История создания 3д принтера

История создания 3д принтера

Принтеры для печати объемных моделей появились на промышленных предприятиях, в образовательных организациях, стали доступны для домашнего использования, перестав быть эксклюзивным оборудованием. Когда и кем был придуман 3D-принтер, какие технологии объемной печати существуют и где применяются, что ожидает сферу 3D-оборудования в будущем?

  • Первый 3D-принтер: история создания
  • Эволюция в 3D-печати
  • LOM
  • SLS
  • SGC
  • FDM
  • RepRap
  • Первый пищевой принтер
  • 3D-принтер в медицине

Первый 3D-принтер: история создания

В развитии 3D-технологий принимали участие инженеры-изобретатели разных стран. Первопроходцем в мире объемной печати считают Чака Халла — американского разработчика. «Установку для стереолитографии» он начал создавать в 1984 году, а спустя пару лет получил на нее патент. Это позволило перевести проект на коммерческие рельсы: в 1988 году началось серийное производство 3D-принтеров.

История создания 3д принтера

Интересно! Халл стал первым, потому что успел запатентовать свое изобретение. Но еще до него японец Хидео Кодама придумал технологию фотополимерного отверждения моделей и пытался в мае 1980 года получить патент, позднее — в 1984-м — французы Оливье де Витте, Ален ле Мехо и Жан-Клод Андре подавали заявку на свое изобретение аппарата стереолитографии. Но по тем или иным причинам ни первый, ни вторые не смогли запатентовать собственные разработки.

Технология печати заключается в следующем: жидкое светочувствительное вещество — фотополимер — выкладывается тонким слоем и тут же отверждается под воздействием УФ-лучей, превращаясь в пластмассу и обретая заданную форму.

В том же 1988 году, когда на рынок поступили 3D-принтеры Халла, другой американец, Стивен Скотт Крамп, предложил новый способ объемной печати — моделирование методом наплавления. И третья методика, представлявшая собой лазерное спекание фотополимера, но не раствора, а порошка, была представлена Карлом Декардом, инженером из Техасского университета.

Все три аппарата для печати 3D-объектов стали прототипами современных принтеров, предназначенных для создания объемных моделей. Первые агрегаты не отличались высоким качеством и точностью печатных изделий, но это был только первый шаг в прорывной технологии 3D-печати.

Справка. Термин «3D-печать» появился только в 1995 году, а название «3D-принтер» изобретенным агрегатам присвоено в 1996 году.

3D-принтер: история создания машины будущего

Акбутин, Э. А. 3D-принтер: история создания машины будущего / Э. А. Акбутин, Т. Н. Доромейчук. — Текст : непосредственный // Юный ученый. — 2015. — № 1 (1). — С. 97-98. — URL: https://moluch.ru/young/archive/1/64/ (дата обращения: 06.02.2024).

Знакомое всем слово «принтер» пришло к нам из английского языка и переводится как «печать». Вы, конечно же, видели простые принтеры, на которых можно вывести любой материал — текстовой или графический — в бумажном виде. Первые черно-белые принтеры появились в 1985 году, а в 1988 году началось производство цветных моделей. Сегодня большие и маленькие принтеры можно найти в офисе, в школе и даже практически в каждом доме, ведь эти аппараты нужны для учебы или работы.

Но теперь появился совершенно новый тип принтера. Современная мощная машина, которая может сделать нечто большее, чем просто вывести печатный материал. Речь идет о 3D-притере. Его разработали для создания трехмерных моделей, готовых изделий или деталей. История создания этого прибора длилась много лет и над разработкой работали ученый всего мира. Каждый внес свой вклад в развитие 3D-технологий. Так, например, отцом-изобретателем 3D-печати является американский исследователь Чак Халл. В 1986 году он представил миру свой прибор для трехмерной печати, которую назвал «установка для стереолитографии». Позже, в 1988 году, Скотт Крамп изобрел абсолютно новую технологию работы с 3D-печатью: FDM (моделирование путём декомпозиции плавящегося материала). Сегодня на основе этой технологии работают все 3D-принтеры, предназначенные для выпуска малой продукции небольших количествах.

Несмотря на то, что работа над созданием 3D-принтеров велась с 1980-х годов прошлого столетия, термин «3D-печать» был создан только лишь в 1995 году, в Массачусетском технологическом институте. А вот понятие «3D-принтер» официально используется с 1996 года, с момента создания машины Actua 2100 от компании 3D Systems.

Первые 3D-принтеры имели малую мощность, работали медленно, а при увеличении скорости изделия получались с большими погрешностями. Только в 2005 году появились 3D-принтеры с высоким качеством печати. В 2008 году был запущен принтер Reprap, способный производить самого себя. На тот момент он мог изготавливать около 50 % необходимых деталей.

