Чему равен коэффициент мощности

Чему равен коэффициент мощности

В данной статье мы рассмотрим понятие коэффициента мощности в электрических системах, причины его низкого значения и способы его улучшения с использованием компенсационных устройств, а также приведем примеры практического применения.

Понятное объяснение коэффициента мощности и способы его улучшения в электрических системах обновлено: 25 ноября, 2023 автором: Научные Статьи.Ру

Помощь в написании работы

В электротехнике коэффициент мощности является важным показателем эффективности электрических систем. Он определяет соотношение между активной мощностью, которая используется для выполнения работы, и полной мощностью, потребляемой системой. Низкий коэффициент мощности может привести к неэффективному использованию энергии и повышенным затратам. В данной статье мы рассмотрим определение и свойства коэффициента мощности, а также причины его низкого значения и способы его улучшения. Также мы рассмотрим примеры практического применения улучшения коэффициента мощности в различных электрических системах.

Нужна помощь в написании работы?

Мы — биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Что такое коэффициент мощности?

Чтобы лучше уяснить, что такое коэффициент мощности, нужно начать с нескольких основных понятий:

Активная мощность (кВт), также называемая полезной мощностью или действующей мощностью. Это мощность, которая реально приводит в действие оборудование и выполняет полезную работу.

Реактивная мощность (квар). Это мощность, необходимая устройствам, принцип действия которых основан на использовании электромагнитного поля (трансформаторов, электродвигателей, реле) для вырабатывания магнитного потока.

Полная мощность (кВА). Это векторная сумма активной и реактивной мощностей.

Рассмотрим простую аналогию, чтобы лучше уяснить эти понятия.

Допустим, вы находитесь на стадионе в жаркий день и заказываете кружку своего любимого пива. Та часть вашей порции, которая утоляет жажду, представляет активную мощность (рис. 1).

Увы, жизнь несовершенна. Вместе с этим вы получаете и пену. И давайте посмотрим правде в глаза – пена нисколько не утоляет жажду. Эта пена представляет реактивную мощность. Общее содержимое кружки является суммой активной мощности (пива), кВт, и реактивной мощности (пены), квар.

Чему равен коэффициент мощности

Теперь, после того как мы разобрались с основными понятиями, можно перейти к коэффициенту мощности.

Коэффициент мощности (КМ) – это отношение активной мощности к полной мощности:

КМ = кВт/(кВт + квар)

Коэффициент мощности «косинус фи»

Если вернуться к нашей аналогии с кружкой пива, коэффициент мощности представляет собой отношение количества пива (кВт) к общему содержимому кружки, то есть к количеству пива с пеной (кВА).

КМ = кВт/(кВт + квар) = пиво/(пиво + пена)

Таким образом, при данной полной мощности:

· чем больше пены (чем выше процент реактивной мощности), тем меньше отношение активной мощности (пиво) к полной мощности (пиво с пеной) и тем меньше коэффициент мощности;

· чем меньше пены (чем ниже процент реактивной мощности), тем выше отношение активной мощности (пиво) к полной мощности (пиво с пеной). Если пена (реактивная мощность) приближается к нулю, коэффициент мощности приближается к единице.

Наша аналогия с пивной кружкой немного упрощена. В реальности необходимо определять векторную сумму реактивной и активной мощностей. Поэтому следующим шагом будет рассмотрение угла между этими векторами.

Рассмотрим другую аналогию.

Человек тянет тяжёлый груз (рис. 2). Мощность, которую он прикладывает в прямом направлении, то есть в том направлении, куда он хочет доставить груз, — это активная мощность (кВт).

К сожалению, человек не может тянуть груз строго горизонтально (он получит сильные боли в спине), поэтому высота его плеч добавляет некоторое количество реактивной мощности (квар).

Полная мощность, прикладываемая человеком (кВА), – это векторная сумма реактивной и активной мощностей.

Соотношение между активной, реактивной и полной мощностями, а также определение коэффициента мощности иллюстрируются треугольником мощностей, изображённым на рис. 3.

КМ = кВт/кВА = cosθ

кВА = кВт 2 + квар 2 = V х I х.

