Для проверки работоспособности и налаживания радиоаппаратуры используют источники различных по форме и частоте электрических сигналов, называемые измерительными генераторами.
Наиболее часто используемым в кружке измерительным генератором является ГСС—генератор стандартных сигналов, который, вырабатывая электрические колебания частот от нескольких герц до десятков и сотен мегагерц, может быть источником амплитудно-модулированных сигналов, имитирующих сигналы радиовещательных станций. Кроме промышленного генератора, в кружке используются и самодельные простые измерительные генераторы. Конструирование их — неотъемлемая часть деятельности радиотехнических кружков 1-го и 2-го годов занятий.
Однотранзисторный генератор колебаний 3Ч, схема которого показана на рис. 60, может стать первым измерительным генератором радиолюбителя. Прибор вырабатывает синусоидальные колебания частоты 1 кГц. Сигнал такой частоты наиболее часто используют для проверки усилителей 34, трактов звуковой частоты радиовещательных приемников.
Генератор состоит из однокаскадного усилителя на транзисторе V и двойного Т-фильтра, включенного между коллектором и базой транзистора. Подобные электрические фильтры называют Т-образными, потому что схемное построение их элементов напоминает своим видом букву Т. На схеме генератора один такой фильтр образуют резисторы R2, R4 и конденсатор C2t второй — конденсаторы С/, СЗ и резистор R3. Между собой они соединены параллельно и образуют между коллектором и базой транзистора положительную обратную связь, благодаря которой усилитель возбуждается и становится генератором колебаний фиксированной частоты. Частота генерируемых колебаний определяется номиналами конденсаторов и резисторов, образующих двойной Т-фильтр. С резистора R5y являющегося нагрузкой транзистора, колебания генератора подаются через конденсатор С4 на переменный резистор R7, а с него на вход проверяемого усилителя 34. Этим резистором напряжение на выходе генератора можно плавно изменять от нуля до 1,5. 2 В.
Резисторы R4 и R2, входящие в двойной Т-фильтр, совместно с резистором R1 образуют усилитель напряжения, с которого на базу транзистора подается отрицательное напряжение смещения. Резистор R6 улучшает форму генерируемых колебаний.
Чтобы проверить, работает ли генератор, достаточно подключить к его выходу головные телефоны — в них появится звук средней тональности, изменяющийся по громкости при вращении ручки переменного резистора R7.
Транзистор ГТ308В можно заменить на П416Б или другой германиевый высокочастотный транзистор со статическим коэффициентом передачи тока не менее 80. Переменный резистор R7 типа СП-1, резисторы R1— R5 — МЛ Т-0,125 или МЛТ-0,25, резистор R6—ТВО-0,125 (среди резисторов типа МЛТ нет с номинальным сопротивлением около 5 Ом). Источником питания генератора может быть батарея «Крона» или две соединенные батареи 3336Л.
Генератор на 465кгц из пьезо фильтра
Измерительный генератор (Разработан Б. Степановым г. Москва), вырабатывающий синусоидальные колебания фиксированной частоты 1 кГц, можно собрать на микросхеме К122УН1Б (рис. 61). Выходное напряжение генератора на нагрузке сопротивлением 10 кОм около 2 В.
Усилитель микросхемы самовозбуждается благодаря включению между его выходом (вывод И) и входом (вывод 4) фазосдвигающей RС-цепочки, образованной конденсаторами С1 — СЗ, резисторами R1—R5 и входным сопротивлением первого транзистора микросхемы. Частоту генерируемых колебаний можно изменять в широких пределах путем замены конденсаторов С1—СЗ конденсаторами других емкостей, но обязательно одинаковых по номиналу. С уменьшением емкости этих конденсаторов частота генерируемых колебаний увеличивается, и наоборот. Сопротивления резисторов R3 и R5, подбираемых при настройке генератора, могут быть в пределах 1,5. 4,7 кОм. Электролитический конденсатор С4 устраняет отрицательную обратную связь пo переменному току, действующую между транзисторами микросхемы.
Выходное напряжение и коэффициент гармонических искажений зависят от глубины положительной обратной связи, устанавливаемой подстроечным резистором R4 во время настройки генератора. Предварительно цепочку резисторов R3—R5 заменяют переменным резистором сопротивлением 10 кОм. Сигнал с выхода генератора подают на вход «Y» осциллографа и, следя за его изображением на экране, опытным путем находят такое положение движка переменного резистора, при котором, колебания срываются. Затем измеряют сопротивления обоих плеч переменного резистора, восстанавливают соединение подстроечного резистора R4, включают в цепочку резистор R3 с номинальным сопротивлением, близким к сопротивлению верхнего плеча (от верхнего вывода до движка), а резистор R5 сопротивлением, равным сопротивлению нижнего плеча переменного резистоpa.
