Колебательный контур ― это электрическая цепь, содержащая катушку индуктивности и конденсатор. В такой электрической цепи происходят колебания электрического тока и напряжения, и взаимная трансформация энергии электрического поля и энергии магнитного поля.
Процессы в колебательном контуре У заряженного конденсатора на одной пластине находится определенное количество отрицательного заряда, а на другой ― положительного. Поскольку между пластинами конденсатора расположен диэлектрик (или воздух, и пластины не соприкасаются) ― заряд не может прямо перейти из одной пластины на другую. Но как только такой конденсатор оказывается подключенным к проводящей цепи, один конец которой связан с одной пластиной ― а другой с другой, заряды начинают переходить от пластины к пластине по «длинному пути» ― через всю цепь. Постепенно конденсатор разряжается ― теряет заряд, а в цепи наблюдается ток, ведь ток ― это направленные движения зарядов.
Если в цепи, кроме проводов и резисторов, находится катушка индуктивности, в равномерный и быстрый процесс перераспределения заряда вмешивается ЭДС самоиндукции катушки. Согласно правилу Ленца, втекающий в катушку ток вызывает ЭДС самоиндукции ― а ЭДС самоиндукции создает индуцированный ток, направленный так, чтобы препятствовать изменению тока в цепи. Если ток в цепи вдруг резко увеличивается ― индукционный ток стремиться его уменьшить, если ток в сети вдруг уменьшается ― индукционный ток стремиться его увеличивать.
Поэтому из―за катушки индуктивности заряд не переходит сразу через всю цепь, от одной обкладки конденсатора к другой. Сила тока в цепи медленно увеличивается ― потому что ее быстрому росту препятствует ЭДС самоиндукции катушки. Максимальной сила тока становится в тот момент, когда конденсатор разряжен (обе его обкладки обладают нулевым зарядом). В этот момент сила тока максимальна благодаря тому, что как только ее перестает наращивать конденсатор за счет потерянных зарядов ― ЭДС самоиндукции прекращает ей препятствовать.
Но разряженный конденсатор больше не может поддерживать силу току ― ведь заряда на его обкладках нет, и не будь в цепи катушки индукции, ток бы прекратился. Однако здесь вновь срабатывает правило Ленца: после того как сила тока достигла максимума и начала уменьшаться ― в катушке возникает ЭДС и индукционные токи, которые стремятся вернуть силу тока такой, как она была ― максимальной. Поэтому, даже после того, как конденсатор разряжен, в цепи продолжает течь ток. Заряды попадают на обкладку конденсатора и постепенно заряжают ее. На этот раз, та обкладка конденсатора, которая была заряжена положительно и принимала заряд, начинает накапливать отрицательный заряд, а так обкладка, которая была заряжена отрицательно, становится заряженной положительно.
После того как конденсатор зарядиться ― он вновь начинает разряжаться. Таким образом, в контуре происходят колебания заряда, силы тока, напряжения и энергий магнитного и электрического поля в катушке индуктивности и конденсаторе.
Принцип работы колебательного контура
Колебательный контур
Колебательный контур — это устройство, в котором могут происходить свободные электромагнитные колебания.
Колебательный контур состоит из конденсатора и катушки индуктивности. Электроёмкость конденсатора — (C), индуктивность катушки — (L).
Изображение на схемах
Обрати внимание!
В колебательном контуре периодически происходит переход энергии электрического поля в энергию магнитного поля и наоборот.
На некоторое время с помощью переключателя зарядим конденсатор, замкнув его на источник тока ( рис. А ). Затем наш заряженный конденсатор подсоединим к катушке ( рис. Б ).
t 1 = T 4 . Заряженный конденсатор, подключённый к катушке, начнёт через неё разряжаться. Нижняя обкладка заряжена положительно. Разрядный ток, проходящий по катушке, создаст вокруг неё магнитное поле. Явление самоиндукции будет препятствовать резкому возрастанию тока через катушку, поэтому ток растёт постепенно и через некоторое время приобретает максимальное значение. В этот момент конденсатор будет полностью разряжен. Произошло превращение энергии электрического поля в энергию магнитного поля.
2t 1 = T 2 . Так как конденсатор разряжен, то в следующий момент времени ток должен мгновенно исчезнуть, но в результате самоиндукции, которая препятствует убыванию тока, он некоторое время поддерживается в цепи. Индукционный ток сонаправлен с уходящим током цепи и благодаря этому конденсатор заряжается, только заряд на обкладках поменяется на противоположный знак. Энергия магнитного поля перешла в энергию электрического поля.