Заметим, что в мире нашей мечты по аналогии с кружкой пива:

  • реактивная мощность должна быть очень мала (количество пены стремится к нулю);
  • активная мощность и полная мощность должны быть почти равны друг другу

(больше пива, меньше пены).

Аналогично в идеальном мире по аналогии с человеком, который тащит груз:

  • реактивная мощность очень мала (стремится к нулю);
  • активная мощность и полная мощность почти равны друг другу (человеку не нужно
  • тратить энергию на усилие, направленное вдоль его тела);
  • угол θ между векторами активной и полной мощности стремится к нулю;
  • cosθ стремится к единице;
  • коэффициент мощности стремится к единице.

Поэтому чтобы иметь эффективную систему (будь то кружка пива или человек, который тащит тяжёлый груз), мы должны иметь коэффициент мощности, как можно более близкий к 1,0.

Однако бывает, что система распределения электроэнергии имеет коэффициент мощности гораздо меньше 1,0. Далее мы увидим, к чему это приводит.

Каковы причины низкого коэффициента мощности?

Так как коэффициент мощности является отношением активной мощности к полной мощности, легко понять, что к низкому коэффициенту мощности приводит ситуация, когда активная мощность невелика по сравнению с полной мощностью. Вспоминая нашу аналогию с пивной кружкой, можем сказать, что это бывает, когда уровень реактивной мощности (пены, плеч работника) велик.

Что приводит к большой величине реактивной мощности?

Индуктивные нагрузки, которые являются причиной возникновения реактивной мощности, включают в себя:

  • трансформаторы,
  • асинхронные электродвигатели,
  • асинхронные генераторы (ветряные электрогенераторы),
  • системы освещения на разрядных лампах высокой интенсивности.

Такие индуктивные нагрузки потребляют основную часть мощности в производственных комплексах.

Реактивная мощность (квар), необходимая реактивным нагрузкам, увеличивает количество полной мощности (кВА) в системе распределения энергии (рис. 4). Это увеличение реактивной и полной мощности приводит к увеличению угла θ между активной и полной мощностью. Напомним, что cosθ (или коэффициент мощности) приувеличении θ уменьшается.

Таким образом, причиной низкого коэффициента мощности являются индуктивные нагрузки с большой реактивной мощностью.

Коэффициент мощности косинус фи — наглядное объяснение простыми словами.

что такое косинус фи

Многие из вас наверняка видели на электроинструментах, двигателях, а также люминесцентных лампах, лампах ДРЛ, ДНАТ и других, такие надписи как косинус фи — cos ϕ.

Однако люди далекие от электротехники и позабывшие школьные уроки физики, не совсем понимают, что же означает данный параметр и зачем он вообще нужен.

Давайте рассмотрим и объясним этот косинус, как можно более простыми словами, исключая всякие непонятные научные определения, типа электромагнитная индукция. В двух словах про него конечно не расскажешь, а вот в трех можно попробовать.

Когда ток отстает от напряжения

два проводника с потенциалом

Предположим перед вами есть 2 проводника. Один из этих проводников имеет потенциал. Не суть важно какой именно — отрицательный (минус) или положительный (плюс).

У другого провода вообще нет никакого потенциала. Соответственно между этими двумя проводниками будет разность потенциалов, т.к. у одного он есть, а у другого его нет.

Эту разность потенциалов как раз таки и принято называть напряжением.

напряжение это разность потенциалов

Если вы соедините кончики двух проводов не непосредственно между собой, а через лампочку накаливания, то через ее вольфрамовую нить начнет протекать ток. От одного провода к другому.

ток после включения лампочки возрастание

На первый взгляд может показаться, что лампочка загорается моментально. Однако это не так. Ток проходя через нить накала, будет нарастать от своего нулевого значения до номинального, какое-то определенное время.

постепенное возрастание тока после подключения прибора или лампочки

В какой-то момент он его достигает и держится на этом уровне постоянно. То же самое будет, если подключить не одну, а две, три лампочки и т.д.

катушка индуктивности и ее влияние на косинус фи

А что случится, если вместе с лампой последовательно включить катушку, намотанную из множества витков проволоки?

Изменится ли как-то процесс нарастания тока? Конечно, да.

сравнение графика нарастания силы тока с катушкой индуктивности в схеме и без нее

Данная катушка индуктивности, заметно затормозит время увеличения тока от нуля до максимума. Фактически получится, что максимальное напряжение (разность потенциалов) на лампе уже есть, а вот ток поспевать за ним не будет.

