряжении до 440В постоянного тока и до 660 В переменного тока частотой 50 и 60 Гц.
Реле пригодны для работы в системах управления с применением микропроцессорной техники при шунтировании включающей катушки ограничителем ОПН или при тиристорном управлении. При необходимости на промежуточное реле может быть установлена одна из приставок ПКЛ и ПВЛ. Номинальный ток контактов – 16А
Реле промежуточное серии РПУ-2М. Реле промежуточные РПУ-2М предназначены для работы в электрических цепях управления и промышленной автоматики переменного тока напряжением до 415В, частоты 50Гц и постоянного тока напряжением до 220В.
Реле серии РПУ-0, РПУ-2, РПУ-4. Реле изготавливаются с втягивающими катушками постоянного тока на напряжения 12, 24, 48, 60, 110, 220 В и токи 0,4 — 10 А и втягивающими катушками переменного тока — на напряжения 12, 24, 36, 110, 127, 220, 230, 240, 380 и токаи 1 — 10 А. Реле РПУ-3 с втягивающими катушками постоянного тока — на напряжения 24, 48, 60, 110 и 220 В.
Реле промежуточное серии РП-21 предназначены для применения в цепях управления электроприводами переменного тока напряжением до 380В и в цепях постоянного тока напряжением до 220В. Реле РП-21 комплектуются розетками под пайку, под дин. рейку или под винт.
Основные характеристики реле РП-21:
- Диапазон напряжений питания, В: постоянного тока — 6, 12, 24, 27, 48, 60, 110, переменного тока частоты 50 Гц — 12, 24, 36, 40, 110, 127, 220, 230, 240, переменного тока частоты 60 Гц — 12, 24, 36, 48, 110, 220, 230, 240.
- Номинальное напряжение цепи контактов, В: реле постоянного тока — 12. 220, реле переменного тока — 12. 380 Номинальный ток — 6,0 А.
- Количество контактов замык. / размык. / перекл. — 0. 4 / 0. 2 / 0. 4.
- Механическая износостойкость — не менее 20 млн. циклов.
Большое распространение в системах автоматики станков, механизмов и машин получили электромагнитные реле постоянного тока серии РЭС-6 в качестве промежуточного реле напряждением 80 — 300 В, коммутируемый ток 0,1 — 3 А
В качестве промежуточных применяются также электромагнитные реле серий РП-250, РП-321, РП-341, РП-42 и ряд других, которые могут использоваться и как реле напряжения.
Как выбрать электромагнитное реле
Рабочие напряжения и токи в обмотке реле должны находится в пределах допустимых значений. Уменьшение рабочего тока в обмотке приводит к снижению надежности контактирования, а увеличение к перегреву обмотки, снижению надежности реле при максимально-допустимой положительной температуре.
Нежелательна даже кратковременная подача на обмотку реле повышенного рабочего напряжения, так как при этом возникают механические перенапряжения в деталях магнитопровода и контактных групп, а электрическое перенапряжение обмотки при размыкании ее цепи может вызвать пробой изоляции.
При выборе режима работы контактов реле необходимо учитывать значение и род коммутируемого тока, характер нагрузки, общее количество и частоту коммутации.
При коммутации активных и индуктивных нагрузок наиболее тяжелым для контактов является процесс размыкания цепи, так как при этом из-за образования дугового разряда происходит основной износ контактов.
Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика
Основные виды реле
В настоящее время существует огромное число разновидностей реле, обеспечивающих любые потребности электротехники. Для них создана система классификации, которая позволяет значительно упростить поиск и выбор необходимых элементов для электрических цепей. Эта классификация выполнена по следующим признакам:
- По типу контактов – переключающиеся, нормально-открытые и нормально-замкнутые;
- По типу управляющего сигнала – постоянного или переменного тока;
- По типу исполнения – электромагнитные, герконовые, полупроводниковые и т. д.;
- По контролируемому параметру – ток, напряжение, мощность и многим другим.