Если рассматривать идеальную модель колебательного контура, который не имеет сопротивления, то энергия в нём не потратится, и конденсатор вновь зарядится до максимального значения. В реальности такого не бывает, потому что часть энергия уйдёт на преодоление сопротивления проводников и превратится в тепловую энергию. В реальном колебательном контуре в этот момент времени конденсатор зарядится уже не полностью.
За промежуток времени 4t 1 произошло одно полное колебание. Значит, 4t 1 (=T) , где (T) — период колебаний.
Резонанс LC-контура
Электромагнитные колебания в LC-контуре происходят с определенной частотой, которая называется резонансной Подробнее про резонанс – в нашей отдельной статье. Частоту колебаний можно менять, варьируя такие параметры контура, как емкость конденсатора C, индуктивность катушки L, сопротивление резистора R (для LCR-контура).
Как рассчитать резонансную частоту колебательного контура? Очень просто! Приведем окончательную формулу:
Применение колебательного контура
Колебательный контур широко применяется на практике. На его основе строятся частотные фильтры, без него не обходится ни один радиоприемник или генератор сигналов определенной частоты.
Если вы не знаете, как подступиться к расчету LC-контура или на это совершенно нет времени, обратитесь в профессиональный студенческий сервис. Качественная и быстрая помощь в решении любых задач не заставит себя ждать!
Что такое колебательный контур?
Колебательный контур — это устройство, в котором могут происходить свободные электромагнитные колебания.
Также можно сказать, что колебательный контур — это электрическая цепь, работа которой порождает электромагнитное поле.
Но зачем кому-то создавать такие колебания?
Колебательные контуры — неотъемлемая часть многих производственных процессов. С их помощью изготавливают радиоприёмники, генераторы сигналов, блоки измерения частоты, контроллеры частоты напряжения на двигателях.
Возможно, вам может показаться, что это устройство давно устарело и используется в каких-то непонятных вещах, но стоит понимать, что без них не было бы возможно создание домофона, электромагнитов, различных датчиков, с которыми мы встречаемся ежедневно.
Колебательный контур состоит из двух компонентов: катушки и конденсатора, и выглядит вот так:
Катушка индуктивности (или соленоид) — это стержень с несколькими слоями обмотки медной проволокой. Именно он создаёт колебания в колебательном контуре. Стержень, находящийся в середине катушки, называется дроссель, или сердечник.
Катушка способна создавать колебания, только если есть электрический заряд. Она обладает низким сопротивлением.
Конденсатор — это элемент, способный накопить в себе большое количество электрического заряда. Он состоит из двух обкладок, между которыми находится диэлектрик (вещество, не проводящее электрический ток).
В чём его отличие от обычного аккумулятора? В аккумуляторе происходит превращение механической, химической, световой и других энергий в электрическую, в конденсаторе же накапливается заряд, который он может отдать весь сразу.
Часто в электрическую цепь колебательного контура подключают ещё один элемент — резистор, который обладает сопротивлением и контролирует силу тока и напряжение в цепи.
Виды колебательных контуров
По типу соединения колебательные контуры можно разделить на последовательный и параллельный.
Колебательный контур, схема последовательного соединения
Колебательный контур, схема параллельного соединения
Также физики выделяют особый тип контура — идеальный.
Идеальный колебательный контур — контур, сопротивление которого отсутствует, порождая при этом незатухающие свободные электромагнитные колебания.
Как вы думаете, можно ли создать такой контур и работать с ним на практике? К сожалению, такое маловероятно. Идеальный колебательный контур — всего лишь математическая модель, допущение, с помощью которого можно вывести формулы, ускорить расчёты и оценить характеристики контура в производстве.
Научные статьи на тему «Колебательный контур»
Последовательный колебательный контур Определение 1 Последовательный колебательный контур – это.
Пример простейшей схемы последовательного колебательного контура.
: Резонансная частота колебательного контура.
Добротность колебательного контура.
Определить период колебаний контура. Определить добротность колебательного контура.
Автор Демьян Бондарь
Источник Справочник
Категория Электроника, электротехника, радиотехника
Статья от экспертов
Демонстрационный эксперимент с колебательным контуром
Приведена принципиальная схема генератора линейно изменяющегося напряжения, предназначенного для работы с генератором MXG-9802A. Рассмотрено влияние внутреннего сопротивления генератора синусоидальных колебаний и сопротивления нагрузки на резонансные свойства колебательного контура. Исследовано влияние материала и формы сердечника катушки индуктивности на свойства контура. Приведены результаты моделирования колебательного контура в программе Еlectronics Workbench.