Его нарастание слишком медленное. Из-за чего это происходит и кто виноват? Виноваты витки катушки, которые оказывают влияние друг на друга и тормозят ток.

выбрось батарейку и ничего не будет

Если у вас напряжение постоянное, например как в аккумуляторах или в батарейках, ток относительно медленно, но все-таки успеет дорасти до своего номинального значения.

возрастание тока при постоянном напряжении

А далее, ток будет вместе с напряжением идти, что называется «нога в ногу».

синусоида переменного напряжения и косинус фи

А вот если взять напряжение из розетки, с переменной синусоидой, то здесь оно не постоянно и будет меняться. Сначала U какое-то время положительная величина, а потом — отрицательная, причем одинаковое по амплитуде. На рисунке это изображается в виде волны.

Эти постоянные колебания не дают нашему току, проходящему сквозь катушку, достигнуть своего установившегося значения и догнать таки напряжение. Только он будет подбираться к этой величине, а напряжение уже начинает падать.

запаздывание тока от напряжения

Поэтому в этом случае и говорят, что ток отстает от напряжения.

от чего зависит запаздывание тока от напряжения

Причем, чем больше в катушке намотано витков, тем большим будет это самое запаздывание.

Как же это все связано с косинусом фи — cos ϕ?

Что такое коэффициент мощности

один цикл синусоиды напряжения в 360 градусов

А связано это таким образом, что данное отставание тока измеряется углом поворота. Полный цикл синусоиды или волны, который она проходит от нуля до нуля, вместив в себя максимальное и минимальное значение, измеряется в градусах. И один такой цикл равен 360 градусов.

косинус фи на графике запаздывания тока от напряжения

А вот угол отставания тока от напряжения, как раз таки и обозначается греческой буквой фи. Значение косинуса этого угла опаздывания и есть тот самый cos ϕ.

значения косинуса фи в зависимости от градусов

Таким образом, чем больше ток отстает от напряжения, тем большим будет этот угол. Соответственно косинус фи будет уменьшаться.

графики синусоиды для ламп

По научному, ток сдвинутый от напряжения называется фазовым сдвигом. При этом почему-то многие уверены, что синусоида всегда идеальна. Хотя это далеко не так.

111_driver

В качестве примера можно взять импульсные блоки питания.

что такое коэффициент мощности и КНИ

Не идеальность синусоиды выражается коэфф. нелинейных искажений — КНИ. Если сложить две эти величины — cos ϕ и КНИ, то вы получите коэффициент мощности.

Однако, чтобы все не усложнять, чаще всего под понятием коэфф. мощности имеют в виду только лишь один косинус фи.

формула расчета косинуса фи коэффициента мощности

На практике, данный коэффициент мощности рассчитывают не при помощи угла сдвига фаз, а отношением активной мощности к полной.

Активная и реактивная мощность

что такое треугольник мощностей

Существует такое понятие как треугольник мощностей. Сам косинус — это тригонометрическая функция, которая и появилась при изучении свойств прямоугольных треугольников.

Она здорово помогает производить определенные вычисления с ними. Например, наглядно показывает отношение длин прилежащего катета (P-активная мощность) к гипотенузе (S-полная мощность).

То есть, зная угол сдвига, можно узнать, сколько активной мощности содержится в полной. Чем меньше этот угол, тем меньше реактивной составляющей находится в сети, и наоборот.

Только не путайте cos ϕ с КПД. Это разные понятия. Реактивная составляющая не расходуется, а «возвращается» на подстанцию в сеть, т.е. фактически потери ее нет. Только небольшая ее часть может тратиться на нагрев проводов.

как выбрать светодиодную лампу

В КПД все более четко — полезная мощность используется на нагрев — охлаждение — механическую работу, остальное уходит безвозвратно. Эта разница и показывается в КПД.

Более подробно, с графиками, рисунками и простыми словами, без особых научных формулировок обо всем этом говорится в ролике ниже.

Низкий коэффициент мощности и его последствия

Рассмотренное запаздывание тока относительно напряжения — это не хорошее явление. Как оно может сказаться на ваших лампочках или проводке?