После этого подстроечным резистором R4 устанавливают оптимальную глубину обратной связи, при которой амплитуда колебаний будет наибольшей и без искажений.
В том случае, если к форме выходного сигнала не предъявляют жестких требований, т. е. не обращают внимания на некоторые искажения, то цепочку резисторов R3—R5 можно вообще исключить, соединив правый (по схеме) вывод конденсатора С3 непосредственно с выводом 11 микросхемы.
В генераторе вместо микросхемы К122УН1Б можно применить другие микросхемы этой серии или аналогичные им микросхемы серии К118. Напряжение источника питания микросхем с буквенными индексами В, Г и Д можно увеличить до 12 В, что позволит получить большее напряжение выходного сигнала.
Еще один измерительный генератор, которым желательно оснастить кружок радиотехнического конструирования, генератор 3Ч—ПЧ1 (рис. 62). Он вырабатывает сигнал 34 частотой 1 кГц и модулированный им по амплитуде сигнал ПЧ частотой 465 кГц. Прибор предназначен для проверки и налаживания усилителей 34 и трактов ПЧ супергетеродинных приемников. Питать его можно от любого источника постоянного тока напряжением 12. 15 В, например от трех соединенных последовательно батарей 3336Л.
Рис. 62. Генератор 34—ПЧ на блок-сборке БС-1 Разработан Г. Шульгиным (г. Москва).
Характерная особенность этого измерительного генератора заключается в том, что в нем в качестве активных элементов используется блок-сборка БС-1—малогабаритный блок, объединяющий в своем корпусе два биполярных транзистора структуры п-р-п и два полевых транзистора с каналом я-типа. Внешний вид и нумерация выводов элементов микросборки показаны на том же рис. 62 (слева). На схеме генератора транзисторы показаны без окружностей, символизирующих их корпуса, потому что транзисторы ^сборки не имеют корпусов. Если в распоряжении кружка не окажется сборок БС-1, то вместо них в монтируемых генераторах можно применить биполярные транзисторы серии КТ315 со статическим коэффициентом передачи тока не менее 50 и полевые транзисторы серии КП303 с любым буквенным индексом.
Это измерительное устройство, рекомендуемое для повторения в кружках радиотехнического конструирования 2-fo года занятий, состоит из генератора сигналов ПЧ на транзисторе VI, генератора сигналов 34 на транзисторе V3 и амплитудного модулятора на транзисторах V2 и V4. Транзистор VI генератора ПЧ включен по схеме с «заземленной» (по высокой частоте — через конденсатор С2) базой.
Режим работы транзистора по постоянному току определяется делителем напряжения R1R2 в базовой цепи и резистором R3 в эмит-терной цепи, а частота генерируемых колебаний — параметрами колебательного контура, образованного катушкой индуктивности L1 и конденсаторами СЗ—С5. Самовозбуждение возникает из-за емкостной связи между коллектором и эмиттером транзистора.
Генератор 34, как и однотранзисторный генератор, собранный по схеме на рис. 60, представляет собой каскад, охваченный положительной обратной связью через двойной Т-фильтр, состоящий из резисторов R7—R9 и конденсаторов С7—С10. Частота генерируемых колебаний зависит от номиналов этих элементов и составляет в данном случае 1 кГц.
Напряжение генератора ПЧ через конденсатор С6 поступает на затвор полеврго транзистора V2, а напряжение генератора 34 через конденсатор СП — на затвор транзистора V4. Благодаря последовательному соединению каналов полевых транзисторов, совместное воздействие на их затворы напряжений обоих генераторов приводит к тому, что напряжение ПЧ оказывается промодулированным по амплитуде. С выхода модулятора (точка соединения истока транзистора V2 со стоком транзистора V4) модулированное напряжение ПЧ через конденсатор С14 (он пропускает только колебания ПЧ) поступает на гнездо Х2 «ПЧ». Напряжение ЗЧ с выхода генератора на транзисторе V3 подается на гнездо XI «ЗЧ». В зависимости от того, какой сигнал необходим для проверки или настройки собранной конструкции, щупы генератора включают в гнезда ХЗ «Общ» и Х2 или Х3 и X1.
Усилители звуковой частоты или тракты ЗЧ приемников проверяют, начиная с оконечного каскада. Щуп в этом случае вставляют в гнездо XI, а гнездо Х3 соединяют с общим проводом проверяемого радиотехнического устройства.