Автор(ы) Иноземцев В.А.
Источник Вестник Брянского государственного университета
Научный журнал
Последовательный колебательный контур
В колебательном контуре можно получить незатухающие колебания, если подключить его к источнику переменного тока.
Если источник подключен последовательно с катушкой L и конденсатором С , то такая цепь называется последовательным колебательным контуром ( рис.3 ).
При подключении внешнего источника к контуру в нем возникают не собственные (свободные) колебания контура, которые определяются значениями L и C , а с частотой напряжения источника U=Um∙sinω∙t .
Такие колебания контура называются вынужденными .
При вынужденных колебаниях элементы контура L, C будут иметь, в зависимости от частоты источника, определенные индуктивное XL и емкостное Xc сопротивления и соответствующие падения напряжения UL, Uc на них.
Но контур имеет не только реактивные сопротивления, а еще и активное cопротивление потерь R , которое в основном равно сопротивлению провода катушки.
Так как в катушке и конденсаторе напряжения сдвинуты относительно тока на разные фазовые углы, то более наглядно их можно показать на векторных диаграммах ( рис.4 )
Напряжение на индуктивном сопротивлении UL опережает ток на 90° , а напряжение на емкостном сопротивлении Uc отстает от тока на такой же угол 90° И получается, что векторы UL и Uc сдвинуты между собой на 180° , т.е. находятся в противофазе.
Вектор напряжения на источнике U будет равен геометрической сумме напряжения вектора UR и вектора разницы напряжений реактивных сопротивлений UL-Uc .
Как видно из диаграммы рис.4а при UL > Uc напряжение внешнего источника опережает ток в колебательном контуре на угол φ и находится выше оси абcцисс в зоне напряжений индуктивности. Значит в данном случае контур имеет сопротивление индуктивного характера.
При UL ( рис.4b ) вектор источника уже будет отставать от вектора тока на угол φ и контур будет иметь емкостное сопротивление.
Полное сопротивление контура Z будет равно:
Амплитудное значение тока Im определяется по формуле:
где Um — амплитудное напряжение источника, а ω -его угловая частота.
При выполнении равенства:
XL=Xc,
получается наибольшее значение тока и имеет место явление, которое называется резонансом .
Резонанс возникает при условии совпадения частоты источника напряжения с собственной частотой колебания контура.
На рис.5 показан график характеристик зависимости тока Iк и полного сопротивления Z последовательного контура от частоты.
Чтобы понять природу электрического резонанса рассмотрим механический резонанс.
Явление резонанса можно наблюдать на опыте как показано на рис.6 .
Здесь на натянутой общей нитке привязаны три пары шаров 1-1′, 2-2′, 3-3′ каждый из которых представляет собой маятник.
Если раскачать рукой шар 1 , то начинает раскачиваться и шар 1 ‘, тогда как все другие шары остаются неподвижными. Точно так же, если раскачать шар 3 , начнет раскачиваться только шар 3 .
Этот механический резонанс объясняется следующим образом.
В нашем опыте собственные частоты каждой пары маятников одинаковы, т.к. шары одинаковые и длина их нитей тоже одинакова.
Раскачиваясь, маятник 1 передает по общей нитке свои колебания остальным маятникам. Но эти колебания раскачивают только маятник 1′ потому, что его частота собственных колебаний совпадает с частотой «толчков» общей нити от маятника 1 . Так как эти «толчки» совпадают с тактом собственной частоты маятника 1′ , то его амплитуда раскачивания все больше и больше возрастает и может стать больше амплитуды раскачивающего маятника 1 .
Так же, примерно, происходит и при электрическом резонансе.
Представим себе маятник 1 источником колебаний, а маятник 1′ — колебательным контуром.
Маятник 1 , допустим, будет качаться с постоянной амплитудой и частотой.
Маятник 1′ не сможет сразу достичь амплитуды и частоты маятника 1 потому, что раскачать мгновенно общую нить до резонансной частоты и амплитуды будут мешать различные тормозящие процессы — сопротивление воздуха, инерционность, провис нити и т.д. Это будет выглядеть как торможение тока контура индуктивным и емкостным сопротивлениеми при несовпадении частоты источника и контура.
С течением времени маятник 1 раскачает маятник 1′ до своей частоты и амплитуды. Начнется процесс резонанса.