  • во-первых, это повышенное потребление электроэнергии

на что влияет низкий коэффициент мощности

Часть энергии будет просто «болтаться» в катушке, при этом не принося никакой пользы. Правда не пугайтесь, ваш бытовой счетчик реактивную энергию не считает и платить вы за нее не будете.

что такое косинус мощности фи

Например, если вы включите в розетку инструмент или светильник с полной мощностью 100Ва, на блоке питания которого будет указано cos ϕ=0,5. То прибор учета накрутит вам только на половину от этой величины, то есть 50Вт.

Зато по проводам питания будет проходить вся нагрузка, разогревая их бесполезной работой.

  • величина тока в проводке увеличится

Вот известное наглядное видео, демонстрирующее последствия этого для проводки.

  • для эл.станций и трансформаторов оно вредно перегрузкой

Казалось бы, выбрось катушку и вся проблема исчезнет. Однако делать этого нельзя.

откуда берется в лампах косинус фи

В большинстве светильников, лампы работают не отдельно, а в паре с источниками питания. И в этих самых источниках, как раз таки присутствуют разнообразные катушки.

111_DNaT

Катушки просто необходимы как функциональная часть всей схемы и избавиться от них не получится. Например в тех же дроссельных лампах ДРЛ, ДНАТ, люминесцентных и т.п.

значения параметра косинуса фи

Поэтому характеристика коэфф. мощности, здесь больше относится к блоку питания, нежели к самой лампе. Данный cos ϕ может принимать значение от ноля до единицы.

Ноль означает, что полезная работа не совершается. Единица — вся энергия идет на совершение полезной работы.

Чем выше коэффициент мощности, тем ниже потери электроэнергии. Вот таблица косинуса фи для различных потребителей:таблица значений косинуса фи для разных потребителейтаблица значений косинуса мощности для разных приборов и оборудования

Как измерить коэффициент мощности

прибор для измерения коэффициента мощности

Если вы не знаете точный коэфф. мощности своего прибора, или его нет на бирке, можно ли измерить косинус фи в домашних условиях, не прибегая к различным формулам и вычислениям? Конечно можно.

измерение коэффициента мощности косинус фи цифровым ваттметром

Для этого достаточно приобрести широко распространенный инструмент — цифровой ваттметр в розетку.

Подключая любое оборудование через него, можно легко без замеров и сложных вычислений, узнать фактический cos ϕ.

цифровой бытовой ваттметр

Зачастую, фактические данные могут быть даже точнее, чем написанные на шильдике, которые рассчитаны для идеальных условий.

Если он слишком низкий, что делать, чтобы привести его значение как можно ближе к единице? Можно это дело определенным образом компенсировать. Например, с помощью конденсаторов.

Однако это тема совсем другой статьи.

Коррекция коэффициента мощности

Коррекция коэффициента мощности — это регулировка электрической цепи для изменения коэффициента мощности около 1.

Коэффициент мощности, близкий к 1, снизит реактивную мощность в цепи, и большая часть мощности в цепи будет реальной. Это также снизит потери в линиях электропередач.

Коррекция коэффициента мощности обычно выполняется путем добавления конденсаторов в цепь нагрузки, если в цепи есть индуктивные компоненты, например, в электродвигателе.

Расчет коррекции коэффициента мощности

Полная мощность | S | в вольт-амперах (ВА) равно напряжению V в вольтах (В), умноженному на ток I в амперах (А):

Реактивная мощность Q в вольт-амперах реактивной (VAR) равна квадратному корню из квадрата полной мощности | S | в вольт-амперах (ВА) минус квадрат реальной мощности P в ваттах (Вт) (теорема Пифагора):

Реактивная мощность Q в вольт-амперах, реактивная (VAR) равна квадрату напряжения V в вольтах (В), деленному на реактивное сопротивление Xc:

Таким образом, конденсатор коррекции коэффициента мощности в Фараде (F), который следует добавить в цепь параллельно, равен реактивной мощности Q в реактивных вольт-амперах (VAR), деленной на 2π, умноженную на частоту f в Герцах (Гц), умноженную на квадрат напряжение V в вольтах (В):

Коэффициент мощности

Коэффициент мощности (Power Factor) – комплексный показатель, характеризующий потери энергии в электросети, обусловленные фазовыми и нелинейными искажениями тока и напряжения в нагрузке, численно равный отношению активной мощности P нагрузки к её полной мощности S.