Для стабилизации частоты генерируемых колебаний напряжение питания устройства поддерживается неизменным с помощью простейшего стабилизатора напряжения на стабилитроне V5 и резисторе R6.
Сравнительно небольшое число деталей позволяет собрать генератор на плате площадью 30. 40см2 (например, размерами 60 X 60 мм). Правда, для этого все детали должны быть малогабаритными: конденсаторы типа КМ, КЛС, резисторы типа МЛТ-0,25, ВС-0,125 и т, п. В контуре генератора ПЧ можно использовать катушку фильтра ПЧ от транзисторных супергетеродинных приемников. Стабилитрон Д814Б при необходимости можно заменить на Д809. Плата генератора с дискретными транзисторами будет несколько больших размеров.
Налаживание измерительного устройства сводится практически к настройке генератора ПЧ на частоту 465 кГц. Контролировать работу генераторов пробника удобно по осциллографу, подключенному к затвору транзистора V2. При включении питания на его экране должно появиться характерное изображение амплитудно-модулированных колебаний с глубиной модуляции около 30%. Глубину модуляции нетрудно рассчитать, измерив на экране осциллографа наибольший (U max) и наименьший (U min) размах модулированных колебаний: т = (U max — U min) / (U max + U min).
Если генератор 34 не самовозбуждается, то параллельна конденсаторам двойного Т-моста придется подключить конденсаторы емкостью 0,002. 0,01 мкФ.
Частоту генератора ПЧ, соответствующую 465 кГц, устанавливают с помощью промышленного радиовещательного супергетеродина с такой же промежуточной частотой. Поднеся генератор возможно ближе к антенному гнезду или магнитной антенне приемника, подстроечным сердечником контурной катушки L1 (а если надо, то и подбором конденсатора С3) добиваются появления в динамической головке приемника максимальной громкости звука частотой 1 кГц (примерно звук «ми» второй октавы). О точной настройке генератора на частоту 465 кГц будет свидетельствовать неизменная громкость звука при перестройке приемника в любом диапазоне.
Генератор для настройки ПЧ-тракта радиоприемника
На рис.17 приведена принципиальная схема генератора, который может быть использован для настройки тракта промежуточной частоты в радиоприемниках самого разного назначения. Частота выходного сигнала генератора — f пч=465 кГц* — задается кварцевым резонатором ZQ1, а его амплитуда — не менее 2 В — зависит от напряжения источника питания Uпит . Все резисторы в генераторе — типа МЛТ-0,125, конденсаторы КМ-6 или им подобные. Транзистор VT1 — практически любой n-p-n, имеющий коэффициент усиления по току не менее 100 и гра ничную частоту не менее 100 МГц.
Рис. 17. Генератор для настройки ПЧ тракта радиоприемника Генератор не требует наладки. Для сохранения хорошей формы сигнала при Uпиті10 В потребуется, возможно, лишь несколько
увеличить емкость конденсатора С2 (до 6200. 6800 пФ). При такой амплитуде выходного сигнала генератор к радио-приемнику можно и не подключать — достаточно лишь их сблизить. Но уровень выходного сигнала можно уменьшить, привести его к нужному. Так, например, как это показано на рис. 18. Но в этом случае сам генератор потребуется поместить в экран (штриховой линией показан его фрагмент), иначе наводки «по воздуху» не позволят получить на его выходе сигнал достаточно малого уровня. При хорошей экранировке всех цепей резисторный делитель можно сделать ступенчатым (рис. 19), сигнал на выходе которого может быть снижен, при необходимости, и до долей микровольта. Расчет таких делителей описан в [1].
Рис. 18. Простой делитель выходного напряжения
Рис. 19. Ступенчатый делитель выходного напряжения *) Несущая ПЧ-тракта fпч=465 кГц — отечественный стандарт. В зарубежной связной технике чаще fпч=455 кГц. Для настройки такой аппаратуры в генераторе потребуется сменить лишь кварцевый резонатор.
none
Опубликована: 1999 г.
0
0
Вознаградить Я собрал 0 0
Оценить статью
- Техническая грамотность
Оценить Сбросить
Средний балл статьи: 0 Проголосовало: 0 чел.
Для добавления Вашей сборки необходима регистрация
0
Нестор50 14.01.2024 00:27 #
Можно этот генератор использовать как второй гетеродин для приема SSB на коротких волнах?