Амплитуда маятника 1′ будет расти до какого то значения, пока сила «подталкивания» не уравновесится противоположной силой торможения.
Так же и в контуре резонансный ток не может возрастать бесконечно.
При резонансе амплитуда тока в контуре равна:
Напряжение на индуктивном сопротивлении —
на емкостном сопротивлении —
Tак как XL=Xc , то вектора UL и Uc будут равны (UL=Uc) , но противоположно направлены ( рис.7 ).
Вектор напряжения U источника совпадает с вектором тока I и равен по величине напряжению на активном сопротивлении UR .
Отсюда следует, что при резонансе контур оказывает источнику сопротивление активного характера R который не дает амплитуде напряжения Um увеличиваться до бесконечности:
При резонансе отношение между напряжением на индуктивном сопротивлении и напряжением источника будет равно добротности Q катушки:
А добротность контуров, применяемых в радиотехнике, большая. Поэтому напряжение на катушке может превышать в сотни раз напряжение источника.
Но так как при резонансе напряжение на катушке равно напряжению на конденсаторе, значит отношение напряжения на конденсаторе к напряжению источника тоже будет равно добротности:
Для примера на рис.8 показана схема последовательного контура с реальными значениями элементов схемы и параметров, а так же полученные величины напряжений на этих элементах. Отсюда видно, что напряжение на катушке и конденсатотре при резонансе будет больше напряжения источника в Q раз.
Резонанс в последовательном колебательном контуром называют резонансом напряжения, т.к. напряжение на реактивных элементах при резонансе становится больше напряжения внешнего источника.
Способность колебательного контура создавать интенсивные колебания на одной частоте (точнее в узкой полосе частот) и почти не реагировать на сигналы других частот называется избирательностью.
Избирательность S численно показывает во сколько раз ослабляются посторонние сигналы по сравнению с колебаниями резонансной частоты ( рис.9 ):
где I(▲f) — ток в контуре при расстройки контура на ▲f .
Полосой пропускания контура называют полосу частот, в пределах которой ток в контуре уменьшается не более, чем в заданное число раз по сравнению с током при резонансе ( рис.10 ):
где — k коэффициент пропорциональности, указывающий на каком уровне резонансного тока Ip измеряется полоса пропускания.
Для k=1 — уровень Ik = 0,707·Ip и
k=√3 — уровень Ik = 0,5·Ip и
В электрических схемах колебательный контур связан с источником сигнала разными способами — непосредственно, индуктивною или емкостной связью.
Если контур связан с источником И индуктивно ( рис.11 ), то контур будет являтся последовательным, т.к. в катушке колебательного контура индуктируется ЭДС, что равносильно последовательному включению источника с L и С .
Такая связь применяется в радиоприемниках для связи антенны с контуром( рис.12 ).
С помощью конденсатора переменной емкости можно настраивать контур в резонанс с нужной радиостанцией.
В этом случае контурный ток, вызванный сигналом этой радиостанции, становится относительно большим, в то время как контурные токи, вызванные другими станциями, ничтожно малы.
Напряжение между точками a — b , вызванное большим резонансным током, подается к следующим каскадам приемника.
Параллельный колебательный контур
В параллельном колебательном контуре источник сигнала соединен с катушкой индуктивности и конденсатором параллельно (рис.11).
При подаче переменного напряжения на контур происходит обмен энергиями между конденсатором и катушкой, но только в цепи внутри контура.
Для возникновения резонанса в нем, как и в последовательном контуре, необходимыми условиями являются равенство емкостного Хс и индуктивного ХL сопротивлений, а так же равенство частоты собственных колебаний контура и частоты колебаний источника тока.
Только резонанс в параллельном колебательном контуром, в отличии от резонанса в последовательном контуре, называют резонансом тока.
В идеальном параллельном контуре (без потерь) вектора индуктивного Ic и емкостного тока IL (при ХL=Xc ) при резонансе будут направлены в противоположные стороны и суммарный ток будет обращаться в нуль ( рис.14a ). А это значит, что сопротивление контура будет стремится к бесконечности.
Но в реальном параллельном контуре существует сопротивление потерь R которое сосредоточено в основном в индуктивности ( рис 14b ) и поэтому, даже при резонансе ток в контуре уже не равен нулю, а равен активной составляющей тока в цепи катушки — Iк=IL+IR.
Значит полное сопротивление контура Z будет уже не бесконечно, а равно:
На рис.15 показан график характеристик зависимости тока Iк и полного сопротивления Z параллельного контура от частоты.