Наиболее значимую часть потерь в сети создают реактивные элементы по причине своей физической способности накапливать и возвращать неиспользованную энергию обратно в источник.
Реактивная составляющая тока нагрузок не осуществляет полезной работы, но остаётся в виде падения напряжения на активном сопротивлении всех участков сети энергосистемы, попросту разогревая провода ЛЭП, кабели и трансформаторы подстанций.

В этом случае, если не рассматривать другие потери, коэффициент мощности будет равен косинусу угла сдвига фаз между током и напряжением в нагрузке.

PF = P/S = cosφ

PF — Power Factor — Коэффициент Мощности (КМ).
P — Потребляемая (полезная, активная) мощность. P=UIcosφ.
S — Полная мощность. S = UI.
φ — Угол сдвига фаз между током и напряжением, созданный реактивными элементами нагрузок (обмотки электродвигателей, трансформаторов, электромагнитов . )
Подробнее об этом на страничке реактивная мощность.

В целях устранения реактивных потерь на производственных предприятиях используют специальные конденсаторные установки, компенсируя положительный сдвиг фаз, созданный индуктивными нагрузками.
На начальном этапе компенсация фазового сдвига, внесённого суммарно всеми потребителями сети, осуществляется на электростанциях путём контроля подмагничивания роторных обмоток генераторов.

Гармонические искажения

В настоящее время большая часть бытовой техники является для электросети нелинейной нагрузкой.
Телевизоры, компьютеры, мониторы, муз. центры, адаптеры, зарядные устройства, энергосберегающие лампочки и многие другие бытовые приборы имеют выпрямитель или импульсный блок питания, искажающий форму тока.
В результате, дополнительно к основной частоте 50 гц, в сети появляются высшие кратные гармоники — 100 гц, 150 гц, 200 гц, 250 гц и.т.д.
Высшие гармоники тока на активной нагрузке выделяют активную мощность, но энергетически не связаны с источником (генератором) и являются потерями для энергосистемы. Мощность высших гармоник, как и реактивная, будет рассеиваться на активном сопротивлении проводов, кабелей, трансформаторов и линий электропередач в виде тепла и других негативных явлений в силовых установках сети (паразитный резонанс, вихревые токи и.т.д. ).
Коэффициент мощности для нелинейных нагрузок определится из коэффициента гармоник соотношением:

DPF (Distortion Power Factor) — это тот же PF, но только для гармонических искажений, без учёта сдвига фаз.
THD (Total Harmonic Distortion) — коэффициент гармоник, равный отношению суммы квадратов тока или напряжения высших гармоник к квадрату тока (напряжения) основной гармоники.

В этом случае коэффициент мощности можно выразить, как отношение действующего значения тока основной гармоники к действующему значению тока в нагрузке.

Многие бытовые потребители снабжены симисторным регулятором мощности, который не только вносит гармонические искажения тока, но и сдвигает фазу основной гармоники тока, что приводит к дополнительным (фазовым) потерям. То есть, в таких случаях, коэффициент мощности определится не только коэффициентом искажений, но и сдвигом фазы основной гармоники.

Здесь cosφ1 — косинус угла сдвига фазы тока основной (первой) гармоники относительно напряжения сети.

Современные пылесосы и стиральные машины с симисторными регуляторами оборотов вносят весь комплекс искажений тока по причине наличия электродвигателя, как реактивной составляющей в нагрузке.
Тогда угол сдвига фаз для основной гармоники в расчётах увеличится с учётом общего сдвига тока индуктивностями обмоток двигателя.

Более существенные гармонические искажения в электросети возникают при использовании мощных сварочных преобразователей — инверторов, которые могут искажать не только форму тока, но и напряжения в сети. А это внесёт дополнительные потери мощности для всех других потребителей этой сети.

В общем случае для любых нагрузок, независимо от степени искажений и угла сдвига фаз, коэффициент мощности PF можно определить, как соотношение P/S, вычислив активную P и полную S мощности интегрированием тока и напряжения во времени, которое способны произвести современные цифровые измерительные приборы на основе микроконтроллеров.