До 2008 года любой 3D-принтер мог работать только с использование одного вида расходного материала — пластика АВС. Это один из лучших расходных материалов для 3D печати. Но компания Objet Geometries Ltd. разработала принтер Connex500, который мог работать с различными видами материалов одновременно. Сейчас количество материалов перевалило за сто. Сегодня можно использовать такие материалы, как:

6. деревянное волокно;

8. металлический порошок;

10. поликапролактон (PCL);

11. полилактид (PLA);

12. полипропилен (PP);

13. полиэтилен низкого давления (HDPE);

Главная особенность работы 3D-принтеров заключается в том, что все получаемые модели являются твердотельными и наносятся послойно, слой за слоем. И, если на простом принтере получают только бумажный вариант, то на 3D-принтере можно создать детскую игрушку, сувенирную фигурку, пластиковую посуда, ткань, для пошива одежды, а также импланты, для использования в медицине, и легковой автомобиль. Возможности принтеров нового поколения практически безграничны.

В 2010 году канадский инженер Джим Кор официально представил легковой автомобиль Urbee, корпус которого полностью выполнен на 3D-принтере. Он весит всего 544 кг, а на его создание ушло 2,5 тысячи часов. В 2015 году создатели планируют на этом чуде-автомобиле проделать путь от Нью-Йорка до Сан-Франциско за два дня. На весь путь планируется потратить всего 38 литров биотоплива.

В том же 2010 году медицинская компания Organovo. Inc объявила о создании технологии 3D-печати искусственных кровеносных сосудов. Ранее никто из ученых не говорил о возможностях использования 3D-печати для медицинских целей. Но уже сейчас по всему миру проведены уникальные операции по протезированию, в ходе которых люди получили 3D-импланты для ведения полноценной жизни. Были созданы точные зубные импланты для стоматологии, импланты костей носа и черепа, кистей рук и т. д.

В 2011 году учёные из Великобритании первыми показали 3D-принтер, на котором можно было напечатать любую фигурку из шоколада или простую шоколадную плитку. Принтер накладывает слои друг на друга. Благодаря способности шоколада быстро застывать и твердеть при охлаждении, процесс печати протекает довольно быстро. В ближайшем будущем такие принтеры будут востребованы в кондитерских и ресторанах.

2011 год — год создания первого самолета, напечатанного на 3D-принтере. Эта идея принадлежала инженерам из Университета Саутгемптона (Великобритания). Инженеры сказали, что сложно было не в процессе печатании, а в стадии проектирования. Модель 3D-самолета прекрасно летала на сравнительно большой скорости.

До недавнего времени 3D-принтеры были громоздкие и стоили очень дорого, а в 2011 году исследователи из Венского Технологического Университета представили самый маленький, лёгкий и дешёвый по стоимости печати 3D-принтер. Новая модель работает по аддитивной технологии фотополимеризации светочувствительной смолы, весит 1,5 килограмма и стоит около 1200 евро.

3D-принтеры можно смело назвать самыми нужными и полезными приборами нашего настоящего и будущего. Технологии создания 3D-моделей широко используются в различных сферах. Например, небольшие 3D-принтеры могут создавать всякие мелочи, нужные в быту: игрушки, посуду, мебель и украшения. Ученые из Оксфордского университета предложил принтер, способного производить синтетические материалы, а также материалы с некоторыми свойствами живых тканей.

Итальянский робототехник Энрико Дини создал принтер D-Shape, который может напечатать макет двухэтажного здания, включая комнаты, лестницы, трубы и перегородки. Он использует только песок и неорганический компаунд. Прочность полученного материала ученые сопоставляют с железобетоном. Но инженеры пошли дальше и предлагают даже применять их в сфере космических исследований для строительства лунных баз. Ученые уже приняли решение установить такое устройство на Международной космической станции для того, чтобы астронавты могли быстро напечатать необходимые детали, а не ждать их прибытия с Земли.

Сегодня 3D-принтеры больше не кажутся машинами из фантастических фильмов или романов. Они стали реальностью и приносят человечеству большую пользу. За 3D-принтерами будущее техники и науки.

1. Краткая история 3D-принтеров: http://plastic3d.ru/news/Kratkaya-istoriya-3D-printerov-s-kartinkami

2. 3D-принтер: https://ru.wikipedia.org/wiki/3D-принтер

3. Обзор расходных материалов для 3Д-принтеров: http://zbotcc.ru/obzor-rashodnyh-materialov-dlja-3d-prin

4. Уникальный 3D-принтер производит синтетические ткани: http://texnomaniya.ru/technology/unikalnijj-3d-printer-proizvodit-sinteticheskie-tkani.html

Основные термины (генерируются автоматически): принтер, легковой автомобиль, FDM, HDPE, PCL, PLA, материал.

Краткая история 3D-печати

Мы привыкли воспринимать 3D-печать как нечто инновационное, и трудно поверить, что на самом деле этой технологии более тридцати лет.