Автомобильный GPS-трекер с GSM/GPRS и дистанционным управлением
1999-2024 Сайт-ПАЯЛЬНИК ‘cxem.net’
При использовании материалов сайта, обязательна
ссылка на сайт ПАЯЛЬНИК и первоисточник
Схема высокостабильного генератора ВЧ сигнала на транзисторе
Схема высокостабильного генератора сигнала на 465 кГц (500 кГц), построенного на последовательном резонансном LC-контуре. Суточная (24 часа) нестабильность генератора не превышает 0,3 кГц. Это составляет меньше 0,1 %.
В одно время я изучал свойства параллельного и последовательного резонансных контуров. Подавая сигнал от генератора на контур с помощью осциллографа, я наблюдал сигнал на вторичной катушке индуктивности, входящей в контур. Так, на параллельном контуре присутствует как сигнал собственных колебаний контура, так и сигнал генератора. Это показывает, что параллельный контур удобно использовать в фильтрах сосредоточенной селекции, в нагрузках смесителей (преобразователей) частоты, в умножителях частоты.
В то время как на катушке последовательного контура выделяется гармонический или близкий к нему сигнал резонансной частоты контура, это не смотря на то, что на контур подавался сигнал разной формы и частоты. Поэтому я утверждаю, что последовательный контур выгодно использовать в генераторах частоты сигнала При этом частота генерации будет в большей степени зависеть от, параметров контура, и в меньшей — от характеристик транзистора.
Схема электрическая принципиальная генератора приведена на рис. 1.
Основу генератора составляет биполярный транзистор типа КТ209И (М, Б, Д).
Конденсатор С2 — типа КТ, С1, С4 — типа КМ.
Катушка индуктивности L9, L10 — это трансформатор промежуточной частоты от радиоприемника «Селга-404». Схема выводов катушек указана на рис. 2. L9 намотана проводом ПЭВ-2 диаметром 0,10 мм и содержит 24 витка, L10 состоит из 81 витка высокочастотного провода 3×0,08 мм. Индуктивность L10 составляет 117 мкГн. Добротность катушки на частоте 465 кГц равна 90.
Настройка генератора происходит следующим образом. При отключенном резисторе R4 на транзистор подается напряжение -1,50 В и с помощью R1 на коллекторе VT1 устанавливается напряжение -0,95 В. Это напряжение устанавливается из расчета: напряжение питания -1,50 В минус напряжение насыщения Ura нас, равное у КТ209 0,4 V В, и деленное на 2. Затем к коллектору VT1 подключаем частотомер. Я использовал частотомер с чувствительностью 0,5 В амплитудного напряжения сигнала.
Вместо R4 подключается потенциометр на 2,2 кОм и, постепенно уменьшая его сопротивления, добиваются появления устойчивой генерации частоты. Затем измеряют сопротивление R4 и заменяют его на постоянный резистор. После этого подключают частотомер к С5, подобрав R3. Частоту генерации сигнала 465,0 кГц подстраивают с помощью изменения индуктивности, катушки L10 и емкости конденсатоpa СЗ.
Снимать сигнал следует с катушки L9, так как из-за нелинейности входных и выходных характеристик транзистора при малом напряжении на коллекторе Ura, на R2 выделяется сигнал искаженной синусоиды. А напряжение на L9 является синусоидальным, так как ток в L10 протекает по гармоническому закону.
Величина сопротивления R2 влияет на добротность LC-контура и его сопротивление можно уменьшить, увеличив добротность, однако при этом возрастает энергия, рассеиваемая на L и С контура и на коллекторе VT1. Если кого не устраивает полярность напряжения питания -1,50 В, то можно использовать транзистор КТ630Б (Д, Е) с проводимостью п-р-п.
Источник питания на 1,50 В должен быть высокостабильным для получения высокбстабильной частоты сигнала. Так, уменьшение и увеличение напряжение питания от -1,30 В и до -1,70 В приводит к изменению частоты генерации от -0,4 кГц и до +0,4 кГц от среднего значения 465,0 кГц. Напряжение питания можно выбрать 2,0 В для данной схемы (или любое в этом диапазоне напряжений).
Нестабильность частоты генератора составила за 12 часов непрерывной работы с 465,0 кГц до 465,1 кГц (+0,1 кГц). А за 24 часа непрерывной работы до 465,3 кГц, т.е. +0,3 кГц. При включении и выключении генератора нестабильность составила 465,7 кГц, но через 1 минуту уменьшилась до 465,3 кГц. (При настройке генератора на частоту 450 кГц, при этой же емкости С2 нестабильность за сутки составила 1 кГц).
Настроить генератор на частоту 500,0 кГц можно, изменив номинал С2 до 860 пФ. Предполагаю, что увеличить стабильность последовательного контура можно, подобрав С2 по температурному коэффициенту емкости. Этот генератор частоты сигнала может работать и от электрической батарейки на 1,5 В типа («R14»), но при этом высокая Стабильность частоты сигнала не гарантируется.
