Что такое резистор или иначе сопротивление мы электронщики называем его по братски ‘Резюк”. — Это пассивный элемент, применяющийся в электрических цепях, обладающий постоянным или переменным значением электрического сопротивления, предназначенный для линейного преобразования напряжения в силу тока, силы тока в напряжение. Также используется для ограничения тока, и др. Во как! Звучит заумно, но давай разберемся, и ты поймешь, что – резистор это Несложно! Резистор как компонент очень широко используется практически во всех электрических и электронных устройствах с этого компонента ты начнешь постигать основы электроники. Конструкция резистора представляет собой не проводящую электричество трубочку (или стержень), на которую нанесен тонкий слой металла или сажи (углерода). Чем тоньше слой тем больше сопротивление. Резистор используется для того, чтобы установить нужный ток в электрической цепи. Здесь нужно понять одну зависимость – чем больше сопротивление резистора, тем меньше ток и наоборот – чем меньше сопротивление, тем больше ток. Представь себе резиновый шланг по которому течет вода, если ты наступишь на него, то количество вытекающей из него воды станет меньше потому что уменьшится проток. То же самое происходит и с электрическим током при его прохождении через резистор.
Основные характеристики и параметры резисторов
Резистор не самый сложный компонент, но имеет свои характеристики и параметры. Рассмотрим основные: Номинальное сопротивление – это основной параметр. Предельная рассеиваемая мощность – тоже важный параметр. Резисторы различают по сопротивлению и мощности. Сопротивление, измеряют в омах – (на электрических схемах обозначается Ом), килоомах (на электрических схемах обозначается кОм) и мегоомах – (на электрических схемах обозначается мОм) а мощность – в ваттах Wt (мощность резистора на схемах указывается полосками на обозначении резистора). Резисторы разной мощности отличаются размерами. Чем больше мощность резистора, тем больше его размеры.
В современных электрических схемах мощность резистора указывают только если требуется применение мощных резисторов. Если рядом с резистором его мощность не указана, можно смело ставить самый маленький размер.
Внешний вид резистора
Все виды резистора — устройства очень простые: сердечник, к которому присоединены клеммы. Он препятствует прохождению тока, поэтому незаменим в любой электрической сети. Его применение в схемах различного типа связано напрямую с его емкостью, индуктивностью, температурой, поэтому в итоге его можно назвать достаточно сложным и многоцелевым компонентом.
Просто и понятно — ОБО ВСЕХ электронных компонентах В ОДНОМ видео.
Из чего состоит
Резистор — это устройство, которое имеет цилиндрическую форму и небольшие размеры. К его торцам прикреплены металлические ножки. В основном они изготовлены из проволоки, но встречаются образцы, где ножки сделаны из металлической ленты.
Есть и образцы других типов. Также конструкция резистора может быть изготовлена в виде параллелепипеда, есть керамические устройства, прямоугольные — для SMD технологий, позволяющие проводить установку на поверхности платы.
Виды резисторов
Все виды резистора имеют ряд отличительных характеристик, помимо сопротивления. Для их изготовления применяют различные материалы. Количество контактов у них также разное.
Никакая электронная аппаратура не может обойтись без указанных компонентов. Но в некоторых образцах они используются в качестве дискретных элементов, в других же — это составляющие интегральных микросхем. Резистор, характеристики которого различны, подбирается под конкретные задачи.
Рассмотрим основные разновидности указанных электронных образцов.
Имея разное назначение, резисторы делят на:
- общего назначения;
- специального назначения.
По типу смены сопротивления в цепи тока:
- постоянные;
- переменные подстроечные;
- переменные регулировочные.
По характеру защиты от действия влаги:
- незащищенные;
- компаундированные;
- впрессованные в пластмассу;
- герметизированные;
- лакированные;
- вакуумные.
По способу сборки:
- для печатной сборки;
- для навесной:
- для микросхем;
- для микромодулей.
По вольт-амперным показателям:
По типу проводки:
- проволочные;
- ленточные.
По исходному материалу:
- углеродистые;
- металлопленочные;
- металлоокисные;
- композиционные;
- проволочные;
- интегральные.
По используемому материалу, из которого изготовлены
В производстве резисторов могут использовать проволоку, металлическую фольгу и неметаллические исходники. В первых, преимущественно в качестве сырья для производства проволоки берут нихром, никелин, константан. Для непроволочных образцов применяют пленки, у которых максимальные показатели сопротивления. В фольговых образцах резисторов применяется специальная фольга с необходимыми для резистора показателями. В толстопленочных образцах привлекают такие вещества как рутенит свинца, висмут, диоксид рутения.