Появление первых устройств-предвестников 3D-принтеров относится к началу 1980-х годов, когда доктор Хидео Кодама в Японии разработал систему быстрого прототипирования с использованием фотополимеров. Принцип работы аппаратов был таким же, как и в современных 3D-принтерах – распечатанный объект создавался послойно в соответствии с моделью.

Настоящим прорывом в этой области стало изобретение стереолитографии Чарльзом Халлом в 1984 году. Благодаря этой технологии появилась возможность производить на 3D-принтерах объекты по цифровым проектам (изображениям). В качестве материала также использовался фотополимер, жидкое вещество на основе акрила. Под воздействием лучей УФ-лазера материал моментально застывал и превращался в пластиковый объект, принимая необходимую форму. Разумеется, это изобретение произвело переворот в среде разработчиков, которые теперь могли создавать прототипы с гораздо меньшими издержками.

В начале 1990-х годов компания Чарльза Халла, 3D Systems Corporation (которая и сегодня является одним из лидеров отрасли) начала производство аппаратов, работающих по технологии лазерной стереолитографии из фотополимеров (SLA). В то же время, стартап DTM получил патент на изобретенную Карлом Декардом (из Техасского университета) технологию селективного лазерного спекания (SLS), где вместо жидкого материала воздействию лазера подвергался порошок. Третья технология, моделирование методом наплавления (FDM), была разработана в тот период под руководством Скотта Крампа в компании Stratasys и используется до сих пор, в основном, в базовых моделях 3D-принтеров. Разумеется, самые первые аппараты не были совершенными, при затвердевании материала объект часто искривлялся. Несмотря на свои недостатки и высокую стоимость, такие технологии, как стереолитография, безусловно, обладают огромным потенциалом, который продолжает исследоваться и сейчас.

Следующее десятилетие было отмечено рядом важнейших событий с точки зрения применения технологий 3D-печати в медицине. Первым из них стала успешная имплантация мочевого пузыря, напечатанного на 3D-принтере. Готовый орган был покрыт клетками самого пациента, что практически сводило к нулю шансы на отторжение имплантата. Впоследствии было объявлено о создании полностью функционирующей уменьшенной копии почки, однако это заявление было опровергнуто. Даже сейчас ученые признают, что создание полностью функционирующих сложных органов, таких как почки или печень, пригодных для трансплантации, будет возможно не раньше, чем через несколько лет или даже десятилетий. Разными исследователями создавалась модель почки, но основной проблемой остается система крупных и мелких кровеносных сосудов, поскольку без нее орган не сможет функционировать в теле пациента. Тем не менее, значительные успехи отмечались в создании более простых органов, хрящей и кровеносных сосудов, распечатанных на 3D-принтере с использованием только человеческих клеток в качестве материала, не говоря уже о костных имплантатах. Это направление исследований стремительно развивается, например, с внедрением печати живой тканью и разработками в сфере протезов со сложной конструкцией, не требующих сборки.

В дальнейшем в развитии технологий 3D-печати наметилось два основных направления. Первое – это высокотехнологичные исследования, в рамках которых создаются очень дорогостоящие системы 3D-принтеров, предназначенные для производства сложных и специальных деталей. Эта сфера развивается и сейчас, а результаты разработок применяются в аэрокосмической отрасли, автомобилестроении, медицине и ювелирной промышленности. Многие исследования такого рода остаются засекреченными и защищены условиями неразглашения информации.

С другой стороны, противоположная тенденция – развитие повседневного функционала 3D-принтеров, что сделало их доступными более широкой аудитории. Был начат процесс внедрения открытых разработок, расширения спектра используемых материалов, повышения скорости и точности устройств и сокращения издержек. Важнейшей инициативой с точки зрения демократизации 3D-печати стал запущенный доктором Адрианом Боуэром проект RepRap, идея которого – создать 3D-принтер, производящий собственные детали. Таким образом, устройство фактически воспроизводит само себя, становится широкодоступным и недорогим, что дает многим людям возможность пользоваться достижениями 3D-печати на бытовом уровне, у себя дома.

В результате ценовой войны среди игроков рынка стоимость 3D-принтера для потребителя продолжает падать и достигать рекордно низких отметок. В то же время продолжается стремительное развитие технологий и внедрение инноваций. Количество новых разработок, представляемых ежедневно, поражает воображение, и трудно сказать, в каких отраслях 3D-печать еще не применяется. Во времена первых 3D-принтеров невозможно было представить себе, какие горизонты откроет эта технология уже через пару десятилетий. Многие называют это новой промышленной революцией – и все только начинается.

История 3д печати

В данном разделе нам хотелось проследить историю развития 3d печати от момента ее появления до сегодняшнего дня, а так же дать прогноз относительно будущего развития технологии.

