Диод в физике это

Диод в физике это

Диод — вакуумный или полупроводниковый прибор, пропускающий электрический ток только одного направления и имеющий два вывода для включения в электрическую цепь.

Вакуумный диод (двух электродная электронная лампа) представляет собой стеклянный или металлический баллон, из которого выкачан воздух, и двух металлических электродов: накаливаемого катода и холодного анода. Катод бывает двух типов: прямого накала и косвенного накала. В первом случае катод представляет собой нить, по которой проходит накаливающий её ток, а во втором — покрытый слоем металла с малой работой выхода цилиндр, внутри которого находится нить накала, электрически изолированная от катода. Действие катода как источника электронов основано на явлении термоэлектронной миссии. На рисунке 1 показано устройство вакуумного диода с катодом косвенного накала.

Недостатком катодов прямого накала является то, что они не пригодны для питания их переменным током, так как при изменениях тока температура нити успевает измениться, и поток излучаемых электронов пульсирует с частотой питающего тока.

Двух электродная электронная лампа была изобретена в 1904 физиком Дж. Флемингом

Полупроводниковый диод — полупроводниковый прибор р — н- переходом. Рабочий элемент- кристалл германия, обладающий проводимостью н –типа за счёт небольшой добавки донорной примеси Для создания в нём р–н-переходов в одну из его поверхностей вплавляют индий. Вследствие диффузии атомов индия вглубь монокристалла германия у поверхности германия образуется область р- типа. Остальная часть германия по-прежнему остаётся н- типа. Между этими двумя областями возникает р-н-переход. Для предотвращения вредных воздействий воздуха и света кристалл германия помещают в герметический корпус. устройство и схематическое изображение полупроводникового диода :

Достоинствами полупроводниковых диодов являются малые размеры и масса, длительный срок службы, высокая механическая прочность; недостатком — зависимость их параметров от температуры.

Вольт — амперная характеристика диода (при большом напряжении сила тока достигает наибольшей величины- ток насыщения ) имеет нелинейный характер, поэтому свойства диода оцениваются крутизной характеристики:

и внутренним сопротивлением:

ТРИОД- электронная лампа, имеющая три электрода: катод, анод, управляющую сетку. Изобретён в 1906 Ли Де Форестом. Подавая на сетку напряжение и меняя его величину и полярность, можно управлять электронным потоком внутри лампы, т. е. изменять величину анодного тока. Поэтому сетку называют управляющей. Она расположена ближе к катоду, чем к аноду. Поэтому изменение напряжения на сетке сильнее влияет на величину анодного тока, чем такое же изменение анодного напряжения. В основном триод используют в качестве усилителя.

Крутизна характеристики триода определяется:

Внутреннее сопротивление определяется по семейству сеточных характеристик:

Коэффициент усиления (показывает, во сколько раз приращение анодного напряжения должно быть больше приращения сеточного напряжения для изменения силы тока на одинаковую величину) :

ПЛАЗМА — частично или полностью ионизированный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы. В лабораторных условиях плазма образуется в электрическом разряде в газе, в процессах горения и взрыва. Когда луч лазера сфокусировали линзой, в воздухе в области фокуса вспыхнула искра, и там образовалась плазма. Это вызвало огромный интерес у физиков. Первые затравочные электроны появляются в результате вырывания их из атомов среды после одновременного поглощения нескольких фотонов световой волны. Энергия каждого фотона рубинового лазера равна 1, 78 эВ. Далее свободный электрон, поглощая фотоны, достигает энергии 10 эВ, достаточной для ионизации и рождения нового электрона в процессе столкновения с атомами среды. Разряд может гореть в течение длительного времени и светится ослепительно белым светом, на него невозможно смотреть без тёмных очков. Необычайно высокая температура- уникальное свойство оптического заряда- представляет большие возможности для использования его в качестве источника света. Возможность создания плазменного шнура световым излучением лазера открывает возможности для передачи энергии на расстояние.

