Скорость звука – это характеристика среды, в которой распространяется волна. Скорость звука в воздухе составляет около 335 м/сек. Но это при температуре 0° С. С повышением температуры скорость распространения звука также увеличивается.
Скорость звука в воздухе при различной температуре. От -150 до 1000 °C.
-10 | 325,1 | 1170,3 |
0 | 331,5 | 1193,4 |
10 | 337,3 | 1214,1 |
20 | 343,1 | 1235,2 |
Что влияет на скорость звука в воздухе?
Скорость звука зависит от температуры: с увеличением температуры воздуха она растёт, а с уменьшением — падает. При 0° скорость звука составляет 331 м/с (1192 км/ч), при +20° она уже равна 343 м/с (1235 км/ч).
Будем считать, что звук в воздухе за одну секунду проходит 340 метров.
Скорость звука
Ско́рость зву́ка, скорость распространения в среде упругих волн . Определяется упругостью и плотностью среды. Для плоской гармонической волны в среде без дисперсии скорость звука равна c = ω / k > c = ω / k , где ω omega ω – частота , k boldsymbol k – волновое число . Со скоростью c c распространяется фаза гармонической волны, поэтому её называют также фазовой скоростью звука. В средах с дисперсией звука фазовая скорость различна для разных частот; в этих случаях используют понятие групповой скорости . При больших амплитудах упругой волны скорость распространения каждой точки профиля волны зависит от величины давления в этой точке, возрастая с ростом давления, что приводит к искажению формы волны (см. в статье нелинейная акустика ). Скорость звука в газах меньше, чем в жидкостях , а в жидкостях, как правило, меньше, чем в твёрдых телах . При температуре 20 °C и нормальном давлении скорость звука в воздухе составляет 343,1 м/c, в воде – 1490 м/c.
В газах и жидкостях звук распространяется в виде объёмных волн сжатия – разряжения. Если процесс распространения звука происходит адиабатически , то скорость звука равна c = x ( ∂ P / ∂ ρ ) s text= sqrt> c = x ( ∂ P / ∂ ρ ) s
, где P P – давление, ρ rho ρ – плотность вещества, индекс s s показывает, что производная берётся при постоянной энтропии . Эта скорость звука называется адиабатической.
В идеальном газе c = γ P / ρ = γ R T / μ =sqrt=sqrt c = γ P / ρ
, где R R – универсальная газовая постоянная , Т textit Т – абсолютная температура, μ mu μ – молекулярная масса газа, γ gamma γ – отношение теплоёмкостей при постоянном давлении и постоянном объёме. Это т. н. лапласова скорость звука; в газе она совпадает по порядку величины со средней тепловой скоростью движения молекул. Величина c ′ = P / ρ >=sqrt c ′ = P / ρ
ЧЕМУ РАВНА СКОРОСТЬ СВЕТА И ЗВУКА в воздухе, космосе и воде. Интересная физика и наука для детей.
называется ньютоновой скоростью звука; она определяет скорость звука при изотермическом процессе распространения, который имеет место на очень низких частотах.
В идеальном газе при заданной температуре скорость звука не зависит от давления и растёт с ростом температуры как T sqrt> T
. При комнатной температуре относительное изменение скорости звука в воздухе составляет примерно 0,17 % на 1 °C. В жидкостях скорость звука, как правило, уменьшается с ростом температуры. Исключением является вода , в которой скорость звука при комнатной температуре увеличивается с ростом температуры, достигает максимума при температуре ≈ 74 approx 74 ≈ 74 °C и уменьшается с дальнейшим ростом температуры. Скорость звука в воде растёт с увеличением давления примерно на 0,01 % на 1 атм, а также с увеличением содержания растворённых в ней солей .
В морской воде скорость звука зависит от температуры, солёности и глубины. Эти зависимости имеют сложный вид; для расчёта скорости звука используются таблицы, рассчитанные по эмпирическим формулам. Поскольку температура, давление, а иногда и солёность меняются с глубиной, то скорость звука в океане является функцией глубины. Эта зависимость в значительной степени определяет характер распространения звука в океане, в частности определяет существование подводного звукового канала .