Первый 3d принтер был изобретен американцем Чарльзом Халом (Charles Hull), он работал по технологии стереолитографии (SLA) патент на технологию был оформлен в 1986 г. Принтер представлял из себя довольно габаритную промышленную установку. Установка «выращивала» трехмерную модель посредством нанесения фотополимеризующегося материала на подвижную платформу. Основой служил заранее смоделированный на компьютере цифровой макет (3д модель). Данный 3d принтер создавал трехмерные объекты, поднимаясь на 0,1-0,2 мм — высоту слоя. Несмотря на то, что первый аппарат обладал множеством минусов, технология получила свое применение. Чарльз Халл так же является со-основателем компании 3dsystems, одного из лидеров мирового производства промышленных 3д принтеров.

Charles Hull

Чарльз Халл был не единственным, кто экспериментировал с технологией трехмерной печати, так в 1986 году Карл Декарт ( Carl Deckard) изобрел метод селективного лазерного спекания (SLS). Подробнее о методе Вы можете узнать в другой статье, вкратце: лазерный луч спекает порошок (пластик, металл и т.д.), масса порошка при этом подоргевается в рабочей камере до температуры, близкой с температурой плавления. Основой так же служит заранее смоделированный на компьютере цифровой макет (3д модель). После прохождения лазером горизонтального слоя, камера опускается на высоту слоя (как правило 0.1-0.2 мм), масса порошка выравнивается специальным устройством и наноситься новый слой.

carl deckard

Однако самым известным и распространенным на сегодняшний день методом 3д печати является послойное направление (FDM). Идея технологии принадлежит Скотту Крампу (Scott Crump), патент датируется 1988 годом. Подробнее о методе Вы можете узнать в другой статье, вкратце: из нагретого сопла печатающей головки при помощи шагового двигателя подается материал (как правило пластик), печатающая головка перемещается на линейных направляющих по 1 или двум осям, так же по 1 или 2 осям двигается платформа. Основой движения так же служит 3д модель. Расплавленный пластик укладывается на платформу по установленному контуру, после чего головка или платформа перемещаются и поверх старого накладывается новый слой. Скотт Крамп является одним из основателей компании Stratasys, так же являющейся одним из лидеров в производстве промышленных 3д принтеров.

Scott Crump

Все описанные выше устройства относились к классу промышленных аппаратов и стоили довольно дорого, так один из первых принтеров 3d Dimension от компании Stratasys 1991 году стоил от 50 до 220 тысяч долларов США (в зависимости от модели и комплектации). Принтеры работающие по технологиям, описанным выше стоили еще дороже и до самого недавнего времени о данных устройствах было известно лишь узкому кругу заинтересованных специалистов.

Все начало меняться с 2006 года, когда был основан проект RepRap (от англ Replicating Rapid Prototyper — само-воспроизводящийся механизм для быстрого изготовления прототипов), имеющий своей целью создание само-копирующего устройства, которым являлся 3д принтер, работающий по технологии FDM (послойное наплавление). Только в отличие от дорогостоящих промышленных аппаратов он был похож на неказистое изобретение из подручных средств. Рамой служат металлические валы, они же служат направляющими для печатающей головки. которой управляют простые шаговые двигатели. Программное обеспечение имеет открытый код. Почти все соединяющие детали печатаются из пластика на самом 3д принтере. Данная идея зародилась в среде Английский ученых и ставила своей целью распространение доступных аддитивных технологий, чтобы пользователи могли, скачивая 3д модели в сети интернет, создавать необходимые изделия, максимально сокращая таким образом производственную цепочку.

RepRap

Оставив в стороне идеалогическую составляющую, сообществу (существующему и развивающемуся по сей день) удалось создать доступный «обычному человеку» 3d принтер. Так набор непечатанных деталей может стоить в районе пары сотен долларов США а готовый аппарат от 500 долларов. И пусть эти устройства выглядели неказисто и существенно уступали по качеству промышленным аналогам, все это доло невероятный толчок для развития технологии 3д печати.
По мере развития проекта RepRap, начали появляться 3d принтеры, взявшие за основу заложенную движением базу в техническом и, иногда, идеалогическом плане (например приверженность концепции открытого кода — OpenSource). Компании, производившие принетры старались сделать их более качественными как в плане рабочих характеристик, так и в плане дизайна и user experience. Первые принтеры RepRap нельзя назвать комерческим продуктом, так как управлять им не так уж просто (а собрать тем более) а добиться стабильных результатов работы получается не всегда. Тем не менее компании старались сократить более чем существенный разрыв в качестве, по возможности оставляя существенный разрыв в стоимости.