Термин “плазма” в физике был введен в 1929 американскими учеными И. Ленгмюром и Л. Тонксом.

Носителями заряда в плазме являются электроны и ионы, образовавшиеся в результате ионизации газа. Отношение числа ионизованных атомов к полному их числу в единице объема плазмы называют степенью ионизации плазмы (а). В зависимости от величины а говорят о слабо ионизованной (а – доли процента), частично ионизованной (а – несколько процентов) к полностью ионизованной (а близка к 100%) плазме.

Средние кинетические энергии различных типов частиц, составляющих плазму, могут быть разными. Поэтому в общем случае плазму характеризуют не одним значением температуры, а несколькими – различают электронную температуру Те, ионную температуру Тi и температуру нейтральных атомов Та. Плазму с ионной температурой Тi < 10 5 К называют низкотемпературной, а с Тi > 10 6 К – высокотемпературной.

Высокотемпературная плазма является основным объектом исследования по УТС (управляемому термоядерному синтезу).

Низкотемпературная плазма находит применение в газоразрядных источниках света, газовых лазерах, МГД – генераторах и др.

Конструкция диодов.

Конструктивно, полупроводниковый диод состоит из небольшой пластинки полупроводниковых материалов (кремния или германия), одна сторона (часть пластинки) которой обладает электропроводимостью p-типа, то есть принимающей электроны (содержащей искусственно созданный недостаток электронов («дырочная»)), другая обладает электропроводимостью n-типа, то есть отдающей электроны (содержащей избыток электронов («электронной»)).

Диод в физике это

Слой между ними называется p-n переходом. Здесь буквы p и n — первые в латинских словах negativ e — «отрицательный», и positiv e — «положительный». Сторона p-типа, у полупроводникового прибора является анодом (положительным электродом), а область n-типа — катодом (отрицательным электродом) диода.

Электровакуумные (ламповые) диоды, представляют собой лампу с двумя электродами внутри, один из которых имеет нить накаливания, таким образом подогревая себя и создавая вокруг себя магнитное поле.

При разогреве, электроны отделяются от одного электрода (катода) и начинают движение к другому электроду (аноду), благодаря электрическому магнитному полю. Если направить ток в обратную сторону (изменить полярность), то электроны практически не будут двигаться к катоду из-за отсутствия нити накаливания в аноде. Такие диоды, чаще всего применяются в выпрямителях и стабилизаторах, где присутствует высоковольтная составляющая.

Диоды на основе германия, более чувствительны на открытие при малых токах, поэтому их чаще используют в высокоточной низковольтной технике, чем кремниевые.

Типы диодов:

  • · Смесительный диод — создан для приумножения двух высокочастотных сигналов.
  • · pin диод — содержит область проводимости между легированными областями. Используется в силовой электронике или как фотодетектор .
  • · Лавинный диод — применяется для защиты цепей от перенапряжения . Основан на лавинном пробое обратного участка вольт-амперной характеристики.
  • · Лавинно-пролётный диод — применяется для генерации колебаний в СВЧ -технике. Основан на лавинном умножении носителей заряда.
  • · Магнитодиод . Диод, характеристики сопротивления которого зависят от значения индукции магнитного поля и расположения его вектора относительно плоскости p-n-перехода .
  • · Диоды Ганна . Используются для преобразования и генерации частоты в СВЧ диапазоне.
  • · Диод Шоттки . Имеет малое падение напряжения при прямом включении.
  • · Полупроводниковые лазеры .

Применяются в лазеростроении, по принципу работы схожи с диодами, но излучают в когерентном диапазоне.

  • · Фотодиоды . Запертый фотодиод открывается под действием светового излучения . Применяются в датчиках света , движения и т.д.
  • · Солнечный элемент (вариация солнечных батарей ). При попадании света, происходит движение электронов от катода к аноду, что генерирует электрический ток .
  • · Стабилитроны — используют обратную ветвь характеристики диода с обратимым пробоем для стабилизации напряжения .
  • · Туннельные диоды , использующие квантовомеханические эффекты . Применяются как усилители , преобразователи , генераторы и пр.
  • · Светодиоды (диоды Генри Раунда, LED). При переходе электронов, у таких диодов происходит излучение в видимом диапазоне света .