Можно сделать вывод: в цепи параллельного контура существуют два тока — ток от источника I протекающий через активное сопротивление потерь катушки и реактивный ток контура Iк .
Внутри контура протекают реактивный ток довольно таки большой величины:
но он потребляет малый ток от источника, который необходим лишь для компенсации потерь в контуре:
Добротность Q параллельного контура, в отличии от последовательного контура, показывает во сколько раз ток в элементах контура больше потребления тока источника:
На рис.16 дан конкретный пример параллельного колебательного контура, где видно, что ток контура больше тока источника в Q раз.
В радиоприемниках так же применяется непосредственная связь колебательного контура с антенной, т.е. контур включен параллельно источнику сигнала ( рис.17 ).
Переменным конденсатором настраиваем контур на частоту сигнала нужной радиостанции. При резонансе контурный ток, вызванный нужной радиостанцией, становится относительно большим, а сопротивление контура тоже большим.Поэтому между точками а и b получается значительное напряжение.
Для других станций контур представляет малое сопротивление и сигнал радиостанции уходит в «землю».
Параллельный и последовательный колебательный контур
Что такое колебательный LC-контур? Принцип работы, формулы расчёта основных параметров. Онлайн калькулятор резонансной частоты колебательного контура, добротности и коэффициента затухания в зависимости от величин индуктивности, ёмкости и сопротивления потерь
Колебательный контур – это пассивная электрическая цепь, которая состоит из конденсатора и катушки индуктивности, в которой возможно возбудить свободные электромагнитные колебания.
Если конденсатор и катушка соединены параллельно, то контур называется параллельным, при последовательном соединении элементов колебательный контур называется последовательным.
Для начала давайте рассмотрим параллельный колебательный контур, который в радиотехнике используется как основа частотно-избирательных цепей и встречается намного чаще последовательного.
Рис.1 Параллельный колебательный контур, его изображение на схеме
(идеальный колебательный контур), реальный колебательный контур
При анализе цепи колебательного контура обычно используется реалистичная модель (Рис.1 справа), состоящая из идеальных пассивных элементов и активного сопротивления потерь катушки – Rпот . Сопротивление потерь катушки Rпот складывается из потерь в проводах, диэлектрике, сердечнике и экране (если он есть).
Поскольку потери в контурном конденсаторе на порядки меньше, чем потери в катушке, то его сопротивление потерь при расчётах обычно не учитывается.
Так, за счёт чего в колебательном контуре возникают свободные колебания? Для того чтобы ответить на этот вопрос, давайте соберём простейшую схему (Рис.2)
Рис.2 Колебательный процесс в параллельном колебательном контуре
Для возбуждения в контуре колебаний конденсатор следует предварительно зарядить, сообщая его обкладкам заряд qmax от внешнего источника Bat напряже- нием Umax . После того как конденсатор будет заряжен, переводим переключатель в правое по схеме положение, отключая контур от источника, и наблюдаем возникшие в цепи затухающие электромагнитные колебания, при которых происходит превращение энергии электрического поля в энергию магнитного поля и наоборот (Рис.2 справа).
Из-за потерь, возникающих в элементах контура, электромагнитные колебания в цепи всегда будут затухающими. Скорость их затухания зависит от величины этих потерь, суммарное значение которых характеризуются параметром, называемым добротностью колебательного контура Q. Численно добротность равна числу колебаний от момента возбуждения свободных колебаний до момента, когда их амплитуда уменьшится в еπ = 23,14 раз. Для желающих поподробнее познакомиться с тем, что такое добротность и как её измерить, имеет смысл посетить страницу – ссылка на страницу.
А мы тем временем рассмотрим последовательные фазы колебаний, происходящие в контуре после зарядки конденсатора.
Рис.3 Фазы колебаний в колебательном контуре за полный период
Электромагнитные колебания, а также описывающие их уравнения во многом подобны механическим колебаниям.
Опишем стадии колебательного процесса за полный период колебаний:
1. t = 0 – начало разрядки конденсатора (энергия электрического поля, запасённая в конденсаторе, равна W = q 2 /2C ). Через катушку начинает течь ток. При этом катушка оказывает сопротивление моментальному росту тока, поскольку в ней присутствует ЭДС самоиндукции, препятствующая этому росту.
2. t = 0.25Т – конденсатор полностью разряжен. Ток через катушку максимален, так как вся энергия из конденсатора перешла в энергию магнитного электрического поля катушки W = L*I 2 /2 . Начиная с этого момента, эта энергия начинает опять перетекать в конденсатор, перезаряжая его потенциалом обратной полярности.