Непроволочные модели бывают тонкослойными и композиционными. Тонкослойные получили такое название благодаря толщине: она составляет всего несколько нанометров. Композиционные намного толще — до десятых миллиметра.
Среди тонкослойных выделяют такие группы:
- металлоокисные;
- металлизированные;
- углеродистые;
- бороуглеродистые;
- металлодиэлектрические.
Среди композиционных выделяют следующие типы резисторов:
Последние могут быть с органическим и неорганическим диэлектриком. Следует иметь в виду, что оба конца резистора идентичны в плане полярности.
По предназначению сопротивления
Резистивное сопротивление у компонентов постоянного и переменного характера имеет различные показатели. Постоянные образцы делятся на компоненты общего и специального назначения.
Полупроводники специального назначения делятся на группы:
- высоковольтные;
- высокочастотные;
- высокомегаомные;
- прецизионные.
Все эти компоненты имеют высокую стабильность, этим объясняется их задействование в приборах измерительного характера.
Переменные резисторы относятся к подстроечным или регулировочным образцам.
По числу контактов
Резисторы характеризуются контактами от одного до нескольких, этим и объясняется их основное назначение. Контакты тоже разнятся: SMD-резисторы оснащены соединительной площадкой, проволочные — спиралью из особого материала, металлопленочные — специальной пленкой, квантовые — контактами точечного воздействия, переменные — мобильными.
Устройство и принцип работы
Конструкция постоянных резисторов довольно простая. Они состоят из керамической трубки, поверх которой намотана проволока или нанесена резистивная плёнка с определённым сопротивлением. На концы трубки вставлены металлические колпачки с припаянными выводами для поверхностного монтажа. Для защиты слоя используется лакокрасочное покрытие.
Устройство таких элементов можно понять из рисунка 2 ниже.
В большинстве моделей такая конструкция традиционно сохраняется, но сегодня существуют различные виды сопротивлений с использованием резистивного материала, устройство которых немного отличается от конструкции описанной выше.
Современную электронную аппаратуру наполняют платы, начинённые миниатюрными деталями. Поскольку тенденция к уменьшению размеров электронных приборов сохраняется, то требования к уменьшению габаритов коснулись и резисторов. Для этих целей идеально подходят непроволочные сопротивления. Они просты в изготовлении, а их номинальные мощности хорошо согласуются с параметрами маломощных цепей.
Казалось бы, что эра проволочных резисторов постепенно уходит в прошлое. Однако это не так. Спрос на проволочные сопротивления остаётся в тех сферах, где транзисторы с металлоплёночным или с композитным резистивным слоем не справляются с мощностями электрических цепей.
Для непроволочных резисторов используются следующие резистивные материалы:
- нихром;
- манганин;
- константан;
- никелин;
- оксиды металлов;
- металлодиэлектрики;
- углерод и другие материалы.
Перечисленные вещества обладают высокими показателями удельного сопротивления. Это позволяет изготавливать электронные компоненты с очень маленькими корпусами, сохраняя при этом значения номинальных величин.
Размеры и формы корпусов, проволочных выводов современных резисторов соответствуют стандартам, разработанным для автоматической сборки печатных плат. С целью надёжного соединения выводов способом пайки, выводы деталей проходят процесс лужения.
Конструкция регулировочных (рис. 3) и подстроечных резисторов (рис.4) немного сложнее. Эти переменные транзисторы состоят из кольцевой резистивной пластины, по которой скользит бегунок. Перемещаясь по кругу, подвижный контакт изменяет расстояние между точками на резистивном слое, что приводит к изменению сопротивления.
Принцип действия.
Работа резистора основана на действии закона Ома: I = U/R , где I – сила тока, U – напряжение, R – сопротивление на участке цепи. Из формулы видно как зависят от величины сопротивления параметры тока и напряжения.
Подбирая резисторы соответствующего номинала, можно изменять на участках цепей величины тока и напряжения. Например, увеличивая сопротивление последовательно включённого резистора на участке цепи, можно пропорционально уменьшить силу тока.
Условно резистор можно представить себе в виде узкого горлышка на участке трубки, по которой течёт некая жидкость (см. рис. 5). На выходе из горлышка давление будет ниже, чем на его входе. Примерно, то же самое происходит и с потоком заряженных частиц – чем больше сопротивление, тем слабее ток на выходе резистора.