Для данных диодов используют прозрачные корпуса для возможности рассеивания света. Также производят диоды, которые могут давать излучение в ультрафиолетовом, инфракрасном и других требуемых диапазонах (в основном, литографической и космической сфере).

  • · Варикапы(диод Джона Джеумма) Благодаря тому, что закрытый p—n-переход обладает немалой ёмкостью, ёмкость зависит от приложенного обратного напряжения . Применяются в качестве конденсаторов с переменной ёмкостью .

Что такое диод, устройство и принцип работы диодов, типы диодов, для чего они применяются

Диод — простейший полупроводниковый прибор, который можно встретить сегодня на печатной плате любого электронного устройства. В зависимости от внутренней структуры и технических характеристик, диоды классифицируются на нескольких видов: универсальные, выпрямительные, импульсные, стабилитроны, туннельные диоды и варикапы.

Диоды применяются для выпрямления, ограничения напряжения, детектирования, модуляции, в качестве защитных элементов и т. д. — в зависимости от назначения устройства, в котором применяются.

Выпрямительные диоды предназначены для выпрямления переменного тока низкой частоты в пульсирующий ток одного направления.

Выпрямительные диоды

Основа диода — p-n-переход, сформированный полупроводниковыми материалами с двумя разными типами проводимости. К кристаллу диода присоединены два вывода, называемые катод (минусовой электрод) и анод (плюсовой электрод). На стороне анода находится область полупроводника p-типа, а на стороне катода — область n-типа.

Данное устройство диода обеспечивает ему уникальное свойство — он проводит ток лишь в одном (прямом) направлении, от анода — к катоду. В обратном направлении обычный исправный диод ток не проводит.

В области анода (p-типа), основными носителями заряда являются положительно заряженные дырки, а в области катода (n-типа) — отрицательно заряженные электроны. Выводы диода представляют собой контактные металлические поверхности к которым и припаяны выводы.

Когда диод проводит ток в прямом направлении, это значит что он находится в открытом состоянии. Если ток через p-n-переход не идет, значит диод закрыт. Таким образом, диод может находиться в одном из двух устойчивых состояний: или открыт или закрыт.

Включив диод в цепь источника постоянного напряжения, анодом к плюсовой клемме, а катодом — к минусовой, получим смещение p-n-перехода в прямом направлении. И если напряжение источника окажется достаточным (для кремниевого диода хватит 0,7 вольт), то диод откроется и начнет проводить ток. Величина этого тока будет зависеть от величины приложенного напряжения и от внутреннего сопротивления диода.

Почему диод перешел в проводящее состояние? Потому что при правильном включении диода, электроны из n-области, под действием ЭДС источника, устремились к его положительному электроду, навстречу дыркам из p-области, которые теперь движутся в сторону отрицательного электрода источника, навстречу электронам.

На границе областей (на самом p-n-переходе) в это время происходит рекомбинация электронов и дырок, их взаимное поглощение. А источник вынужден непрерывно поставлять новые электроны и дырки в область p-n-перехода, увеличивая их концентрацию.

А что случится если диод включить наоборот, катодом к плюсовой клемме источника, а анодом — к минусовой? Дырки и электроны разбегутся в разные стороны — к выводам — от перехода, и в окрестности перехода возникнет зона обедненная носителями заряда — потенциальный барьер. Ток обусловленный основными носителями заряда (электронами и дырками) попросту не возникнет.

Но кристалл диода не идеален, в нем кроме основных носителей заряда присутствуют еще и неосновные носители заряда, которые и создадут очень незначительный обратный ток диода, измеряемый микроамперами. Но диод в данном состоянии закрыт, так как p-n-переход его смещен в обратном направлении.