3. t = 0.5Т – конденсатор опять полностью заряжен, но потенциалом противоположной полярности. Ток через катушку индуктивности равен нулю. Начинается фаза, описанная в п.1, но с током, текущем в обратном направлении.
4. t = 0.75Т – конденсатор вновь полностью разряжен, ток через катушку максимален и направлен в противоположную (по отношению к п.2) сторону.
5. t = Т – всё начинается сначала, т. е. аналогично 1п.
А теперь: Формулы для расчёта колебательного LC контура:
Период колебаний: T0 = 2π√ LC ;
Частота: F0 = 1/T0 ;
Круговая (циклическая) частота: ω0 = 2π/T0 = 2πF0 ;
Максимальный заряд конденсатора: qmax = UmaxC ;
Максимальная сила тока через катушку: Imax = ωqmax .
Добротность колебательного контура: ;
Мгновенные значения напряжения, тока и энергии рассчитываются по формулам:
Заряд: q(t) = qmax cos(ωt) ;
Напряжение: U(t) = Umax cos(ωt) ;
Сила тока: I(t) = Imax sin(ωt) ;
Энергия: W(t) = I(t) 2 L/2 + q(t) 2 /(2C) .
Все приведённые формулы хороши для идеального колебательного контура, в котором нет потерь, а соответственно, и нет затухания колебаний. Для реальных же контуров (с потерями) вводятся дополнительные параметры, характеризующие скорость затухания колебаний. Одними из таких параметров являются коэффициент затухания β и логарифмический декремент колебаний λ .
Коэффициент затухания β – это величина, характеризующая скорость затухания колебаний и обратно пропорциональная времени τ , по истечении которого амплитуда колебаний убывает в е раз. Для колебательного контура данная величина вычисляется по формуле: β = Rпотерь /(2L) .
Логарифмическим декрементом затухания λ называется величина, равная натуральному логарифму отношения двух последовательных амплитуд, отстоящих друг от друга на период колебаний. Численно логарифмический декремент равен коэффициенту затухания, умноженному на период колебаний: λ = βT .
С учётом коэффициента затухания формулы приобретают следующий вид:
Заряд: q(t) = qmax cos(ωt) e (-βt) ;
Напряжение: U(t) = Umax cos(ωt) e (-βt) ;
Сила тока: I(t) = Imax sin(ωt) e (-βt) ;
Энергия: W(t) = I(t) 2 L/2 + q(t) 2 /(2C) ;
Период: ;
Круговая (циклическая) частота: ;
Добротность: Q = Lω/R .
При относительно высокой добротности цепи, то есть когда колебания затухают не слишком быстро и выполняется условие β 2 2 , круговая частота контура равна ω ≈ ω0 , а формулы по расчёту резонансной частоты и добротности принимают привычный вид, приведённый выше на синем фоне.
Для проверки знаний, полученных в рамках данной статьи, приведём онлайн калькулятор для расчёта основных параметров колебательного контура.
Расчёт резонансной частоты, добротности и коэффициента
затухания контура
Для последовательного колебательного контура резонансная частота (период и круговая частота) не зависит от сопротивления потерь, однако остальные приведённые выше параметры описываются теми же формулами, что и для параллельного. При этом в составе частотно-избирательных цепей эти контуры ведут себя по-разному и имеют значительно отличающиеся друг от друга передаточные характеристики. Какие это характеристики? – рассмотрим в рамках отдельной статьи.
А на следующей странице рассмотрим, как на добротность LC-контура влияют сопротивления нагрузки и источника сигнала.
Последовательный колебательный контур
В колебательном контуре можно получить незатухающие колебания, если подключить его к источнику переменного тока.
Если источник подключен последовательно с катушкой L и конденсатором С , то такая цепь называется последовательным колебательным контуром ( рис.3 ).
При подключении внешнего источника к контуру в нем возникают не собственные (свободные) колебания контура, которые определяются значениями L и C , а с частотой напряжения источника U=Um∙sinω∙t .
Такие колебания контура называются вынужденными .
При вынужденных колебаниях элементы контура L, C будут иметь, в зависимости от частоты источника, определенные индуктивное XL и емкостное Xc сопротивления и соответствующие падения напряжения UL, Uc на них.
Но контур имеет не только реактивные сопротивления, а еще и активное cопротивление потерь R , которое в основном равно сопротивлению провода катушки.