Здесь стоит в первую очередь упомянуть о компании MakerBot, начавшейся как startup, взявшей за основу идеи RepRap и мало по малу превратившие их в продукт нового качества.

makerbot founders

Их флагманским продуктом (и по нашему мнению лучшим по сей день) остается 3д принтер MakerBot Replicator 2. Модель была выпущена в 2012 г. и позже снята с производства, однако по сей день остается одной из самых популярных моделей 3д принтеров «персонального» сегмента (по данным 3dhubs). Слово «персональный» взято в скобки по причине, что данный принтер, со стоимостью на момент выпуска 2200 долларов США, в основном использовался (и используется) для бизнес целей, однако попадает в персональный сегмент по причине своей стоимости. Данная модель отличается от своих прородителей (RepRap), являясь, по сути, законченным комерческим продуктом. Производители отказались от концепции OpenSourse, закрыв все источники и коды ПО.

Replicator 2

Паралельно с выпуском техники компания активно развивала ресурс Thingiverse, содержащий множество моделей для 3d печати, доступных для скачивания бесплатно. В период работы над первым принтером и в дальнейшем сообщество сильно помогало компании, тестируя продукт и предлагая различные апгрейды. После выпуска модели Replicator 2 (и закрытии разработок), ситуация изменилась. Подробнее о истории компании MakerBot а так же других компаний и людей, связанных с 3d печатью, вы можете узнать, посмотрев фильм Print the legend.

В этом фильме также освещается история компании Formlabs, одной из первых начавшей производство доступного 3д принтера, работающего по технологии SLA (стререолитография). Компания собирала средства на первую модель FORM 1 посредством краудфандинга, столкнулась с трудностями производства, но в итоге выпустила доступный и производительный 3д принтер, сократив разрыв в качестве, описанный выше.

formlabs

И хотя описанные выше 3д принтеры были далеки от совершенства, они положили начало развитию досутпной техники для трехмерной печати, которое происходит и по сей день. В настоящий момент качетсов принтеров технологий FDM и SLA повышается, однако существенного снижения цены уже не происходит, скорее она наоборот немного растет. Наряду с FDM и SLA множество компаний ведет разработки в области спекания порошков (SLS), а так же печати металлом. Несмотря на то, что такие принтеры доступными не назовешь, цена их значительно ниже, в сравнении с аналогами из профессионального сегмента. Стоит так же отметить, развитие линейки материалов, помимо стандартный ABS и PLA пластиков, сегодня используется множество различных материалов, включая нейлон, карбон и другие прочные и тугоплавкие материалы.

3d принтеры персонального сегмента сегодняшнего дня сильно приблизились к профессиональным устройствам, развитие которых так же не останавливается. Помимо компаний «основателей» технологии (Stratasys, 3dsystems) появилось множество небольших компаний, специализирующихся на промышленных технологиях 3d печати (в частности металлом). 3д печать так же привлекает к себе внимание крупных корпораций, которые с разной степенью успешности стремяться занять свое место на растущем рынке. Здесь стоит выделить компанию HP, которая не так давно выпустила модель HP Jet Fusion 3D 4200 завоевавшую популярность среди профессионалов 3d печати (по состоянии на 2018 г. держится в верхней части рейтинга профессиональных 3д принтеров в ежеквартальных отчетах портала 3dhubs).

HP Jet Fusion 3D 4200

Однако технологии 3д печати развиваются не только в ширь, но и вглубь. Одним из главных недостатков трехмерной печати, по сравнению с другими методами производства, является низкая скорость создания моделей. Существенным движением вперед в плане ускорения 3д печати стало изобретение технологии CLIP компанией CARBON, работающие по этой технологии принтеры компании могут производить модели в 100 раз быстрее по сравнению с классической технологией SLA.

carbon 3d

Так же постоянно происходит расширение линейки, свойств и качества материалов и постобработки изделий. Все это ускоряет переход к использованию 3d принтеров именно в производстве, а не только как аппаратов для прототипирования. Сегодня многие крупные и не только компании и организации тесно используют 3д принтер в своей производственной цепочке: начиная от производителей потребительский товаров NIKE и PUMA и заканчивая BOEING и SPACE X (последняя печатает части двигателей для своих ракет, которые не возможно было изготовить никаким другим образом).

Помимо «классической» области применения 3д печати, сегодня все чаще можно видеть новости о том, как на 3d принтере напечатали дом или какой-нибудь орган (а точнее его маленькую часть) из био-материала. И это действительно так, несколько компаний по всему миру тестируют или уже частично применяют 3д печати в строительстве зданий и сооружений. В основном это касается контурной заливки стен (похоже на метод FDM) специальной композитной бетонной смесью. А в Амстердаме существует проект 3д печатного моста и этот список будет только расширяться со временем, так как применение 3d печати в строительстве способно существенно сократить издержки и увеличить скорость работ на определенных этапах.
Касаемо медицины, здесь 3д печать так же находит применение, однако в настоящий момент это не печать органов, а скорее применение технологии в протезировании (самого различного толка) и замещении костей. Так же технологии 3d печати широко используется в стоматологии (технология SLA). Касательно печати органов, это пока далеко в будущем, в настоящий момент био-3д принтеры это экспериментальные установки на ранних стадиях, успехи которых ограничиваются печатью нескольких ограниченно-жизнеспособных клеток.