Этот схемой я показал принцип построения высокостабильного LC-генератора на последовательном контуре. А опытный радиолюбитель сам додумает практическую схему генератора на свою, нужную ему частоту. С катушки L9 снимается сигнал -0,70 В действующего переменного напряжения, а с R2 -0,25 В. За счет резонанса, напряжение на С2 и L10 в 10 раз превышает напряжения на контуре.
Простой генератор – пробник НЧ/ПЧ 465 кГц
При ремонте в домашних условиях звукового усилителя или бытового радиоприемника нередко появляется необходимость проследить прохождение сигнала через каскады. И это вызывает определенные затруднения при ремонте тем радиолюбителям, у которых нет необходимых приборов.
Предлагаемый вашему вниманию простой генератор-пробник предназначен для ремонта радиоаппаратуры. Он не содержит намоточных узлов и доступен в изготовлении, настройке и эксплуатации даже начинающему радиолюбителю. Генератор-пробник позволяет не только проверить исправность звукового усилителя и тракта усилителя промежуточной частоты (ПЧ 465 кгц) радиоприемника, но и подстроить контуры ПЧ радиоприемника по максимальному уровню сигнала.
Принципиальная схема устройства
На транзисторе VT1 собран НЧ генератор, вырабатывающий колебания с частотой примерно 1 кГц (определяется параметрами фазосдвигающей цепи С1С2С3R1R2, включенной в цепи ООС).
Выходной сигнал подается на базу ВЧ генератора VT2 через однозвенный ФНЧ R5C5, который подчищает выходной сигнал от гармоник и уменьшает его амлитуду для получения глубины АМ модуляции на уровне примерно 30 %.
Высокочастотный генератор работает на частоте 465 кГц и выполнен по схеме емкостной трехточки (вариант Клаппа), только вместо катушки индуктивности применен керамический резонатор ZQ1. В этой схеме генерация колебаний возможна только при индуктивном сопротивлении цепи резонатора, т.е. частота колебаний находится между частотами последовательного и параллельного резонансов. В качестве резонатора применён малогабаритный керамический фильтр ФП1П1-61-02 (маркировка без цветных меток). ФП1П1-61Фильтры серии ФП1П1-61 широко распространены, не дорого стоят и, главное, при указанном на схеме включении имеют малый разброс параметров по частоте генерации.
Я протестировал имеющуюся у меня партию из 7 штук и хочу отметить, что фактический разброс по частоте генерации не превышал +-0,5 кГц (по ТУ не должен превышать +- 1 кГц). Т.о. при применении фактически любого фильтра из серии ФП1П1-61 можно гарантированно, без подстройки, получить тестовый сигнал частотой 465+-1 кГц, что нам, собственно, и требуется. Эмиттер VT2 нагружен на резистивный делитель R7R8, который понижает выходной сигнал до удобных на практике уровней и обеспечивает стабильный режим работы генератора не зависимо от подключаемых внешних цепей (тестируемого устройства). Потенциометр R9 служит для плавной регулировке уровня выходного сигнала.
При указанном на схеме положении переключателей на выходе генератора — пробника будет сигнал АМ с частотой 465 кГц, модулированный низкочастотным сигналом 1 кГц (30% модуляция). При этом если включить SA1, то на выходе появится только сигнал немодулированной несущей ПЧ 465 кГц, если включить SA2, то на выходе появится только низкочастотный сигнал с частотой 1 кГц.
Транзисторы можно применить любые ВЧ (КТ315, КТ3102, BC847, 2N2222 и т.п.) С Н21е в пределах 100-220, иначе потребуется подобрать R4 для получения на коллекторе VT1 4,5+-0,5В.
Питание от Кроны, монтаж может быть любой вам доступный — на макетке, печатке или навесной .
Генератор для настройки радиоприемников
Этот генератор предназначен для настройки каскадов приемников CВ и ДВ диапазонов. Генератор вырабатывает синусоидальные колебания и прямоугольные импульсы радиочастотного диапазона от 0,15 до 1,6МГц, а так же колебания синусоидальные и прямоугольные с частотой 1кГц при этом радиочастотные колебания можно промодулировать низкочастотным сигналам.
В генераторе ЗЧ работает элемент DD1.1 и обмотка I, которая совместно с С1 С2 образуют колебательный контур. С обмотки II Т1 синусоидальный сигнал подается на выходное гнездо XS4. Амплитуда выходного ЗЧ сигнала можно регулировать при помощи R2.