Всего при классификации реле учитывается более 30-ти признаков. Кроме того каждая группа этих аппаратов подразделяется по количественным характеристикам на множество разновидностей. Одной из основных групп являются электромагнитные реле, которые используются повсеместно.
Принцип работы электромагнитных реле
Работа электромагнитных реле основана на использовании принципа электромагнитной индукции. При подаче управляющего тока на катушку происходит втягивание ее сердечника, который в свою очередь приводит в действие исполнительный механизм, замыкающий или размыкающий контакты главной цепи. Управляющий ток намного меньше тока главной цепи.
Реле с нормально-открытыми контактами используются для включения/отключения питания потребителя тока. Нормально-закрытые контакты в основном присущи защитным реле, которые при выходе контролируемого параметра за допустимые пределы отключают оборудование. Реле с переключающимися контактами совмещают в себе оба предыдущих типа аппаратов.
Принцип действия и устройство электромагнитных реле
Электромагнитные реле, благодаря простому принципу действия и высокой надежности, получили самое широкое применение в системах автоматики и в схемах защиты электроустановок.
Электромагнитные реле делятся на реле постоянного и переменного тока.
Реле постоянного тока делятся на нейтральные и поляризованные.
Нейтральные реле одинаково реагируют на постоянный ток обоих направлений, протекающий по его обмотке,
Рис. 57 а. Принцип действия реле
а поляризованные реле реагируют на полярность управляющего сигнала.
Работа электромагнитных реле основана на использовании электромагнитных сил, возникающих в металлическом сердечнике при прохождении тока по виткам его катушки. Детали реле монтируются на основании и закрываются крышкой. Над сердечником электромагнита установлен подвижный якорь (пластина) с одним или
Рис. 57 б. Схема реле
несколькими контактами. Напротив них находятся соответствующие парные неподвижные контакты.
В исходном положении якорь удерживается пружиной. При подаче напряжения электромагнит притягивает якорь, преодолевая её усилие, и замыкает или размыкает контакты в зависимости от конструкции реле. После отключения напряжения пружина возвращает якорь в исходное положение. В некоторые модели, могут быть встроены электронные элементы. Это резистор, подключенный к обмотке катушки для более чёткого срабатывания реле, или (и) конденсатор, параллельный контактам для снижения искрения и помех.
Управляемая цепь электрически никак не связана с управляющей, более того в управляемой цепи величина тока может быть намного больше, чем в управляющей. То есть, реле по сути выполняют роль усилителя тока, напряжения и мощности в электрической цепи.
Реле переменного тока срабатывают при подаче на их обмотки тока определенной частоты, то есть основным источником энергии является сеть переменного тока. Конструкция реле переменного тока напоминает конструкцию реле постоянного тока, только сердечник и якорь изготавливаются из листов электротехнической стали, чтобы уменьшить потери на гистерезис и вихревые токи.
Справка: вихревые токи, токи Фуко (в честь французского физика Фуко) — вихревые индукционные токи, возникающие в массивных проводниках при изменении пронизывающего их магнитного потока.
Впервые вихревые токи были обнаружены французским учёным Д.Ф Араго (1786—1853) в 1824 г. в медном диске, расположенном на оси под вращающейся магнитной стрелкой. За счёт вихревых токов диск приходил во вращение. Это явление, названное явлением Араго, было объяснено несколько лет спустя M. Фарадеем с позиций открытого им закона электромагнитной индукции: вращаемое магнитное поле наводит в медном диске токи (вихревые), которые взаимодействуют с магнитной стрелкой. Вихревые токи были подробно исследованы французским физиком Фуко (1819—1868 г. г.) и названы его именем. Он открыл явление нагревания металлических тел, вращаемых в магнитном поле, вихревыми токами.
Токи Фуко возникают под воздействием переменного электромагнитного поля и по физической природе ничем не отличаются от индукционных токов, возникающих в линейных проводах. Они вихревые, то есть, замкнуты в кольца.