Виды
Мы уже упомянули два типа резисторов, отличающиеся по конструкции: постоянные, у которых сопротивление статичное (допускается мизерное отклонение параметров при нагреве элемента) и переменные. К последним можно добавить подвид переменных сопротивлений (полупроводниковых резисторов) – нелинейные.
Сопротивление нелинейных компонентов изменяется в широких пределах под воздействием различных факторов:
- изменения температуры (терморезисторы);
- яркости света (фоторезисторы);
- изменений напряжения (варисторы);
- деформации (тензорезисторы);
- напряжённости электрического поля (магниторезисторы);
- от протекающего заряда (мемристоры).
За видом резистивного материала классификация может быть следующей:
- проволочные резисторы (рис. 6);
- композиционные;
- металлоплёночные (рис. 7);
- металлооксидные (характеризуются стабильностью параметров);
- углеродные (угольный резистор);
- полупроводниковые, с применением резистивных полупроводниковых материалов (могут быть как линейными, так и переменными).
Отличие плёночных smd компонентов от композиционных деталей состоит в способах их изготовления. Композиционные детали производятся путём прессования композитных смесей, а плёночные – путём напыления на изоляционную подложку.
В интегральных монокристаллических микросхемах методом трафаретной печати или способом напыления в вакууме создают встроенные интегральные резисторы.
По назначению сопротивления подразделяются на детали общего назначения и на компоненты специального назначения:
- прецизионные и сверхпрецизионные (высокоточные детали с допуском отклонений параметров от 0,001% до 1%);
- высокоомные (от десятков МОм до нескольких Том);
- высокочастотные, способные работать с частотами до сотен МГц;
- высоковольтные, с рабочим напряжением, достигающим десятков кВ.
Можно классифицировать детали и по другим признакам, например по типу защиты от влаги или по способу монтажа: печатный либо навесной.
Способ монтажа
По технологии монтажа резисторы разделяют на выводные и SMD.
Выводные резисторы
Предназначены для монтажа сквозь печатную плату. Выводы могут располагаться аксиально и радиально. Такие детали использовались в старой аудио- и видеоаппаратуре. Сейчас они применяются в простых аппаратах и в тех случаях, когда использование SMD-резисторов по каким-либо причинам невозможно.
Выводные резисторы по конструкции бывают проволочными, металлопленочными и композитными.
Из чего состоит резистор проволочного типа
В проволочных резисторах резистивным компонентом является проволока, намотанная на сердечник. Бифилярная намотка (двумя параллельными проводами, изолированными друг от друга, или обычным двужильным проводом) снижает паразитную индуктивность. К концам обмотки присоединяют выводы из многожильной меди или латунных пластин. Для защиты от влаги, механических повреждений и загрязнений, проволочные резюки покрывают неорганической эмалью, устойчивой к повышенным температурам.
Чем отличается металлопленочный резистор от проволочного
У металлопленочного резистора резистивным элементом является не проволока, а пленка из металлосплава. Резистивные компоненты (проволока или пленка) в резисторе изготавливаются из сплавов с высоким удельным сопротивлением: манганина, константана, нихрома, никелина.
SMD-резисторы
SMD-резисторы (или чип-резисторы) рассчитаны на поверхностный монтаж и выводов не имеют. Эти миниатюрные детали малой толщины изготавливаются прямоугольной или овальной формы. Имеют небольшие контакты, впаянные в поверхность. Их преимущества – экономия места на плате, упрощение и ускорение процесса сборки платы, возможность использования для автоматизированного монтажа.
SMD-резисторы изготавливают по пленочной технологии. Они могут быть тонко- и толстопленочными. Резистивную толстую или тонкую пленку наносят на изоляционную подложку. Подложка выполняет две функции: основания и теплоотводящего компонента.
Из чего делают чип-резисторы
Тонкопленочные элементы, к которым предъявляются особые требования по влагостойкости, изготавливаются из нихрома. При производстве толстопленочных моделей используются диоксид рутения, рутениты свинца и висмута.
Виды резисторов по характеру изменения сопротивления
Резисторы бывают постоянными и переменными. Постоянные имеют два вывода и стабильное сопротивление, отображенное в маркировке. В переменных (регулировочных и подстроечных) резисторах этот параметр меняется в допустимых пределах, в зависимости от рабочего режима.