Генератор РЧ собран аналогично, в качестве частотно-задающего элемента использованы катушки L1 L3 ВЧ трансформаторов и блок конденсаторов переменной емкости С3. Весь диапазон генератора РЧ разбит на 2-а диапазона 0,15…0,5 и 0,5…1,6МГц. Амплитуда выходного сигнала синусоидальной формы снимается с катушек L2 L4 и регулируется резистором R4. DD1.4 формирует импульсы прямоугольной формы которые поступают на выход XS2. Для того чтобы промодулировать РЧ сигналом ЗЧ надо переключить переключатель SA1.
Т1 — использован выходной трансформатор от усилителя ЗЧ малогабаритного приемника, для обмотки I используется только половина первичной обмотки. L1…L4 намотаны на каркасах от контурных катушек ПЧ старых радиоприемников. L1 L2 намотаны на одном каркасе и содержат 490 и 40 витков ПЭВ-2 0,06, L3 L4 содержат 240 и 22 витка ПЭВ-2 0,1.
Помочь сайту: 100, 200, 500 рублей
Похожие статьи
Карманная СВ-радиостанция (27МГц)
Радиостанция работает на частоте 27МГц и может связываться с аналогичной радиостанцией на расстояние до 2 км на открытой местности и до 500 м в городских условиях. Приемный тракт выполнен на 2-х микросхемах К174ПС1 К157ХА2 по схеме с минимальным кол-вом контуров. S1 показан в положении ПРИЕМ. Вх.сигнал от антенны через секцию переключателей S1.1 поступает на входной контур L1C1 настроенный на частоту принимаемого сигнала. L2 — катушка связи между контуром и входом А1. Гетеродин входит в.
Блок питания для УМЗЧ
При большой мощности УМЗЧ применение традиционных блоков питания имеет недостаток — самый главный недостаток это большой размер, а так же масса. Выход из положения — применение импульсного БП. Он имеет меньшие габариты и массу. Структурная схема показана на рис.1. Через фильтр Z1 сетевое напряжение поступает на выпрямители UZ1 UZ2. Фильтр Z1 исключает попадание высокочастотных помех в сеть переменного тока. Выпрямитель UZ1 преобразует сетевое напряжение в постоянное 310В, которое потом.
Генератор-пробник
Генератор-пробник(далее просто генератор) предназначен для проверки и налаживания трактов ПЧ и ЗЧ радиовещательных приемников. Технические данные Несущая частота 465±2 кГц Частота модуляции 1000ГЦ ± 5% Глубина модуляции 90% Амплитуда выходного сигнала 0. 200мВ Выходное сопротивление на частоте 465кГц не более 500 Ом Напряжение источника питания 1,5В Ток потребления генератора 20мА Прибор состоит из задающего генератора амплитудно-модулированного сигнала на VT1.
Мостовой УМЗЧ на лампах 6ПЗС-Е
Первый каскад собран на малошумящем пентоде 6Ж32П. Поскольку чувствительность первого каскада высока, то лампу можно включить триодом или заменить одним триодом лампы 6Н23П, 6Н8 или 6Н1П. При этом уменьшается количество деталей и упрощается схема. Элементы R4, R7, R8, С2, C5, C6 в этом случае из схемы нужно исключить, и схема первого каскада будет иметь вид, показанный на рис.2. Конструктивно усилитель выполнен в виде моноблока с применением навесного монтажа. На рис.3.
УМЗЧ 2*40W на TDA2051
Усилитель сделан на 2-х микросхемах TDA2051. Сигнал от предварительного усилителя подается на вход Х1. Микросхемы TDA2051 построены по схеме мощного ОУ. Поэтому питание 2-х полярное, а коэф-нт усиления устанавливается цепями C2R3R4 C9R8R9. В процессе налаживания нужную чувствительность подбором R4 R9. ИП усилителя может быть так трансформаторный так и импульсный, при этом вторичная обмотка должна иметь 32-36 В переменного напряжения при токе до 5А. Параметры УМЗЧ U входное.
Радио-как хобби
Поводом для изготовления такого простого прибора, как НЧ/ПЧ пробник послужили вопросы одного из пользователей о наладке изготовленного им AM/SSB приемника на микросхеме К174ХА2.
Как оказалось, у коллеги вообще напрочь отсутствуют измерительные приборы, кроме цифрового тестера. Понятно, что с таким парком приборов особо не разгонишься. Но не всегда ведь есть возможность купить нужные приборы, да многим они и не нужны. Можно обойтись во многих случаях более простыми приборами, которые несложно собрать своими руками.