Электрическое сопротивление массивного проводника мало, поэтому токи Фуко достигают очень большой силы. В соответствии с правилом Ленца они выбирают внутри проводника такое направление и путь, чтобы противиться причине, вызывающей их. Поэтому движущиеся в сильном магнитном поле хорошие проводники испытывают сильное торможение, обусловленное взаимодействием токов Фуко с магнитным полем. Это свойство используется для демпфирования подвижных частей гальванометров, сейсмографов и др.
Тепловое действие токов Фуко используется в индукционных печах — в катушку, питаемую высокочастотным генератором большой мощности, помещают проводящее тело, в нем возникают вихревые токи, разогревающие его до плавления.
Во многих случаях токи Фуко могут быть нежелательными. Для борьбы с ними принимаются специальные меры: с целью предотвращения потерь энергии на нагревание сердечников трансформаторов, эти сердечники набирают из тонких пластин, разделённых изолирующими прослойками. Появление ферритов сделало возможным изготовление этих проводников сплошными.
Феррит (лат. ferrum — железо), фазовая составляющая сплавов железа, представляющая собой твёрдый раствор углерода и легирующих элементов.
Достоинства и недостатки электромагнитных реле
Электромагнитное реле обладает рядом преимуществ, отсутствующих у полупроводниковых конкурентов:
- способность коммутации нагрузок мощностью до 4 кВт при объеме реле менее 10 см3;
- устойчивость к импульсным перенапряжениям и разрушающим помехам, появляющимся при разрядах молний и в результате коммутационных процессов в высоковольтной электротехнике;
- исключительная электрическая изоляция между управляющей цепью (катушкой) и контактной группой;
- малое падение напряжения на замкнутых контактах, и, как следствие, малое выделение тепла: при коммутации тока 10 А малогабаритное реле суммарно рассеивает на катушке и контактах менее 0,5 Вт;
- низкая цена электромагнитных реле по сравнению с полупроводниковыми ключами.
![]() | 1 – обмотка реле (управляющая цепь), 2 – контакт замыкающий, 3 – контакт размыкающий, 4 – контакт, замыкающий с замедлителем при срабатывании, 5 – контакт замыкающий с замедлителем при возврате, 6 – контакт импульсный замыкающий, 7 – контакт замыкающий без самовозврата, 8 – контакт размыкающий без самовозврата, 9 – контакт размыкающий с замедлителем при срабатывании, 10 – контакт размыкающий с замедлителем при возврате. |
Схема включения Принципиальная схема включения вторичного реле максимального тока прямого действия приведена на рис. 59. Обмотка реле 1, подключенная к вторичной обмотке трансформатора тока 5, обтекается вторичным током и отделена от высокого напряжения и токоведущих частей.
При увеличении тока в реле до тока срабатывания якорь 2 преодолевает усилие пружины 6, втягивается и ударяет бойком 3 по защелке 4, удерживающей механизм привода выключателя во включенном положении. Защелка, поворачиваясь, освобождает механизм привода выключателя, который отключается под действием пружины 7. После отключения выключателя прохождение тока в обмотке реле прекращается и сердечник с бойком и защелка возвращаются в исходное положение. | ![]() |
Таким образом реле при срабатывании производит непосредственное отключение выключателя путем механического воздействия на его привод, развивая при этом значительное усилие порядка 4,9—9,8 Н и более. Для создания такого усилия реле потребляет от трансформаторов тока большую мощность.
Устройство и принцип работы
Основу конструкции ЭМР составляет сердечник из немагнитного сплава с электрической катушкой, выполненной из медной проволоки, покрытой диэлектриком (лаком, синтетической или тканевой изоляцией). При подаче напряжения на вход происходит втягивание подвижного элемента, за счёт чего контакты движутся.
Также конструкцией предусмотрено наличие нескольких функциональных блоков:
- промежуточные элементы, которые обеспечивают срабатывание исполнительного механизма;
- управляющие компоненты, преобразующие электрическую энергию на входе в магнитное поле);
- исполнительные устройства (контакты), воздействующие непосредственно на цепи управления.
Выпускаются ЭМР с нормально замкнутыми, разомкнутыми контактами, аппараты смешанного исполнения.