К основным параметрам выпрямительного диода относятся прямой и обратный токи, выпрямленный ток, прямое и обратное напряжение, дифференциальное сопротивление, максимальная рабочая частота.

Напряжение, при котором диод переходит из закрытого состояния в открытое, называется прямым напряжением диода (смотрите — Основные параметры диодов), которое по сути является падением напряжения на p-n-переходе.

Сопротивление диода току в прямом направлении не постоянно, оно зависит от величины тока через диод и имеет размер порядка единиц Ом. Напряжение обратной полярности, при котором диод закрывается, называется обратным напряжением диода. Обратное сопротивление диода в этом состоянии измеряется тысячами Ом.

Принцип действия выпрямительного диода

Очевидно, диод может переходить из открытого состояния в закрытое и обратно при смене полярности приложенного к нему напряжения. На данном свойстве диода основана работа выпрямителя.

Так, в цепи синусоидального переменного тока диод будет проводить ток лишь во время положительной полуволны, а во время отрицательной — будет заперт.

Выпрямитель — это устройство, которое преобразует переменный ток в постоянный. Основными функциональными элементами являются диоды, которые пропускают ток только в одном направлении. Подходящим расположением диодов переменный ток в однофазной или трехфазной цепи преобразуется в пульсирующий, но однонаправленный ток. Для сглаживания результирующего тока можно использовать конденсаторы.

Нормальная работа диода в режиме выпрямления возможна в том случае, когда обратное напряжение не превышает пробивного значения, а выпрямленный ток не больше номинально допустимого при нормальной температуре диода. С повышением температуры диода прямой и обратный ток увеличиваются, а с понижением — уменьшаются. Пробивное напряжение с повышением температуры снижается.

Границы режимов, при которых диод работает с заданной надежностью, определяются предельными параметрами. К предельным параметрам относятся максимальные значения выпрямленного тока, допустимой мощности рассеяния на диоде, его рабочей температуры, пикового обратного напряжения.

Самые распространенные типы диодов:

  • Выпрямительные диоды: эти диоды используются в схемах выпрямления переменного тока в постоянный. Они медленные, предназначены для работы с низкочастотными цепями, оптимизированы для низких потерь проводимости и могут выдерживать только умеренные динамические нагрузки. Типичное значение ton для силового диода составляет 5–20 мкс, а toff 20–100 мкс (соотношение Ton/Tof определяем быстродействие диода) . Номинальное напряжение варьируется от нескольких сотен вольт до 10 кВ, а номинальный ток варьируется в диапазоне от 1 А до 10 кА.
  • Диоды с быстрым восстановлением: обычно это диоды-компаньоны для быстрых переключателей, таких как IGBT. Эти диоды оптимизированы для высоких динамических нагрузок, а также для применения в электронных переключателях. Типичное время ton находится в диапазоне несколько наносекунд, а типичное время toff находится в диапазоне от нескольких десятков наносекунд до нескольких микросекунд, в зависимости от номинала диода. Доступны номинальные значения напряжения и тока до 6 кВ и 3 кА соответственно.
  • Быстродействующие диоды: они оптимизированы для высокочастотных приложений, таких как высокочастотные выпрямители в импульсных источниках питания. У них очень малое время восстановления (от 1 нс до 5 мкс). Номинальная мощность варьируется от нескольких сотен милливатт до нескольких киловатт.
  • Диоды Шоттки: эти диоды имеют очень низкое падение напряжения в открытом состоянии и очень быстрое переключение. Падение напряжения в открытом состоянии может составлять всего 0,1–0,7 В. Для многих приложений, таких как высокочастотные выпрямители в источниках питания низкого напряжения, требуются быстродействующие диоды с низким падением напряжения в открытом состоянии. Диод Шоттки формируется путем нелинейного контакта между полупроводником N-типа (катод) и металлом (анод), создавая барьер Шоттки. Ток возникает из-за основных носителей, в результате чего незначительные неосновные носители сохраняются в дрейфовой области. Это значительно сокращает время выключения устройства. Диоды Шоттки на основе кремния имеют очень низкую (
  • Стабилитроны: это диоды специального назначения, которые позволяют току течь в прямом, а также в обратном направлении. В обратном направлении они предназначены для работы в области пробоя. Стабилитроны рассчитаны на низкое напряжение пробоя, обычно от нескольких вольт до максимума 1 кВ. Прямой ток будет находиться в диапазоне от нескольких микроампер до 200 А.
  • Светоизлучающие диоды: светоизлучающие диоды (СИД) излучают свет при активации. Они используются в основном в качестве индикаторов и элементов отображения информации. В последнее время их стали использовать для освещения.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Не пропустите обновления, подпишитесь на наши соцсети:

Диод

Диоды

Дио́д [от ди… и ( электр )од], двухэлектродный прибор, обладающий различной проводимостью в зависимости от направления электрического тока : высокой – для токов прямого направления и низкой – для токов обратного направления. Основные разновидности диодов: электровакуумный диод, в том числе кенотрон , газотрон (газоразрядный диод) и полупроводниковый диод . Применяется в электро- и радиоаппаратуре для выпрямления переменного тока , детектирования , преобразования частоты электрических колебаний , переключения электрических цепей (pin-диод), реализации простых логических схем.

Редакция технологий и техники. Первая публикация: Большая российская энциклопедия, 2007.

Опубликовано 5 июня 2023 г. в 09:36 (GMT+3). Последнее обновление 5 июня 2023 г. в 09:36 (GMT+3). Связаться с редакцией

Информация

Диоды

Области знаний: Электрические цепи и сигналы

Типы диодов:

  • · Смесительный диод — создан для приумножения двух высокочастотных сигналов.
  • · pin диод — содержит область проводимости между легированными областями. Используется в силовой электронике или как фотодетектор .
  • · Лавинный диод — применяется для защиты цепей от перенапряжения . Основан на лавинном пробое обратного участка вольт-амперной характеристики.
  • · Лавинно-пролётный диод — применяется для генерации колебаний в СВЧ -технике. Основан на лавинном умножении носителей заряда.
  • · Магнитодиод . Диод, характеристики сопротивления которого зависят от значения индукции магнитного поля и расположения его вектора относительно плоскости p-n-перехода .
  • · Диоды Ганна . Используются для преобразования и генерации частоты в СВЧ диапазоне.
  • · Диод Шоттки . Имеет малое падение напряжения при прямом включении.
  • · Полупроводниковые лазеры .

Применяются в лазеростроении, по принципу работы схожи с диодами, но излучают в когерентном диапазоне.

  • · Фотодиоды . Запертый фотодиод открывается под действием светового излучения . Применяются в датчиках света , движения и т.д.
  • · Солнечный элемент (вариация солнечных батарей ). При попадании света, происходит движение электронов от катода к аноду, что генерирует электрический ток .
  • · Стабилитроны — используют обратную ветвь характеристики диода с обратимым пробоем для стабилизации напряжения .
  • · Туннельные диоды , использующие квантовомеханические эффекты . Применяются как усилители , преобразователи , генераторы и пр.
  • · Светодиоды (диоды Генри Раунда, LED). При переходе электронов, у таких диодов происходит излучение в видимом диапазоне света .

Для данных диодов используют прозрачные корпуса для возможности рассеивания света. Также производят диоды, которые могут давать излучение в ультрафиолетовом, инфракрасном и других требуемых диапазонах (в основном, литографической и космической сфере).

  • · Варикапы(диод Джона Джеумма) Благодаря тому, что закрытый p—n-переход обладает немалой ёмкостью, ёмкость зависит от приложенного обратного напряжения . Применяются в качестве конденсаторов с переменной ёмкостью .

Диод

DOC001208229

него есть 2 полюса: анод и катод. Ток пропускается только от анода к катоду.