В данной статье описывается ПЧ/НЧ пробник, предназначенный для оперативного контроля и наладки низкочастотных (звуковых) устройств и каскадов, и трактов ПЧ частотой 465 кГц в радиоприемных устройствах.
Схем подобных пробников есть множество.
Для повторения выбрана схема наиболее простого из них.
Схема этого приборчика простая, не содержит моточных изделий, и собрана на доступной элементной базе:
Пробник содержит два генератора. На транзисторе VT1 собран генератор звуковых частот, который генерирует переменное напряжение частотой около 1 кГц. Это напряжение поступает на выход пробника, ослабляется до необходимого уровня делителем R7R8, и через регулятор уровня R9 подается на проверяемые узлы.
Также этот НЧ сигнал используется для амплитудной модуляции высокочастотных колебаний частотой 465 кГц, которые генерирует каскад на транзисторе VT2. Включение генератора НЧ производится выключателем SA1.
Генератор сигнала 465 кГц собран на транзистор VT2. В качестве частотозадающего элемента использован пьезокерамический фильтр на 465 кГц. Включение генерации 465 кГц производится выключателем SA2.
Возможны три варианта работы пробника:
- Режим колебаний звуковой частоты 1 кГц. Контакты выключателя SA1 разомкнуты. Выключатель SA2 при этом разомкнут также.
- Режим немодулированных колебаний частотой 465 кГц. Контакты выключателей SA1 и SA2-замкнуты.
- Режим АМ сигнала частотой 465 кГц. Контакты выключателя SA1 разомкнуты, а выключателя SA2 замкнуты.
Налаживание пробника сводится к установке напряжения примерно 4…5 В (при напряжении питания 9 в) на коллекторе транзистора VT1 путем подбора резистора R3.
В оригинальной схеме пробник питается напряжением 9 В.
Я проверил работоспособность своего экземпляра-оба генератора устойчиво запускаются и работают в интервале питающих напряжений 3…9 В. Разумеется, с уменьшением питающего напряжения уменьшаются и амплитуды колебаний, но все равно, они имеют вполне достаточный уровень для использования при проверке радиоаппаратуры.
Еще один момент… Последовательно с пьезокерамическим фильтром пришлось установить резистор сопротивлением 820 Ом (на схеме имеет номер R10). Это сделано для того, чтобы получить более-менее приемлемую форму колебаний частотой 465 кГц. Без этого резистора нижняя полуволна была сильно искажена. И с резистором форма колебаний не стала уж очень идеальной, но не такая страшная))).
Уровни напряжения на выходе пробника, на верхнем выводе резистора R9 следующие:
-напряжение частотой 1 кГц имеет уровень 50мВэфф;
-напряжение частотой 465 кГц имеет уровень около 60 мВэфф.
Мой экземпляр пробника выглядит так:
Теперь небольшой фотоотчет с осциллограммами.
Сигнал частотой 1 кГц на эмиттере транзистора VT2. Имеет размах 1,5 В:
Сигнал частотой 465 кГц эмиттере транзистора VT2. Имеет размах примерно 2,3 В:
Амплитудно-модулированный сигнал частотой 465 кГц на эмиттере транзистора VT2 выглядит так:
Не очень красиво))). Но учитывая что этот ПЧ/НЧ пробник не является прецизионным прибором, будем считать что такая форма АМ колебаний вполне приемлема.
ПЧ/НЧ пробник собран на печатной плате размерами 32х73 мм. Вид со стороны печатных проводников:
Есть мысль и планы собрать еще один пробник. В нем кроме работы в трактах ПЧ с частотой 465 кГц, предусмотрена и работа в трактах ПЧ с частотой 10,7 МГц.
Генератор для настройки ПЧ-тракта радиоприемника
Генератор для настройки ПЧ-тракта радиоприемника
На рис.1 приведена принципиальная схема генератора, который может быть использован для настройки тракта промежуточной частоты в радиоприемниках самого разного назначения. Частота выходного сигнала генератора — f пч=465 кГц* — задается кварцевым резонатором ZQ1, а его амплитуда — не менее 2 В — зависит от напряжения источника питания Uпит. Все резисторы в генераторе — типа МЛТ-0,125, конденсаторы КМ-6 или им подобные. Транзистор VT1 — практически любой n-p-n, имеющий коэффициент усиления по току не менее 100 и гра ничную частоту не менее 100 МГц.