Принцип действия электромагнитного реле основан на работе магнитного поля, силовые линии которого пронизывают сердечник при подаче на катушку электрического тока. В результате к сердечнику притягивается якорь, обладающий магнитными свойствами. В результате контактная группа размыкается или замыкается. При падении напряжения возвратная пружина возвращает подвижный элемент в исходное состояние.
Особенность конструкции промежуточных ЭМР заключается в наличии в составе устройства полупроводниковой приставки времени. Управление ею обеспечивается путём поворота резистора. Для уменьшения инерционных показателей аппарат может комплектоваться шихтованным сердечником.
Основные виды ЭМР
Реле ЭМР принято классифицировать по нескольким параметрам. Исходя из особенностей конструкции, разделяют контактные и бесконтактные устройства. В первом случае речь идёт об устройствах, которые при срабатывании воздействуют контактной группой на силовую цепь, обеспечивая соединение или разрыв в ней. Во втором — аналогичный результат достигается изменением одного из параметров (напряжения, силы тока, ёмкости, сопротивления).
В зависимости от способа присоединения оборудование разделяют на следующие виды.
- Первичное (устройство подключается непосредственно в цепи управления).
- Вторичное, предусматривающее необходимость присоединения к сети через измерительный трансформатор тока.
- Промежуточное, работающее от исполнительных органов других релейных устройств. Такой принцип действия позволяет обеспечить размножение сигнала или его усиление.
В зависимости от вида напряжения на входе выпускаются устройства постоянного и переменного тока. Первый вариант в свою очередь можно разделить на поляризованные и нейтральные. Его ключевое отличие заключается в чувствительности устройства к полярности источника питания (в зависимости от этого якорь меняет направление движения якоря).
Среди недостатков оборудования постоянного тока выделяют сравнительно высокую стоимость и необходимость использования в комплексе с блоком питания. Подобных проблем при эксплуатации ЭМР переменного тока не возникает, но их существенным «минусом» станет вибрация во время работы и пониженная чувствительность.
Реле тока
Реле тока предназначено для контроля этого параметра в цепях электропотребителей. Возможно подключение устройства к силовым цепям или с использованием измерительного трансформатора. Передача данных в другие цепи выполняется путём подключения сопротивления.
Основным конструктивным отличием токового реле является конструкция катушки. Для неё используется толстый проводник, который обладает малым сопротивлением и наматывается на сердечник небольшим количеством витков. Для контроля заданных параметров предусмотрена автоматизированная система включения/отключения.
Реле времени
В большинстве случаев реле времени устанавливают при необходимости формирования каскадов пуска при подключении оборудования высокой мощности. Такой подход позволяет избежать резких скачков нагрузки в момент включения техники, превышающих допустимые значения. Задержка по времени обеспечивается за счёт дополнительного короткозамкнутого контура, роль которого выполняет надетая на сердечник медная гильза.
Принцип работы реле времени основан на «гашении» напряжённости электромагнитного поля за счёт наличия противоположно направленного тока. В итоге формируется задержка, величина которой может составлять 0.07–0.15 с. Регулировка выполняется пружиной якоря ЭМР. Тот же эффект наблюдается при выключении электропитания, но задержка может составлять 0.5–2 с.
Области применения
Самое широкое распространение электромагнитные реле получили на подстанциях по производству электрической энергии. С помощью них обеспечивается безаварийная работа всего оборудования. При этом релейная защита рассчитана на коммутацию при очень большом напряжении – до нескольких сотен тысяч вольт.
А в основном областей применения у реле три:
- сигнализация;
- защита;
- управление.
Причем принцип работы реле в любой из областей остается неизменным. А ценятся они за быструю реакцию на изменение входных параметров у подключаемых линий. Также за долговечность при работе в условиях высокой напряженности и стойкость к электрическим помехам.
За эти качества они участвуют в резервировании линий электропередач. Релейная защита мгновенно отключает поврежденные участки при обрыве проводов или замыкании их на землю. Следует сказать, что надежнее узла на сегодняшнее время просто не существует.