Так как в катушке и конденсаторе напряжения сдвинуты относительно тока на разные фазовые углы, то более наглядно их можно показать на векторных диаграммах ( рис.4 )
Напряжение на индуктивном сопротивлении UL опережает ток на 90° , а напряжение на емкостном сопротивлении Uc отстает от тока на такой же угол 90° И получается, что векторы UL и Uc сдвинуты между собой на 180° , т.е. находятся в противофазе.
Вектор напряжения на источнике U будет равен геометрической сумме напряжения вектора UR и вектора разницы напряжений реактивных сопротивлений UL-Uc .
Как видно из диаграммы рис.4а при UL > Uc напряжение внешнего источника опережает ток в колебательном контуре на угол φ и находится выше оси абcцисс в зоне напряжений индуктивности. Значит в данном случае контур имеет сопротивление индуктивного характера.
При UL ( рис.4b ) вектор источника уже будет отставать от вектора тока на угол φ и контур будет иметь емкостное сопротивление.
Полное сопротивление контура Z будет равно:
Амплитудное значение тока Im определяется по формуле:
где Um — амплитудное напряжение источника, а ω -его угловая частота.
При выполнении равенства:
XL=Xc,
получается наибольшее значение тока и имеет место явление, которое называется резонансом .
Резонанс возникает при условии совпадения частоты источника напряжения с собственной частотой колебания контура.
На рис.5 показан график характеристик зависимости тока Iк и полного сопротивления Z последовательного контура от частоты.
Чтобы понять природу электрического резонанса рассмотрим механический резонанс.
Явление резонанса можно наблюдать на опыте как показано на рис.6 .
Здесь на натянутой общей нитке привязаны три пары шаров 1-1′, 2-2′, 3-3′ каждый из которых представляет собой маятник.
Если раскачать рукой шар 1 , то начинает раскачиваться и шар 1 ‘, тогда как все другие шары остаются неподвижными. Точно так же, если раскачать шар 3 , начнет раскачиваться только шар 3 .
Этот механический резонанс объясняется следующим образом.
В нашем опыте собственные частоты каждой пары маятников одинаковы, т.к. шары одинаковые и длина их нитей тоже одинакова.
Раскачиваясь, маятник 1 передает по общей нитке свои колебания остальным маятникам. Но эти колебания раскачивают только маятник 1′ потому, что его частота собственных колебаний совпадает с частотой «толчков» общей нити от маятника 1 . Так как эти «толчки» совпадают с тактом собственной частоты маятника 1′ , то его амплитуда раскачивания все больше и больше возрастает и может стать больше амплитуды раскачивающего маятника 1 .
Так же, примерно, происходит и при электрическом резонансе.
Представим себе маятник 1 источником колебаний, а маятник 1′ — колебательным контуром.
Маятник 1 , допустим, будет качаться с постоянной амплитудой и частотой.
Маятник 1′ не сможет сразу достичь амплитуды и частоты маятника 1 потому, что раскачать мгновенно общую нить до резонансной частоты и амплитуды будут мешать различные тормозящие процессы — сопротивление воздуха, инерционность, провис нити и т.д. Это будет выглядеть как торможение тока контура индуктивным и емкостным сопротивлениеми при несовпадении частоты источника и контура.
С течением времени маятник 1 раскачает маятник 1′ до своей частоты и амплитуды. Начнется процесс резонанса.
Амплитуда маятника 1′ будет расти до какого то значения, пока сила «подталкивания» не уравновесится противоположной силой торможения.
Так же и в контуре резонансный ток не может возрастать бесконечно.
При резонансе амплитуда тока в контуре равна:
Напряжение на индуктивном сопротивлении —
на емкостном сопротивлении —
Tак как XL=Xc , то вектора UL и Uc будут равны (UL=Uc) , но противоположно направлены ( рис.7 ).
Вектор напряжения U источника совпадает с вектором тока I и равен по величине напряжению на активном сопротивлении UR .
Отсюда следует, что при резонансе контур оказывает источнику сопротивление активного характера R который не дает амплитуде напряжения Um увеличиваться до бесконечности:
При резонансе отношение между напряжением на индуктивном сопротивлении и напряжением источника будет равно добротности Q катушки:
А добротность контуров, применяемых в радиотехнике, большая. Поэтому напряжение на катушке может превышать в сотни раз напряжение источника.