Потребляемая (активная) мощность P — это среднее значение мощности в нагрузке за период, т.е среднеарифметическое всех мгновенных значений UI.
Полная мощность — это произведение среднеквадратичных значений напряжения сети и тока нагрузки.
Тогда коэффициент мощности вычисляется следующим образом:

В целях компенсации гармонических искажений, в электрические потребители, содержащие нелинейные элементы в силовых цепях, устанавливают специальные Корректоры Коэффициента Мощности (ККМ) — Power Factor Correction (PFC), которые могут быть как пассивными (фильтры L или LC), так и активными.
Активные PFC — это преобразователи, способные приблизить форму тока в нагрузке к синусоидальной, тем самым устранив (по возможности) высшие гармоники из общего спектра колебаний тока.

В качестве ознакомления можно посмотреть пример использования вышеописанных расчётных формул для варианта с симисторным управлением активной нагрузкой по ссылке ограничение мощности симистором.

Замечания и предложения принимаются и приветствуются!

Активная мощность (P)

Измеряется в ваттах Вт

Активная (средняя) мощность — это среднее значение мощности за период.. Активная мощность используется только на активные сопротивления, то есть на выполнения полезной работы.

P = I*U*cos φ

Активное сопротивление

Как известно сопротивление проводника при переменном токе больше чем при постоянном, в следствии явлений поверхностного эффекта, эффекта близости, возникновение вихревых токов и излучение электромагнитной

энергии в пространство. Именно поэтому сопротивление проводника в постоянных цепях называют омическим, а в переменного тока называют активным сопротивлением.

Что такое коэффициент мощности (косинус фи)

Что такое коэффициент мощности (косинус фи)

Физическая сущность коэффициента мощности (косинуса «фи») заключается в следующем. Как известно, в цепи переменного тока в общем случае имеются три вида нагрузки или три вида мощности (три вида тока, три вида сопротивлений). Активная Р, реактивная Q и полная S мощности соответственно ассоциируются с активным r, реактивным х и полным z сопротивлениями.

Из курса электротехники известно, что активным называется сопротивление, в котором при прохождении тока выделяется тепло. С активным сопротивлением связаны потери активной мощности d P п , равные квадрату тока, умноженному на сопротивление d P п = I 2 r Вт.

Реактивное сопротивление при прохождении по нему тока потерь не вызывает. Обусловливается это сопротивление индуктивностью L, а также емкостью С.

Что такое коэффициент мощности

Индуктивное и емкостное сопротивления являются двумя видами реактивного сопротивления и выражаются следующими формулами:

  • реактивное сопротивление индуктивности, или индуктивное сопротивление,
  • реактивное сопротивление емкости, или емкостное сопротивление,

Тогда х = хL — х c . Например, если в цепи хL= 12 Ом, хс = 7 Ом, то реактивное сопротивление цепи x=х L — хс= 12 — 7 = 5 Ом.

Иллюстрации к объяснению сущности косинуса

Рис. 1. Иллюстрации к объяснению сущности косинуса «фи»: а — схема последовательного включения r и L в цепи переменного тока, б — треугольник сопротивлений, в — треугольник мощностей, г — треугольник мощностей при различных значениях активной мощности.

Полное сопротивление z включает в себя активное и реактивное сопротивления. Для цепи последовательного соединения г и L (рис. 1 , а) графически изображается треугольником сопротивления .

Если стороны этого треугольника умножить на квадрат одного и того же тока, то соотношение сторон не изменится, но новый треугольник будет представлять собой треугольник мощностей (рис. 1,в). Подробнее смотрите здесь — Треугольники сопротивлений, напряжений и мощностей

Как видно из треугольника, в цепи переменного тока в общем случае возникают три мощности: активная Р, реактивная Q и полная S

P = I 2 r = UIcosфи Вт, Q = I 2 х = I 2 х L — I2xc = UIsinфи Вар, S = I 2 z = UI Ва.

Активная мощность может быть названа рабочей, т. е. она «греет» (выделение тепла), «светит» (электрическое освещение), «двигает» (электродвигатели приводят в движение механизмы) и т. д. Измеряется она так же, как и мощность на постоянном токе, в ваттах.