Заглядывая в будущее, можно с уверенностью сказать, что технологии трехмерной печати будут расширяться как в ширь так и вглубь, совершенствуя технологии, ускоряя процессы, качество и улучшая свойства материалов. 3д принтеры все больше будут замещать старые методы в производственных цепочках различного масштаба, а мировое производство, благодаря этому, будет двигаться к схеме работы «по требованию» (on demand) увеличивая степень кастомизации изделий. Возможно, когда нибудь, 3д принтеры будут широко применяться и на бытовом уровне для производства необходимых вещей (мечта и цель движения RepRap), однако для этого необходимо не только развитие технологии, но и смена парадигмы общественного мышления, а так же развитие мощной экосистемы проектирования (3д моделирования) изделий (о чем очень часто забывают).

3d печать домов (и прочих сооружений), без сомнения так же будет развиваться, сокращая издержки и сроки производства, что вместе с освоением новых подходов в архитектуре и городском планировании (таких как модульное строительство и метод prefabricated), придаст ощутимый импульс к развитию индустрии в целом.

Биологические 3d принтеры будут выступать важным инструментом в научных исследованиях. Тем не менее, до их появления в больницах и клиниках, где они будут печатать новые органы, еще очень и очень далеко (фактически это научная фантастика).

Этап 1: Рождение идеи

Доктор Хидео Кодама, создатель системы быстрого прототипирования (1980 г.)

Доктор муниципального промышленного исследовательского института в Нагоя, Хидео Кодама, подал заявку на регистрацию патента на устройство, которое с помощью УФ-засветки послойно формировало жесткий объект из фотополимерной смолы.

По сути, он описал современный фотополимерный принтер, однако не смог в течение года, как того требовало патентное право, предоставить необходимые данные для регистрации патента и забросил идею. Тем не менее, во многих источниках именно его называют изобретателем технологии 3D-печати.

В 1983 году трое инженеров — Ален Ле Мехо, Оливье де Витт и Жан-Клод Андрэ из французского национального центра научных исследований, в попытке создать то, что они называли «фрактальным объектом», пришли к идее использования лазера и мономера, который под воздействием лазера превращался в полимер. Заявку на патент они подали за 3 недели до американца Чака Хала. Первым объектом, созданным на аппарате, стала винтовая лестница. Технологию инженеры назвали стереолитографией, а патент был одобрен только в 1986 году. Благодаря им самый известный формат файла для 3D-печати и называется STL (от англ. stereolithography). К сожалению, институт не разглядел перспектив в изобретении и его коммерциализации, и патент не был использован для создания конечного продукта.

Чак Халл, создатель лазерной стереолитографии SLA

В тоже самое время Чак Халл работал в компании, которая делала покрытия для столешниц и мебели при помощи ультрафиолетовых ламп. Производство небольших пластмассовых деталей для прототипирования новых конструкций изделий занимало до двух месяцев. Чаку пришла в голову идея ускорить этот процесс совместив УФ технологию и размещение тонкого пластика послойно. В компании ему выделили небольшую лабораторию для экспериментов, где он работал по вечерам и выходным. В качестве материала Чак использовал затвердевающие под воздействием ультрафиолета фотополимеры на акриловой основе. Однажды ночью после месяцев экспериментов он смог наконец напечатать образец и был настолько окрылен удачей, что пошел домой пешком. Чак показал свое изобретение жене. Это была чашечка для промывки глаза, больше похожая на чашу для причастия, по мнению жены. Она и считается официально первой 3D-печатной моделью в мире и по-прежнему хранится в семье Халл, а после их смерти будет передана в Смитсоновский научно-исследовательский институт в Вашингтоне.

Чашечка Халла

Чак Халл подал патентную заявку 8 августа 1984, и 11 марта 1986 года она была одобрена. Изобретение получило название «Аппарат для создания трехмерных объектов с помощью стереолитографии». Чак основал свою компанию — 3D Systems, и в 1988 году выпустил на рынок первый коммерческий 3D-принтер – модель SL1.

Карл Декард и Джо Биман (справа), изобретатели SLS 3D-печати (1987 г.)

Еще один новый способ 3D-печати появился примерно в то же время, что и SLA-печать. Это селективное лазерное спекание SLS, при котором лазер используется для превращения сыпучего порошка (вместо смолы) в твердый материал. Разработкой занимались Карл Декард, молодой студент бакалавриата в Техасском университете в Остине, и его преподаватель, профессор, доктор Джо Биман. Причем идея принадлежала Карлу. В 1987 году они вместе основали корпорацию Desk Top Manufacturing (DTM) Corp. Однако пройдет еще не менее 20 лет, пока SLS 3D-печать станет коммерчески доступной потребителю. В 2001 году компанию выкупил Чака Халл, 3D Systems.

Скотт Крамп, разработчик FDM способа 3D-печати (1988 г.)