В неограниченной твёрдой среде распространяются продольные и сдвиговые (поперечные) упругие волны. В изотропном твёрдом теле фазовая скорость для продольной волны
c l = E ( 1 − σ ) ρ ( 1 + σ ) ( 1 − 2 σ ) = K + 4 / 3 G ρ , >=sqrt< frac> =sqrt< frac>, c l = ρ ( 1 + σ ) ( 1 − 2 σ ) E ( 1 − σ )
, для сдвиговой волны
c t = E 2 ρ ( 1 + σ ) = G ρ , >=sqrt< frac> =sqrt< frac>, c t = 2 ρ ( 1 + σ ) E
где E E – модуль Юнга , G G – модуль сдвига, σ sigma σ – коэффициент Пуассона , K K – модуль объёмного сжатия. Скорость распространения продольных волн всегда больше, чем скорость сдвиговых волн, причём обычно выполняется соотношение c l > 2 c t >>sqrt > c l > 2
c t . В монокристаллах скорость звука зависит от направления распространения волны в кристалле (см. статью Кристаллоакустика ). В тех направлениях, в которых возможно распространение чисто продольных и чисто поперечных волн, в общем случае имеется одно значение c l > c l и два значения c t > c t . Если значения c t > c t различны, то соответствующие волны иногда называют быстрой и медленной поперечными волнами. В общем случае для каждого направления распространения волны в кристалле могут существовать три смешанные волны с различными скоростями распространения, которые определяются соответствующими комбинациями модулей упругости.
В металлах и сплавах скорость звука существенно зависит от предшествующей механической и термической обработки; это явление частично связано с дислокациями , наличие которых также влияет на скорость звука. В металлах, как правило, скорость звука уменьшается с ростом температуры. При переходе металла в сверхпроводящее состояние величина ∂ c ∂ T frac ∂ T ∂ c в точке перехода меняет знак. В сильных магнитных полях проявляются некоторые эффекты в зависимости скорости звука от магнитного поля, отражающие особенности поведения электронов в металле.
Измерения скорости звука используются для определения многих свойств вещества, таких как величина отношения теплоёмкостей для газов, сжимаемости газов и жидкостей, модулей упругости твёрдых тел, температуры Дебая и др. Измерение малых изменений скорости звука – чувствительный метод определения примесей в газах и жидкостях. В твёрдых телах измерение скорости звука и её зависимости от температуры, магнитного поля и других параметров позволяет исследовать строение вещества: зонную структуру полупроводников , форму ферми-поверхности в металлах и многое другое.
Редакция физических наук
Опубликовано 4 мая 2023 г. в 18:54 (GMT+3). Последнее обновление 4 мая 2023 г. в 18:54 (GMT+3). Связаться с редакцией
Чему равна скорость звука в воздухе при 0 градусов
Скорость звука в газах (при 0 °C)
Жидкости | |||
Вещество | , °C | , м/с | , |
Азот | 962 | –10 | |
Анилин | 20 | 1659 | –4,0 |
Ацетон | 25 | 1170 | –5,5 |
Бензол | 25 | 1295 | –5,2 |
Вода | 25 | 1497 | +2,5 |
Глицерин | 26 | 1930 | –1,8 |
Керосин | 25 | 1315 | –3,6 |
Ртуть | 20 | 1451 | –0,46 |
Сероуглерод | 25 | 1149 | –3,3 |
Скип@$&р | 25 | 1225 | – |
Спирт этиловый | 20 | 1177 | –3,6 |
Толуол | 25 | 1300 | –4,3 |
Углерод четыреххлористый | 25 | 930 | –3,0 |
Скорость звука в жидкостях
Скорость звука в твердых телах. – скорость продольных волн, – скорость поперечных волн, – скорость продольных волн в тонком стержне
Чему равна скорость звука в воздухе при 0 градусов
Скорость звука в газах (при 0 °C)
Скорость звука в жидкостях
Скорость звука в твердых телах. – скорость продольных волн, – скорость поперечных волн, – скорость продольных волн в тонком стержне
Скорость звука
Ско́рость зву́ка, скорость распространения в среде упругих волн . Определяется упругостью и плотностью среды. Для плоской гармонической волны в среде без дисперсии скорость звука равна c = ω / k > c = ω / k , где ω omega ω – частота , k boldsymbol k – волновое число . Со скоростью c c распространяется фаза гармонической волны, поэтому её называют также фазовой скоростью звука. В средах с дисперсией звука фазовая скорость различна для разных частот; в этих случаях используют понятие групповой скорости . При больших амплитудах упругой волны скорость распространения каждой точки профиля волны зависит от величины давления в этой точке, возрастая с ростом давления, что приводит к искажению формы волны (см. в статье нелинейная акустика ). Скорость звука в газах меньше, чем в жидкостях , а в жидкостях, как правило, меньше, чем в твёрдых телах . При температуре 20 °C и нормальном давлении скорость звука в воздухе составляет 343,1 м/c, в воде – 1490 м/c.