В переменных резюках три вывода. На схеме указывается номинал между крайними выводами. Значение сопротивления между средним выводом и крайними регулируется путем перемещения скользящего контакта (бегунка) по резистивному слою. При этом сопротивление между средним и одним из крайних выводов возрастает, а между средним и другим крайним выводами – падает. При движении «бегунка» в другую сторону эффект обратный.
Что делают подстроечные резисторы
Они созданы для периодической подстройки, поэтому подвижная система рассчитана на небольшое количество циклов перемещения – до 1000.
Регулировочные резисторы рассчитаны на многократное использование – более 5 тысяч циклов.
Обозначения на схемах
На схемах в Европе и СНГ обознается прямоугольником и латинской букой R. Согласно ГОСТу, на отечественных схемах не указывается номинал сопротивления, а только номер детали (R). Однако, если под изображением детали указано число, например 120, оно по умолчанию читается как 120 Ом.
В таблице примеры обозначений детали.
Основное обозначение | ![]() |
0,125 Вт | ![]() |
0,25 Вт | ![]() |
0,5 Вт | ![]() |
1 Вт | ![]() |
2 Вт | ![]() |
5 Вт | ![]() |
Переменный | ![]() |
Подстроечный | ![]() |
Типы включения и примеры использования
Основные типы включения это последовательные и параллельные соединения.
Последовательно сопротивление рассчитывается просто. Достаточно все сложить.
При последовательном соединении напряжение распределяется по резисторам согласно их сопротивлениям.
Это второе правило Кирхгофа. Например, напряжение 12 В, а пара резисторов по 1 кОм.
Соответственно, на каждом из них по 6 В. Это простой пример делителя напряжения. Здесь пара деталей делит напряжение, и благодаря этому можно получить необходимое напряжение.
Однако, если вы хотите использовать делитель напряжения для питания цепи, то должны помнить, что нужно согласовать сопротивления. В этой схеме сопротивление 1 кОм. Если вы подключите к ней нагрузку меньше этого сопротивления, то она не получит напряжения на свои выводы в полном объеме. Поэтому, все схемы с делителями напряжения должны быть рассчитаны и согласованы друг с другом.
Здесь R1 и R2 образуют делитель напряжения, они выполняют роль делителя напряжения. Между этими двумя резисторами и базой транзистором протекает ток, который открывает транзистор.
Это необходимо для того, чтобы он работал без искажений.
Параллельное включение
При параллельном соединении радиодеталей, общее сопротивление цепи снижается. Если два резистора по 1 кОм соединены параллельно, то общее будет равно меньше 0,5 кОм, т.е. сопротивление цепи (эквивалентное) равно половине самого наименьшего.
В таком соединении наблюдается первое правило Кирхгофа. В точку соединения направляется ток в 1 А, а в узле он расходится на два направления по 0,5 А.
Формулы расчета
Для двух резисторов:
Для более:
Для тока параллельное соединение — это как вторая дорога или обходной путь. Еще такой тип соединения называют шунтированием. В качестве примера можно привести амперметр. Чтобы увеличить его шкалу показаний, достаточно подключить параллельно резистору еще один шунтирующий.
Его сопротивление рассчитывается по формуле:
Эквивалентное соединение
В схеме усилителя к эмиттеру транзистора VT1 подключена пара из резистора R3 и конденсатора C2.
В этом случае VT1 и R3 подключены последовательно друг к другу. Зачем это надо? Когда усилитель работает, транзистор начинает нагреваться и его сопротивление снижается. R3, как и в случае со светодиодом, не позволяет транзистору перегреваться. Он балансирует общее сопротивление, чтобы транзистор не вносил искажения в сигнал. Это называется режим термостабилизации.
А конденсатор C2 подключен к R3 параллельно. И это нужно для того, чтобы при нормальном режиме работы усилителя, переменный сигнал прошел без потерь. Так работает параллельный фильтр.
Если бы был только один R3, то мощность усилителя была намного меньше из-за того, что он забирает переменное напряжение на себя. А конденсатор пропускает без потерь, но не пропускает постоянное напряжение.
Применение резисторов в схемах
Итак, как же с помощью резисторов управляют напряжениями и токами? Допустим, стоит задача ограничить напряжение на нагрузке. Под «нагрузкой» здесь может пониматься любой элемент или узел схемы, на котором мы хотим получить заданное напряжение или заданный ток. Это могут быть и лампочка, и светодиод, и следующий каскад усилителя и т. д.