Удивительно, но более простой и дешевый способ 3D-печати — FDM (Fused Deposition Modelling) был создан после SLA и SLS, в 1988 году. Его автором стал авиационный инженер Скотт Крамп. Крамп искал простой способ создания игрушечной лягушки для своей дочери и использовал горячий клеевой пистолет: расплавил пластик и разлил его по слоям. Так родилась идея FDM 3D-печати, технологии послойного наплавления пластикой нити. Крамп запатентовал новую идею и стал соучредителем Stratasys вместе со своей женой Лизой Крамп в 1989 году. В 1992 году они выпустили на рынок свой первый серийный продукт — Stratasys 3D Modeler.

Этап 2: 3D-печать становится доступной

Первые создаваемые 3D Systems и Stratasys агрегаты были громоздкими и дорогостоящими. Стоимость одного составляла сотни тысяч долларов, и использовать их могли только крупнейшие компании автомобильной и аэрокосмической отрасли. Принтеры имели массу ограничений и не могли широко применяться. Развитие технологии шло очень медленно. Спустя 20 лет, в 2005 году появился проект RepRap (Replicating Rapid Prototyper) — самовоспроизводящийся механизм для быстрого изготовления прототипов.

Его идейным вдохновителем был доктор Эдриан Бауэр из Университета Бата в Великобритании. Целью проекта было «самокопирование», воспроизведение компонентов самих 3D-принтеров. На фотографии все пластиковые детали «ребенка» напечатаны на «родителе». Но фактически группа энтузиастов во главе с Эдрианом смогла наконец создать бюджетный 3D-принтер для домашнего или офисного использования.

Идею быстро подхватили трое техногиков из Нью-Йорка и открыли компанию по производству настольных FDM принтеров — MakerBot. Этот и стало вторым поворотным моментом в современной истории 3D-печати.

Параллельно шли разработки других технологий. Среди них можно выделить биопринтинг. Томас Боланд из Клемсонского Университета запатентовал использование струйной печати для 3D-печати живых клеток, что сделало возможным печать человеческих органов в будущем. Исследования в этой области ведут десятки компаний по всему миру.

Еще одним важным способом применения новой технологи стало создание протезов, сначала обычных, а потом и бионических. В 2008 году первый напечатанный протез был успешно трансплантирован пациенту и позволил ему вернуться к нормальному образу жизни.

Еще одним важным этапом стало появление в сети Интернет файлов печати с открытым исходным кодом. Сайты www.thingiverse.com, www.myminifactory.com и многие другие, содержат как бесплатные, так и платные файлы для 3D-печати. Пользователи делятся моделями в интернете и печатают их самостоятельно.

Сферы использования

Что такое 3D-принтеры? (История, применение, как выбирать)

Несмотря на то, что 3D-принтеры начали массово использоваться лишь недавно, они стремительно ворвались практически во все сферы человеческой жизни. Как вы уже поняли, эти устройства разрабатывались для промышленных целей и до сих пор активно используются в различных производствах. Их применяют для быстрого изготовления прототипов моделей, чтобы тестировать их перед запуском основной продукции, и для создания готовых деталей в мелкосерийном производстве. С помощью трёхмерной печати делают формы для литейного производства. На 3D-принтерах печатают сложные, массивные, прочные и недорогие конструкции. Но после того, как технология вышла за рамки промышленной, ей нашли применение где только смогли. В прошлом году мы с вами говорили о том, что 3D-принтеры фактически захватывают мир.

Что такое 3D-принтеры? (История, применение, как выбирать)

В 2010 году учёные из Массачусетского Технологического Института впервые напечатали съедобную продукцию. 3D-принтер Cornucopia, что означает «рог изобилия», смог напечатать объемную модель из продуктов питания. Позже был представлен принтер Edible Growth, который печатает экологически чистые закуски. В 2011 году с помощью трёхмерной печати учёные впервые смогли воссоздать внутренний орган человека из стволовых клеток. За последующие 4 года на 3D-принтерах научились печатать внешние органы (нос, уши) из хрящевой ткани, фрагменты скелета, черепа. А в нынешнем году Американское управление по санитарному надзору за качеством пищевых продуктов и медикаментов (Food and Drug Administration) одобрило к печати лекарство для контроля судорожных приступов при эпилепсии. В 2013 году организация Defense Distributed напечатала полностью функциональный пистолет. Сейчас во многих странах уже даже существуют законы, запрещающие изготовление и использование оружия, которое создано на 3D-принтерах.