Технические характеристики [ ]

Падение прямого напряженияVFВольт
Максимальное сдерживаемое обратное напряжениеVDCВольт
Максимальный прямой токIFАмпер

Выпрямительный диод [ ]

Также известен как защитный или кремниевый.

  • VF = 0,7 В
  • VDC — сотни или тысячи вольт.
  • Открывается медленно.
  • Восстанавливается после пробоя обратным током.

Диод Шоттки [ ]

Шоттки — фамилия его изобретателя. Также известен как сигнальный или германиевый.

  • VF = 0,3 В
  • VDC — десятки вольт
  • Открывается быстро
  • Сгорает после пробоя обратным током

Диод Зеннера [ ]

Зеннер — фамилия его изобретателя. Также известен как стабилитрон

  • VF = 1 В
  • VDC — фиксированное значение на выбор
  • Умышленно используется в обратном направлении как источник фиксированного напряжения

Как работает полупроводниковый диод.

В полупроводнике “n” типа имеются свободные электроны, частицы со знаком минус, а в полупроводнике типа “p” наличествуют ионы с положительным зарядом, их принято называть «дырки». Подключим диод к источнику питания в обратном включении, то есть на анод подадим минус, а на катод плюс. Между зарядами разной полярности возникает притяжение и положительно заряженные ионы тянутся к минусу, а отрицательные электроны дрейфуют к плюсу источника питания. В “p-n” переходе нет носителей зарядов, и отсутствует движение электронов. Нет движения электронов – нет электрического тока. Диод закрыт.

Диод закрыт

При прямом включении диода происходит обратный процесс. В результате отталкивания однополярных зарядов все носители группируются в зоне перехода между двумя полупроводниковыми структурами. Между частицами возникает электрическое поле перехода и рекомбинация электронов и дырок. Через “p-n” переход начинает протекать электрический ток. Сам процесс носит название «электронно-дырочная проводимость». При этом диод открыт.

Диод открыт

Возникает вполне естественный вопрос, как из одного полупроводникового материала удаётся получить структуры, обладающие различными свойствами, то есть полупроводник «n» типа и полупроводник «p» типа.

Этого удаётся добиться с помощью электрохимического процесса называемого легированием, то есть внесением в полупроводник примесей других металлов, которые и обеспечивают нужный тип проводимости. В электронике используются в основном три полупроводника. Это германий (Ge), кремний (Si) и арсенид галлия (GaAs). Наибольшее распространение получил, конечно, кремний, так как запасы его в земной коре поистине огромны, поэтому стоимость полупроводниковых приборов на основе кремния весьма невысока.

При добавлении в расплав кремния ничтожно малого количества мышьяка (As) мы получаем полупроводник «n» типа, а легируя кремний редкоземельным элементом индием (In), мы получаем полупроводник «p» типа. Присадок для легирования полупроводниковых материалов достаточно много. Например, внедрение атомов золота в структуру полупроводника увеличивает быстродействие диодов, транзисторов и интегральных схем, а добавление небольшого числа различных примесей в кристалл арсенида галлия определяет цвет свечения светодиода.

Типы диодов и область их применения.

Семейство полупроводниковых диодов очень большое. Внешне они очень похожи за исключением некоторых групп, которые отличаются конструктивно и по ряду параметров. Наиболее распространены следующие модификации полупроводниковых диодов:

Быстровосстанавливающийся диод RU4Am

  • Выпрямительные диоды. Предназначены для выпрямления переменного тока.
  • Стабилитроны. Обеспечивают стабилизацию выходного напряжения.