В газах и жидкостях звук распространяется в виде объёмных волн сжатия – разряжения. Если процесс распространения звука происходит адиабатически , то скорость звука равна c = x ( ∂ P / ∂ ρ ) s text= sqrt> c = x ( ∂ P / ∂ ρ ) s
, где P P – давление, ρ rho ρ – плотность вещества, индекс s s показывает, что производная берётся при постоянной энтропии . Эта скорость звука называется адиабатической.
В идеальном газе c = γ P / ρ = γ R T / μ =sqrt=sqrt c = γ P / ρ
, где R R – универсальная газовая постоянная , Т textit Т – абсолютная температура, μ mu μ – молекулярная масса газа, γ gamma γ – отношение теплоёмкостей при постоянном давлении и постоянном объёме. Это т. н. лапласова скорость звука; в газе она совпадает по порядку величины со средней тепловой скоростью движения молекул. Величина c ′ = P / ρ >=sqrt c ′ = P / ρ
называется ньютоновой скоростью звука; она определяет скорость звука при изотермическом процессе распространения, который имеет место на очень низких частотах.
В идеальном газе при заданной температуре скорость звука не зависит от давления и растёт с ростом температуры как T sqrt> T
. При комнатной температуре относительное изменение скорости звука в воздухе составляет примерно 0,17 % на 1 °C. В жидкостях скорость звука, как правило, уменьшается с ростом температуры. Исключением является вода , в которой скорость звука при комнатной температуре увеличивается с ростом температуры, достигает максимума при температуре ≈ 74 approx 74 ≈ 74 °C и уменьшается с дальнейшим ростом температуры. Скорость звука в воде растёт с увеличением давления примерно на 0,01 % на 1 атм, а также с увеличением содержания растворённых в ней солей .
В морской воде скорость звука зависит от температуры, солёности и глубины. Эти зависимости имеют сложный вид; для расчёта скорости звука используются таблицы, рассчитанные по эмпирическим формулам. Поскольку температура, давление, а иногда и солёность меняются с глубиной, то скорость звука в океане является функцией глубины. Эта зависимость в значительной степени определяет характер распространения звука в океане, в частности определяет существование подводного звукового канала .
В неограниченной твёрдой среде распространяются продольные и сдвиговые (поперечные) упругие волны. В изотропном твёрдом теле фазовая скорость для продольной волны
c l = E ( 1 − σ ) ρ ( 1 + σ ) ( 1 − 2 σ ) = K + 4 / 3 G ρ , >=sqrt< frac> =sqrt< frac>, c l = ρ ( 1 + σ ) ( 1 − 2 σ ) E ( 1 − σ )
, для сдвиговой волны
c t = E 2 ρ ( 1 + σ ) = G ρ , >=sqrt< frac> =sqrt< frac>, c t = 2 ρ ( 1 + σ ) E
где E E – модуль Юнга , G G – модуль сдвига, σ sigma σ – коэффициент Пуассона , K K – модуль объёмного сжатия. Скорость распространения продольных волн всегда больше, чем скорость сдвиговых волн, причём обычно выполняется соотношение c l > 2 c t >>sqrt > c l > 2
c t . В монокристаллах скорость звука зависит от направления распространения волны в кристалле (см. статью Кристаллоакустика ). В тех направлениях, в которых возможно распространение чисто продольных и чисто поперечных волн, в общем случае имеется одно значение c l > c l и два значения c t > c t . Если значения c t > c t различны, то соответствующие волны иногда называют быстрой и медленной поперечными волнами. В общем случае для каждого направления распространения волны в кристалле могут существовать три смешанные волны с различными скоростями распространения, которые определяются соответствующими комбинациями модулей упругости.