Но так как при резонансе напряжение на катушке равно напряжению на конденсаторе, значит отношение напряжения на конденсаторе к напряжению источника тоже будет равно добротности:
Для примера на рис.8 показана схема последовательного контура с реальными значениями элементов схемы и параметров, а так же полученные величины напряжений на этих элементах. Отсюда видно, что напряжение на катушке и конденсатотре при резонансе будет больше напряжения источника в Q раз.
Резонанс в последовательном колебательном контуром называют резонансом напряжения, т.к. напряжение на реактивных элементах при резонансе становится больше напряжения внешнего источника.
Способность колебательного контура создавать интенсивные колебания на одной частоте (точнее в узкой полосе частот) и почти не реагировать на сигналы других частот называется избирательностью.
Избирательность S численно показывает во сколько раз ослабляются посторонние сигналы по сравнению с колебаниями резонансной частоты ( рис.9 ):
где I(▲f) — ток в контуре при расстройки контура на ▲f .
Полосой пропускания контура называют полосу частот, в пределах которой ток в контуре уменьшается не более, чем в заданное число раз по сравнению с током при резонансе ( рис.10 ):
где — k коэффициент пропорциональности, указывающий на каком уровне резонансного тока Ip измеряется полоса пропускания.
Для k=1 — уровень Ik = 0,707·Ip и
k=√3 — уровень Ik = 0,5·Ip и
В электрических схемах колебательный контур связан с источником сигнала разными способами — непосредственно, индуктивною или емкостной связью.
Если контур связан с источником И индуктивно ( рис.11 ), то контур будет являтся последовательным, т.к. в катушке колебательного контура индуктируется ЭДС, что равносильно последовательному включению источника с L и С .
Такая связь применяется в радиоприемниках для связи антенны с контуром( рис.12 ).
С помощью конденсатора переменной емкости можно настраивать контур в резонанс с нужной радиостанцией.
В этом случае контурный ток, вызванный сигналом этой радиостанции, становится относительно большим, в то время как контурные токи, вызванные другими станциями, ничтожно малы.
Напряжение между точками a — b , вызванное большим резонансным током, подается к следующим каскадам приемника.
Параллельный колебательный контур
В параллельном колебательном контуре источник сигнала соединен с катушкой индуктивности и конденсатором параллельно (рис.11).
При подаче переменного напряжения на контур происходит обмен энергиями между конденсатором и катушкой, но только в цепи внутри контура.
Для возникновения резонанса в нем, как и в последовательном контуре, необходимыми условиями являются равенство емкостного Хс и индуктивного ХL сопротивлений, а так же равенство частоты собственных колебаний контура и частоты колебаний источника тока.
Только резонанс в параллельном колебательном контуром, в отличии от резонанса в последовательном контуре, называют резонансом тока.
В идеальном параллельном контуре (без потерь) вектора индуктивного Ic и емкостного тока IL (при ХL=Xc ) при резонансе будут направлены в противоположные стороны и суммарный ток будет обращаться в нуль ( рис.14a ). А это значит, что сопротивление контура будет стремится к бесконечности.
Но в реальном параллельном контуре существует сопротивление потерь R которое сосредоточено в основном в индуктивности ( рис 14b ) и поэтому, даже при резонансе ток в контуре уже не равен нулю, а равен активной составляющей тока в цепи катушки — Iк=IL+IR.
Значит полное сопротивление контура Z будет уже не бесконечно, а равно:
На рис.15 показан график характеристик зависимости тока Iк и полного сопротивления Z параллельного контура от частоты.
Можно сделать вывод: в цепи параллельного контура существуют два тока — ток от источника I протекающий через активное сопротивление потерь катушки и реактивный ток контура Iк .
Внутри контура протекают реактивный ток довольно таки большой величины:
но он потребляет малый ток от источника, который необходим лишь для компенсации потерь в контуре:
Добротность Q параллельного контура, в отличии от последовательного контура, показывает во сколько раз ток в элементах контура больше потребления тока источника:
На рис.16 дан конкретный пример параллельного колебательного контура, где видно, что ток контура больше тока источника в Q раз.
В радиоприемниках так же применяется непосредственная связь колебательного контура с антенной, т.е. контур включен параллельно источнику сигнала ( рис.17 ).
Переменным конденсатором настраиваем контур на частоту сигнала нужной радиостанции. При резонансе контурный ток, вызванный нужной радиостанцией, становится относительно большим, а сопротивление контура тоже большим.Поэтому между точками а и b получается значительное напряжение.
Для других станций контур представляет малое сопротивление и сигнал радиостанции уходит в «землю».