Самое простое — поставить последовательно с нагрузкой гасящий резистор. Как мы обсуждали выше, в этом случае напряжение распределится между элементами в соответствии с сопротивлением каждого. То есть, получается делитель напряжения.
Схема делителя напряжения, когда нагрузка является элементом делителя.
А что делать, если сопротивление нагрузки очень велико или не постоянно? В этом случае ставят два последовательных резистора, образующих плечи делителя. А нагрузка снимает напряжение с одного из них. Подчеркну, что всегда нужно помнить про сопротивление нагрузки. Оно должно быть достаточно большим, чтобы им можно было пренебречь при расчёте делителя.
Схема делителя напряжения, когда нагрузка подключена параллельно нижнему плечу делителя
Если последовательное соединение резисторов является делителем напряжения, нетрудно догадаться, что паралелльное соединение — делитель тока. На рисунке приведён способ ограничить ток через нагрузку — поставить параллельно ей резистор, так называемый шунт. Который будет отвевлять на себя часть тока, обратно пропорциональную его сопротивлению.
Схема делителя тока
Мощность резистора
Резистор сопротивляется проходящему току. Значит, он отбирает у тока часть энергии. И куда она девается? Переходит в тепло. Мощность, рассеиваемая на резисторе, считается по формуле P = U*I. Поскольку U, I и R связаны законом Ома, можно записать несколько вариантов этой формулы, выражая мощность через U и R, или через R и I. Кстати, на сайте есть онлайн-калькулятор мощности и закона Ома.
Так вот, если ток через резистор слишком велик, из-за большой рассеиваемой мощности резистор перегреется и выйдет из строя, в буквальном смысле, сгорит. В этом случае нужно взять резистор такого же номинала, но рассчитанный на бОльшую мощность рассеивания. Более мощные резисторы и физически большего размера, чтобы увеличить площадь рассеивания тепловой энергии.
Там, где это важно (где ожидаются сравнительно большие токи), на схемах указывают, на какую мощность должен быть рассчитан резистор, с помощью следующих обозначений:
Допустимая мощность рассеивания резистора
Фольговые резисторы
Используют фольгу толщиной в несколько микрон, обычно из никель хрома с добавлениями, расположенную на керамической подложке. Они наиболее стабильные и точные из всех, даром что существуют с 1960-х. Необходимое сопротивление достигается фототравлением фольги. Не имеют индуктивности, обладают низкой ёмкостью, хорошей стабильностью и быстрой тепловой стабилизацией. Допуск может быть в пределах 0,001%.
ТКС составляет 1 ppm/C. При изменении температуры на 80 С мегаомный резистор поменяет сопротивление всего на 0.008% или 80 Ом. Интересен способ, которым достигается подобная точность. При увеличении температуры увеличивается и сопротивление. Но резистор делается так, что увеличение температуры приводит к сжатию фольги, из-за чего сопротивление падает. Суммарный эффект приводит к тому, что сопротивление почти не меняется.
Хорошо подходят для аудиопроектов с токами высоких частот. Также подходят для проектов, требующих высокую точность, например, электронных весов. Естественно, используются в областях, где ожидаются большие колебания температуры.
Толстоплёночные и тонкоплёночные резисторы
В основном применяются для поверхностного монтажа. Плёнка в толстоплёночных резисторах в 1000 раз толще, чем в тонкоплёночных. Это самые дешёвые резисторы, так как толстая плёнка дешевле.
Тонкооплёночные резисторы изготавливаются ионным напылением никель хрома на изолирующую подложку. Затем применяется фототравление, абразивная или лазерная чистка. Толстоплёночные изготавливаются печатью по трафарету. Плёнка представляет собой смесь связующего вещества, носителя и оксида металла. В конце процесса применяется абразивная или лазерная чистка.
Допуск тонкоплёночных резисторов находится на уровне 0,1%, а ТКС – от 5 до 50 ppm/C. У толстоплёночных допуск бывает 1%, а ТКС — 50 до 200 ppm/C. Тонкоплёночные резисторы меньше шумят.
Тонкоплёночные резисторы применяются там, где требуется высокая точность. Толстоплёночные можно использовать практически везде – в некоторых ПК можно насчитать до 1000 толстоплёночных резисторов поверхностного монтажа.
Существуют и другие виды резисторов постоянного номинала, но в ящичках для резисторов вы, скорее всего, встретите один перечисленных.
- резистор
- сопротивление
- сопротивление бесполезно
- электронные компоненты
- индуктивность
- ёмкость