В металлах и сплавах скорость звука существенно зависит от предшествующей механической и термической обработки; это явление частично связано с дислокациями , наличие которых также влияет на скорость звука. В металлах, как правило, скорость звука уменьшается с ростом температуры. При переходе металла в сверхпроводящее состояние величина ∂ c ∂ T frac ∂ T ∂ c в точке перехода меняет знак. В сильных магнитных полях проявляются некоторые эффекты в зависимости скорости звука от магнитного поля, отражающие особенности поведения электронов в металле.
Измерения скорости звука используются для определения многих свойств вещества, таких как величина отношения теплоёмкостей для газов, сжимаемости газов и жидкостей, модулей упругости твёрдых тел, температуры Дебая и др. Измерение малых изменений скорости звука – чувствительный метод определения примесей в газах и жидкостях. В твёрдых телах измерение скорости звука и её зависимости от температуры, магнитного поля и других параметров позволяет исследовать строение вещества: зонную структуру полупроводников , форму ферми-поверхности в металлах и многое другое.
Редакция физических наук
Опубликовано 4 мая 2023 г. в 18:54 (GMT+3). Последнее обновление 4 мая 2023 г. в 18:54 (GMT+3). Связаться с редакцией
Чему равна скорость звука в воздухе (при 0 градуcов С), если он за 1,5 с распространяется на 495 м
Найдите правильный ответ на вопрос ✅ «Чему равна скорость звука в воздухе (при 0 градуcов С), если он за 1,5 с распространяется на 495 м . » по предмету Физика, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Похожие вопросы по физике
Помогите! 4. В какой среде из перечисленных скорость звука будет наименьшей? А) воздух Б) керосин С) вода Д) свинец 5.
Помогите задачу решить! Частота звука равна 680 Гц, а скорость распространяется в воздухе — 340 м/с. Какова длина волны (м) этого звука в воздухе?
Чему равна скорость звука (при 0°), если он за 1,5 с распространяется на 495 м?
Чему равна скорость в воздухе (при 0 c) если он за 1,5 распространяется на 495 м
В воздухе распространяется звуковая волна с частотой 1,7 кГц. Определите длину волны, если скорость звука в воздухе равна 340 м/с.
Помогите с ответом
решить уравнение 2 целых 2.9:y=3 целых 19.27:3 целых 1.3
Нет ответа
дачнику до железной платформы нужно пройти 2 км. с какой средней скоростью нужно идти. чтобы успеть на электр-ку которая прибудет на платформу через полчаса? запиши ответ с помощью знака > или равно, обозначив средн. скорость буквой U
Чему равна скорость звука в воздухе при 0 градусов
Вопрос по физике:
Чему равна скорость звука в воздухе (при 0 градуcов С) , если он за 1,5 с распространяется на 495 м
Трудности с пониманием предмета? Готовишься к экзаменам, ОГЭ или ЕГЭ?
Воспользуйся формой подбора репетитора и занимайся онлайн. Пробный урок — бесплатно!
- bookmark_border
- 02.05.2018 16:18
- Физика
- remove_red_eye 6800
- thumb_up 38
Ответы и объяснения 1
varenaklyne460
воздух «двигается» равномерно. значит
- 03.05.2018 04:27
- thumb_up 47
Знаете ответ? Поделитесь им!
Есть сомнения?
Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Физика.
Трудности с домашними заданиями? Не стесняйтесь попросить о помощи — смело задавайте вопросы!
Физика — область естествознания: естественная наука о простейших и вместе с тем наиболее общих законах природы, о материи, её структуре и движении.