Что такое 3D-принтеры? (История, применение, как выбирать)

Кроме того, с помощью гигантских 3D-принтеров, грязи и натуральных волокон (шерсти, например) предлагают решить проблему с жильём в самых отдалённых и бедных уголках планеты. Рабочий прототип такого устройства был представлен итальянской компанией WASP в прошлом году. Также существуют принтеры, способные печатать из песка. Художник Маркус Кайзер собственноручно собрал аппарат, использующий энергию Солнца для создания стеклянных объектов. Ещё один принтер под названием D-Shape, использующий для печати песок и неорганический компаунд, разработал итальянский робототехник Энрико Дини. Прочность полученного материала эксперты сравнивают с железобетоном. Кстати, художники или скульпторы могут использовать специальные 3D-ручки для создания своих шедевров. Тем временем, учёные предлагают использовать 3D-принтеры в космической программе. Одно такое устройство уже успешно доставлено на МКС для печати различных деталей, инструментов и прочих вещей, которые могут понадобиться астронавтам. В будущем предполагается использовать технологии трёхмерной печати для строительства лунных баз и освоения Марса.

Что такое 3D-принтеры? (История, применение, как выбирать)

Так что, как видим, 3D-принтеры используются во многих отраслях — и довольно успешно. Конечно же, данным устройствам нашлось применение и в быту для создания различных мелочей, сувениров, деталей и т.д. Однако сейчас большинство 3D-принтеров являются дорогим удовольствием. Поэтому если вы хотите купить себе один такой в дом, необходимо чётко понимать, как и для чего он будет использоваться.

Как выбрать 3D-принтер

Что такое 3D-принтеры? (История, применение, как выбирать)

Для начала стоит отметить, что сейчас цены на настольные 3D-принтеры варьируются в очень широких пределах: от 30 тысяч до нескольких миллионов рублей. Но на самом деле данный показатель далеко не главный в нашем выборе. Конечно, более дешёвые принтеры изнашиваются немного быстрее и обладают чуть большим процентом брака. Но сначала нужно определиться с тем, что вы будете печатать. Если вам нужен 3D-принтер для серьёзной работы и изготовления каких-либо моделей высокого качества, или вы хотите печатать ювелирную продукцию, то нужно искать устройства, работающие по технологии SLA. Если же вы будете просто развлекаться и печатать простые фигурки, игрушки и т.д., то вам достаточно более дешёвого FDM-принтера.

Что такое 3D-принтеры? (История, применение, как выбирать)

Далее стоит обратить внимание на материалы, которыми может печатать 3D-принтер. Если вам важна прочность готового продукта (устойчивость к ударам, трению, агрессивным средам), то нужно выбирать ABS пластик. Если нет – то подойдёт экологически чистый PLA пластик. Материал Laywood делается из переработанного дерева и связующего полимера, и подойдёт для изделий «под дерево». PVA пластик растворяется в горячей воде и может использоваться для печати вымываемых вставок, например. Очень прочным и одновременно лёгким материалом, который используется в медицине и литейном производстве, является Nylon. Для производства прозрачных изделий, чашек, тарелок подойдёт материал T-Glase. Архитекторы для создания правдоподобных моделей могут использовать материал Laybrick, который в зависимости от температуры может быть гладким, шероховатым и т.д. Фотополимеры для SLA-печати также имеют разные свойства. Бывают смолы, которые при затвердевании становятся гладкими, прочными, влагостойкими и довольно долговечными. Бывают специальные эластичные полимеры, которые по свойствам напоминают резину. Конечный продукт из такого материала будет обладать хорошей упругостью и ударопрочностью.

Также важными вопросами являются размер области печати и количество экструдеров. В первом случае выбор стоим между скоростью/удобством и качеством. То есть 3D-принтеры с большой областью могут печатать крупные объекты, но на принтерах с малой областью заметно выше качество. Поэтому можно печатать большие модели по частям, а потом склеивать их самостоятельно. Во втором случае вы выбираете между опять-таки качеством (один экструдер) и возможностью разноцветной печати или использованием 2-х материалов одновременно (более одного экструдера). У одноэкструдерных аппаратов меньший процент брака, но у мультиэкструдерных принтеров при выходе из строя одной машинки можно продолжать использовать рабочие.

Что такое 3D-принтеры? (История, применение, как выбирать)

И если вы боитесь, что вам нечего будет печатать, потому что вы не умеете создавать 3D-модели, то это зря. Сейчас в интернете полно сайтов с горами бесплатных макетов, уже готовых к печати. А если прочитать какие-нибудь базовые уроки, то такие модели можно даже самостоятельно редактировать. Поэтому, если вы точно знаете, что именно собираетесь печатать на своём 3D-принтере, то можно уже сейчас смело заходить в любой онлайн-магазин (а таких много и в Рунете) и покупать наиболее подходящее вам устройство.

На этом мы, пожалуй, закончим данную статью, которая является продолжением нового цикла, начатого в топике о модульных смартфонах. Если вы хотите прочитать о каких-нибудь интересных устройствах или технологиях, постепенно врывающихся в нашу жизнь – пишите в комментариях, и возможно, следующая статья будет по вашей теме.

Оцените статью
TutShema
Добавить комментарий