Генератор не требует наладки. Для сохранения хорошей формы сигнала при Uпит = 10 В потребуется, возможно, лишь несколько увеличить емкость конденсатора С2 (до 6200. 6800 пФ). При такой амплитуде выходного сигнала генератор к радио-приемнику можно и не подключать — достаточно лишь их сблизить. Но уровень выходного сигнала можно уменьшить, привести его к нужному. Так, например, как это показано на рис. 2. Но в этом случае сам генератор потребуется поместить в экран (штриховой линией показан его фрагмент), иначе наводки «по воздуху» не позволят получить на его выходе сигнал достаточно малого уровня. При хорошей экранировке всех цепей резисторный делитель можно сделать ступенчатым (рис. 3), сигнал на выходе которого может быть снижен, при необходимости, и до долей микровольта. Расчет таких делителей описан в [1]. Для справки: несущая ПЧ-тракта fпч=465 кГц — отечественный стандарт. В зарубежной связной технике чаще fпч=455 кГц. Для настройки такой аппаратуры в генераторе потребуется сменить лишь кварцевый резонатор.
Генератор для ремонта радиоаппаратуры
При ремонте в домашних условиях звукового усилителя или бытового радиоприемника нередко бывает необходимо проследить прохождение сигнала через каскады. В этом может помочь приведенная на рис. 1.23 схема простого двухчастотного генератора. Он собран всего на одной КМОП микросхеме и не содержит намоточных узлов. Что делает устройство удобным в изготовлении, настройке и эксплуатации.
Этот генератор дает возможность проверить не только звуковой усилитель, но и тракт усилителя промежуточной частоты (УПЧ) радиоприемника. Генератор позволяет также подстроить контуры ПЧ радиоприемника по максимальному уровню сигнала.
На выходе (Х2) устройства будут радиоимпульсы с частотой 465 кГц, модулированные низкочастотным сигналом — 1 кГц (100% модуляция). При этом если включить SA1, то на выходе появится только низкочастотный сигнал — импульсы с частотой 1 кГц.
Высокочастотный генератор работает на частоте 465 кГц и для получения у него высокой стабильности выполнен с использованием пьезокерамического фильтра (ZQ1) типа ФП1П-022 в цепи отрицательной обратной связи элемента микросхемы DD1.2. Такие фильтры более доступны и дешевле, чем кварцевые резонаторы на соответствующую частоту.
Генератор импульсов звукового диапазона (DD1.1-DD1.3) собран по классической схеме и в пояснениях не нуждается. На элементе DD1.4 две частоты смешиваются и поступают на эмиттерный повторитель, выполненный на транзисторе VT1. Транзистор согласует высокое выходное сопротивление микросхемы с возможным малым сопротивлением в цепи нагрузки.
Генератор обеспечивает работу в широком диапазоне питающих напряжений (4. 15 В) и потребляет ток 3,7. 26 мА. При этом частота высокочастотного автогенератора меняется во всем диапазоне питающих напряжений не более чем на 400 Гц, что вполне допустимо.
Для того чтобы уровень выходного сигнала автогенератора сильно не зависел от напряжения питания схемы — на выходе стоит ограничительный диод VD1. Выходной сигнал после конденсатора С4 будет иметь максимальную амплитуду около 0,3 В, а при помощи резистора R6 его можно уменьшить до необходимой величины.
Диод VD2 предотвращает ошибочную подачу полярности питающего напряжения на схему.
В схеме можно использовать пьезофильтр (ZQ1) типа ФП1П-022. 027. Регулировочный резистор R6 типа СПО-0,5, а остальные резисторы МЛТ и С2-23. Конденсаторы: С1 — К53-1 на 16 В;
Схема достаточно простая, что легко позволяет выполнить ее монтаж на универсальной макетной плате.
Настройка заключается в установке подбором резистора R2 (при замкнутых контактах SA1) частоты 1 кГц на выходе. После этого по частотомеру проверяем частоту 465 кГц ±0,5 кГц.
Для того чтобы было удобно измерить частоту — модуляцию ВЧ сигнала отключаем, что можно сделать подачей на выводы DD1/12, 13 напряжения питания.
Если из-за разброса параметров логических элементов (внутренней емкости микросхемы) пьезофильтр ZQ1 работает не точно на частоте 465 кГц, то может потребоваться установка дополнительного конденсатора С2 емкостью около 100. 470 пФ, а также подбор резистора R3, что позволит сдвинуть рабочую частоту генератора в небольших пределах.
Мнения читателей
- дд / 09.08.2011 — 09:56 а уменя неплавает частота я многолет им пользуюсь
- Валентин / 05.04.2011 — 22:08 Збирав таку штуку. Частота УПЧ була або 470 аб0 460 і плавала. С2 ставив — частоту 465 не вдалось виставити.