Ни одна конвейерная линия на любом производстве не обходится без электромагнитного реле. Потому что высокие паразитные потенциалы делают, практически, невозможным использование полупроводников. Поскольку последние страдают от статического напряжения.
Электромагнитные реле участвуют в дистанционном управлении нагрузкой. Ими в обязательном порядке комплектуются такие устройства, как пускатели и контакторы. Релейные блоки нашли широкое применение в конденсаторных установках. Последние нужны электродвигателям с очень высокой мощностью, для их плавного пуска.
Электромагнитные реле, кроме участия в создании первого телеграфа, успели еще раз исторически отличиться. Они применялись в первых электронно-вычислительных машинах. Помогали выполнять простейшие логические операции. Конечно же, они отличались очень большой медлительностью. Но, как ни странно, по надежности сильно превосходили следующее поколение комплексов для вычисления на лампах.
Реле, использующее электромагнитные принципы, можно увидеть на каждом шагу и в быту. Оно есть в холодильниках, стиральных машинах и других видах бытовой техники.
Видео описание
О том, для чего нужно реле расскажут следующие видеоматериалы:
Основные виды реле
В настоящее время существует огромное число разновидностей реле, обеспечивающих любые потребности электротехники. Для них создана система классификации, которая позволяет значительно упростить поиск и выбор необходимых элементов для электрических цепей. Эта классификация выполнена по следующим признакам:
- По типу контактов – переключающиеся, нормально-открытые и нормально-замкнутые;
- По типу управляющего сигнала – постоянного или переменного тока;
- По типу исполнения – электромагнитные, герконовые, полупроводниковые и т. д.;
- По контролируемому параметру – ток, напряжение, мощность и многим другим.
Всего при классификации реле учитывается более 30-ти признаков. Кроме того каждая группа этих аппаратов подразделяется по количественным характеристикам на множество разновидностей. Одной из основных групп являются электромагнитные реле, которые используются повсеместно.
Принцип работы электромагнитных реле
Работа электромагнитных реле основана на использовании принципа электромагнитной индукции. При подаче управляющего тока на катушку происходит втягивание ее сердечника, который в свою очередь приводит в действие исполнительный механизм, замыкающий или размыкающий контакты главной цепи. Управляющий ток намного меньше тока главной цепи.
Реле с нормально-открытыми контактами используются для включения/отключения питания потребителя тока. Нормально-закрытые контакты в основном присущи защитным реле, которые при выходе контролируемого параметра за допустимые пределы отключают оборудование. Реле с переключающимися контактами совмещают в себе оба предыдущих типа аппаратов.
Электромагнитные реле: типы и области применения.
В соответствии с поступающей командой за счет электромагнитного реле происходит замыкание и размыкание цепи. Принцип работы этого коммутационного устройства основан на воздействии, оказываемом электромагнитным полем. Реле используют для управления устройствами и приборами, отвечающими за исполнение заданных команд.
Одно из первых устройств, в основе которого был принцип работы электромагнитного поля, был установлен на телеграф. Производство реле стало заметно расширяться благодаря популярности этих аппаратов для передачи сигнала.
Конструкция электромагнитного реле
Устройство обладает простой конструкцией, которая состоит из якоря, катушки со стержнем и неподвижных контактов. Катушка представляет собой изолированный провод, собранный витками. В ее центр помещают железный стержень, таким образом получая электромагнит. Якорь крепиться к конструкции за счет ярма. Он находится в подпружинненном состоянии.
- При подключении цепи к источнику тока он притягивается силой электромагнитного поля и замыкается с неподвижным контактом.
- При обесточивании возвращается в исходное положение.
Принцип управления контактами зависит от особенностей конструкции устройства.
Основные типы устройств
Существует несколько видов классификации реле. Классические модели имеют контакты, но устройства для современных приборов воздействуют на электрическую цепь без них. В зависимости от особенностей конструкции реле делятся:
- на открытые — есть доступ к составляющим устройства;
- герметичные — почти все детали, кроме элементов питания, находятся в запаянном корпусе;
- зачехленные — элементы устройства защищены снимающимся чехлом.