Выработанная активная мощност ь полностью без остатка расходуется в приемниках и подводящих проводах со скоростью света — практически мгновенно. Это является одной из характерных особенностей активной мощности: сколько вырабатывается, столько и расходуется.

Реактивная мощность Q не расходуется и представляет собой колебание электромагнитной энергии в электрической цепи. Переливание энергии из источника к приемнику и обратно связано с протеканием тока по проводам, а так как провода обладают активным сопротивлением, то в них имеются потери.

Таким образом, при реактивной мощности работа не совершается, но возникают потери, которые при одной и той же активной мощности тем больше, чем меньше коэффициент мощности (cosфи , косинус «фи») .

Пример. Определить потери мощности в линии с сопротивлением r л = 1 ом, если по ней передается мощность Р=10 кВт на напряжение 400 В один раз при cosфи 1 = 0,5, а второй раз при cosфи2=0,9.

Решение. Ток в первом случае I1 = P/(Ucosфи 1) = 10/(0 ,4 • 0,5) = 50 А.

Потери мощности dP1 = I1 2 r л = 50 2 •1 = 2500 Вт = 2,5 кВт.

Во втором случае ток I1 = P/(Ucosфи 2 ) = 10/(0 ,4 • 0,9) = 28 А

Потери мощности dP2 = I 2 2 r л = 28 2 •1 = 784 Вт = 0,784 кВт, т.е. во втором случае потери мощности в 2,5/0,784 = 3,2 раза меньше только потому, что выше значение cosфи.

Расчет наглядно показывает, что чем выше величина косинус «фи», тем меньше потери энергии и тем меньше нужно закладывать цветного металла при монтаже новых установок.

Измерение коэффциента мощности

Повышая косинус «фи», преследуем три основные цели:

1) экономию электрической энергии,

2) экономию цветных металлов,

3) максимальное использование установленной мощности генераторов, трансформаторов и вообще электродвигателей переменного тока.

Последнее обстоятельство подтверждается тем, что, например, от одного и того же трансформатора можно получить тем больше активной мощности, чем больше величина со sфи потребителей. Так, от трансформатора с номинальной мощностью Sн=1000 кВа при со sфи 1 = 0,7 можно получить активной мощности Р 1 = S нcosфи 1 = 1000•0,7=700 кВт, а при cosфи2 = 0,95 Р2 = S нcosфи2= 1000•0,95 = 950 кВт.

В обоих случаях трансформатор будет нагружен полностью до 1000 кВа. Причиной низкого коэффициента мощности на предприятиях являются недогруженные асинхронные двигатели и трансформаторы. Например, асинхронный двигатель при холостом ходе имеет cos фихх примерно равный 0,2, тогда как при загрузке до номинальной мощности со sфи н = 0,85.

Для наглядности рассмотрим приближенный треугольник мощности для асинхронного двигателя (рис. 1,г). При холостом ходе асинхронный двигатель потребляет реактивную мощность, примерно равную 30% номинальной мощности, тогда как потребляемая активная мощность при этом составляет около 15%. Коэффициент мощности поэтому очень низок. С возрастанием нагрузки активная мощность увеличивается, а реактивная меняется незначительно и поэтому cosфи возрастает. Подробнее об этом читайте здесь: Коэффициент мощности электропривода

Основным мероприятием, повышающим значение cosфи, является работа на полную производственную мощность. В этом случае асинхронные двигатели будут работать с коэффициентами мощности, близкими к номинальным величинам.

Мероприятия по повышению коэффициента мощности делятся на две основные группы:

1) не требующие установки компенсирующих устройств и целесообразные во всех случаях (естественные способы);

2) связанные с применением компенсирующих устройств (искусственные способы).

Конденсаторная установка для повышения коэффициента мощности

Конденсаторная установка для повышения коэффициента мощности

К мероприятиям первой группы согласно действующим руководящим указаниям относится упорядочение технологического процесса, ведущее к улучшению энергетического режима оборудования и повышению коэффициента мощности. К этим же мероприятиям относится применение синхронных двигателей вместо некоторых асинхронных (установка синхронных двигателей рекомендуется вместо асинхронных всюду, где требуется повышать соsфи).

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Не пропустите обновления, подпишитесь на наши соцсети:

Оцените статью
TutShema
Добавить комментарий