Быстрый диод RGP30J

  • Диоды Шоттки. Предназначены для работы в импульсных преобразователях и стабилизаторах напряжения. Например, в блоках питания персональных компьютеров.
  • Импульсные диоды отличаются очень высоким быстродействием и малым временем восстановления. Они применяются в импульсных блоках питания и в другой импульсной технике. К этой группе можно отнести и туннельные диоды.
  • СВЧ диоды имеют определённые конструктивные особенности и работают в устройствах на высоких и сверхвысоких частотах.
  • Диоды Ганна. Они предназначены для генерирования частот до десятков гигагерц.
  • Лавинно-пролётные диоды генерируют частоты до 180 ГГц.
  • Мощный светодиод

  • Фотодиоды имеют миниатюрную линзу и управляются световым излучением. В зависимости от типа могут работать как в инфракрасном, так и в ультрафиолетовом диапазоне спектра.
  • Светодиоды. Излучают видимый свет практически любой длины волны. Спектр применения очень широк. Рассматриваются как альтернатива электрическим лампам накаливания и других осветительных приборов.
  • Твёрдотельный лазер так же представляет собой полупроводниковый диод. Спектр применения очень широк. От приборов военного назначения до обычных лазерных указок, которые легко купить в магазине. Его можно обнаружить в лазерных считывателях CD/DVD-плееров, а также лазерных уровнях (нивелирах), используемых в строительстве. Чтобы не говорили сторонники лазерной техники, как ни крути, лазер опасен для зрения. Так что, будьте внимательны при обращении с ним.
  • Также стоит отметить, что у каждого типа диодов есть и подгруппы. Так, например, среди выпрямительных есть и ультрабыстрые диоды. Могут называться как Ultra-Fast Rectifier, HyperFast Rectifier и т.п. Пример – ультрабыстрый диод с малым падением напряжения STTH6003TV/CW (аналог VS-60CPH03). Это узкоспециализированный диод, который применяется, например, в сварочных аппаратах инверторного типа. Диоды Шоттки являются быстродействующими, но не способны выдерживать больших обратных напряжений, поэтому вместо них применяются ультрабыстрые выпрямительные диоды, которые способны выдерживать большие обратные напряжения и огромные прямые токи. При этом их быстродействие сравнимо с быстродействием диодов Шоттки.

    Мощные выпрямительные ультрабыстрые диоды

    Параметры полупроводниковых диодов.

    Параметров у полупроводниковых диодов достаточно много и они определяются функцией, которую те выполняют в конкретном устройстве. Например, в диодах, генерирующих СВЧ колебания, очень важным параметром является рабочая частота, а также та граничная частота, на которой происходит срыв генерации. А вот для выпрямительных диодов этот параметр совершенно не важен.

    В импульсных и переключающих диодах важна скорость переключения и время восстановления, то есть скорость полного открытия и полного закрытия. В мощных силовых диодах важна рассеиваемая мощность. Для этого их монтируют на специальные радиаторы. А вот диоды, работающие в слаботочных устройствах, ни в каких радиаторах не нуждаются.

    Но есть параметры, которые считаются важными для всех типов диодов, перечислим их:

    • U пр. – допустимое напряжение на диоде при протекании через него тока в прямом направлении. Превышать это напряжение не стоит, так как это приведёт к его порче.
    • U обр. – допустимое напряжение на диоде в закрытом состоянии. Его ещё называют напряжением пробоя. В закрытом состоянии, когда через p-n переход не протекает ток, на выводах образуется обратное напряжение. Если оно превысит допустимое значение, то это приведёт к физическому «пробою» p-n перехода. В результате диод превратиться в обычный проводник (сгорит). Очень чувствительны к превышению обратного напряжения диоды Шоттки, которые очень часто выходят из строя по этой причине. Обычные диоды, например, выпрямительные кремниевые более устойчивы к превышению обратного напряжения. При незначительном его превышении они переходят в режим обратимого пробоя. Если кристалл диода не успевает перегреться из-за чрезмерного выделения тепла, то изделие может работать ещё долгое время.

    Кроме того следует иметь в виду, что все эти параметры в технической литературе печатаются и со значком «max». Здесь указывается предельно допустимое значение данного параметра. Поэтому подбирая тип диода для вашей конструкции необходимо рассчитывать именно на максимально допустимые величины.

    Оцените статью
    TutShema
    Добавить комментарий