Чувствительность реле зависит от показателя мощности его срабатывания:
- высокой — мощность устройства больше 10 Вт,
- средней — не меньше 1 и не больше 10 Вт,
- малой — меньше 1 Вт.
Их также разделяют на подтипы в зависимости от особенностей применения. Реле бывают:
- защитными,
- сигнализационными,
- созданными для цепей управления.
Электромагнитные реле используют при создании различных двигателей, электромагнитов, промышленной автоматики, нагревательных приборов, систем удаленного регулирования.
В нашем каталоге представлены электромагнитные реле и колодки для их монтажа. Информация об условиях сотрудничества предоставляется по указанному телефону.
Как проверить электромагнитное реле
Давайте же проверим реле с помощью мультиметра и блока питания. Прозваниваем контакт 1 и 7 и смотрим, что у нас они звонятся, значит эти контакты соединены. Видно даже визуально.
Подаем напряжение на катушку 12 Вольт с блока питания и смотрим, что у нас получилось.
В результате у нас ярмо «приклеилось» к электромагниту (катушке) и потянула за собой коммутационный контакт. Цепь 1 и 7 у нас оборвалась, но зато восстановилась цепь контактов 7 и 4. Вот таким образом проверяются контакты реле.
Если контакты с налетом, то следует протереть их карандашным ластиком. Если прилично поджарились, а другого реле под рукой нет, то здесь поможет только шкурка-микронка. Но этот случай уже критический, так как наждачная бумага сдирает тонкий слой из благородного металла, которым покрыты «пипочки».
Целостность катушки реле проверяется с помощью мультиметра в режиме омметра. Для этого проверяем сопротивление катушки. Оно зависит от самого реле. У всех оно разное. Если сопротивления нет или оно очень маленькое — порядка пару Ом, то значит в катушке либо обрыв, либо короткое замыкание.
На схемах электромагнитные реле обозначаются вот так:
Также контакты обозначают уже просто цифрами. В данном случае:
11 — это общий контакт
11-12 — это нормально замкнутые контакты
11-14 — нормально разомкнутые контакты
Прямоугольником обозначается сама катушка реле, а выводы катушки обозначаются буквами A1 и A2.
При подаче напряжения на катушку в данном реле у нас контакт перекинется, то есть картина будет выглядеть следующим образом:
Без подачи напряжения:
После подачи напряжения:
Плюсы и минусы электромагнитного реле
Плюсы
- Управляемое напряжение и управляющее напряжение никак не связаны между собой. Выражаясь домашним языком — напряжение на катушке никак не связано с напряжением на контактах реле. Они гальванически развязаны, что делает реле безопасным устройством для человека и самой аппаратуры в электро- и радиопромышленности.
- коммутируемые токи могут достигать сотни ампер у промышленных видов реле (пускатели, контакторы)
- большой срок службы при правильной эксплуатации. До сих пор на некоторых зарубежных станках ЧПУ стоят реле 70-ых годов, чьи коммутационные контакты выглядят почти как новые.
- неприхотливость в работе и надежность. Реле до сих пор используются в средствах автоматического управления (САУ), так как они неприхотливы и готовы работать безотказно, хотя уже давненько разработаны твердотельные реле (ТТР), которые опережают простые электромагнитные реле по многим параметрам.
Минусы
- время задержки срабатывания, в течение которого коммутационный контакт «летит» с одного контакта до другого. В очень быстродействующей аппаратуре реле не применяются. Производители обеспечивают электротехническую промышленность различными видами реле и других устройств на их принципе.
- щелкающий звук при переключении. Кого-то он может раздражать, особенно если реле будет очень часто срабатывать.
- габариты даже самого маленького электромагнитного реле достаточно много занимают место на печатной плате.
Не знаете, где можно купить нужное вам электромагнитное реле? Вот каталог , где вы найдете подходящее по параметрам реле для своих нужд 😉