Чем обусловлено внутреннее сопротивление источника тока

Чем обусловлено внутреннее сопротивление источника тока

Допустим, есть простейшая электрическая замкнутая цепь, включающая в себя источник тока, например генератор, гальванический элемент или аккумулятор, и резистор, обладающий сопротивлением R. Поскольку ток в цепи нигде не прерывается, то и внутри источника он течет.

В такой ситуации можно сказать, что любой источник обладает некоторым внутренним сопротивлением, препятствующим току. Это внутреннее сопротивление характеризует источник тока и обозначается буквой r. Для гальванического элемента или аккумулятора внутреннее сопротивление — это сопротивление раствора электролита и электродов, для генератора — сопротивление обмоток статора и т. д.

Чем обусловлено внутреннее сопротивление источника тока

Таким образом, источник тока характеризуется как величиной ЭДС, так и величиной собственного внутреннего сопротивления r – обе эти характеристики свидетельствуют о качестве источника.

Электростатические высоковольтные генераторы (как генератор Ван де Граафа или генератор Уимшурста), к примеру, отличаются огромной ЭДС измеряемой миллионами вольт, при этом их внутреннее сопротивление измеряется сотнями мегаом, потому они и непригодны для получения больших токов.

Батарейка и генератор Ван де Граафа

Гальванические элементы (такие как батарейка) — напротив — имеют ЭДС порядка 1 вольта, хотя внутреннее сопротивление у них порядка долей или максимум — десятка Ом, и от гальванических элементов поэтому можно получать токи в единицы и десятки ампер.

Реальный источник с присоединенной нагрузкой

На данной схеме показан реальный источник с присоединенной нагрузкой. Здесь обозначены ЭДС источника, его внутреннее сопротивление, а также сопротивление нагрузки. Согласно закону Ома для замкнутой цепи, ток в данной цепи будет равен:

Ток в цепи

Поскольку участок внешней цепи однороден, то из закона Ома можно найти напряжение на нагрузке:

Напряжение на нагрузке

Выразив из первого уравнения сопротивление нагрузки, и подставив его значение во второе уравнение, получим зависимость напряжения на нагрузке от тока в замкнутой цепи:

Зависимость напряжения на нагрузке от тока в замкнутой цепи

В замкнутом контуре ЭДС равна сумме падений напряжений на элементах внешней цепи и на внутреннем сопротивлении самого источника. Зависимость напряжения на нагрузке от тока нагрузки в идеальном случае линейна.

5. Ток. Законы Кирхгофа. Внутреннее сопротивление источника питания. Для начинающих электронщиков.

График это показывает, но экспериментальные данные на реальном резисторе (крестики возле графика) всегда отличаются от идеала:

При нулевом токе нагрузки напряжение на внешней цепи равно ЭДС источника, а при нулевом напряжении на нагрузке ток в цепи равен току короткого замыкания

Эксперименты и логика показывают, что при нулевом токе нагрузки напряжение на внешней цепи равно ЭДС источника, а при нулевом напряжении на нагрузке ток в цепи равен току короткого замыкания. Это свойство реальных цепей помогает экспериментально находить ЭДС и внутреннее сопротивление реальных источников.

Экспериментальное нахождение внутреннего сопротивления

Чтобы экспериментально определить данные характеристики, строят график зависимости напряжения на нагрузке от величины тока, затем экстраполируют его до пересечения с осями.

В точке пересечения графика с остью напряжения находится значение ЭДС источника, а в точке пересечения с осью тока находится величина тока короткого замыкания. В итоге внутреннее сопротивление находится по формуле:

Внутреннее сопротивление

Развиваемая источником полезная мощность выделяется на нагрузке. График зависимости этой мощности от сопротивления нагрузки приведен на рисунке. Эта кривая начинается от пересечения осей координат в нулевой точке, затем возрастает до максимального значения мощности, после чего спадает до нуля при сопротивлении нагрузки равном бесконечности.

График зависимости мощности от сопротивления нагрузки

Чтобы найти максимальное сопротивление нагрузки, при котором теоретически разовьется максимальная мощность при данном источнике, берется производная от формулы мощности по R и приравнивается к нулю. Максимальная мощность разовьется при сопротивлении внешней цепи, равном внутреннему сопротивлению источника:

Максимальная мощность

Это положение о максимальной мощности при R = r, позволяет экспериментально найти внутреннее сопротивление источника, построив зависимость мощности, выделяемой на нагрузке, от величины сопротивления нагрузки. Найдя реальное, а не теоретическое, сопротивление нагрузки, обеспечивающее максимальную мощность, определяют реальное внутреннее сопротивление источника питания.

КПД источника тока показывает отношение максимальной выделяемой на нагрузке мощности к полной мощности, которую в данный момент развивает источник:

КПД источника тока

Ясно, что если источник развивает такую мощность, что на нагрузке получается максимум возможной мощности для данного источника, то КПД источника окажется равным 50%.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Не пропустите обновления, подпишитесь на наши соцсети:

Внутреннее сопротивление источника ЭДС

Дело все в том, что в аккумуляторе «спрятано» сопротивление, которое условно говоря, цепляется последовательно с источником ЭДС аккумулятора. Называется оно внутренним сопротивлением или выходным сопротивлением. Обозначается маленькой буковкой «r «.

Выглядит все это в аккумуляторе примерно вот так:

закон Ома для полной цепи

замкнутная цепь закон Ома для полной цепи

Итак, что у нас получается в чистом виде?

Закон Ома для полной цепи

Лампочка — это нагрузка, которая обладает сопротивлением. Значит, еще больше упрощаем схему и получаем:

Закон Ома для полной цепи

Имеем идеальный источник ЭДС, внутреннее сопротивление r и сопротивление нагрузки R. Вспоминаем статью делитель напряжения. Там говорится, что напряжение источника ЭДС равняется сумме падений напряжения на каждом сопротивлении.

падение напряжения закон Ома для полной цепи

На резисторе R падает напряжение UR , а на внутреннем резисторе r падает напряжение Ur .

Теперь вспоминаем статью делитель тока. Сила тока, протекающая через последовательно соединенные сопротивления везде одинакова.

Вспоминаем алгебру за 5-ый класс и записываем все то, о чем мы с вами сейчас говорили. Из закона Ома для участка цепи получаем, что

Закон Ома для полной цепи

Закон Ома для полной цепи

Закон Ома для полной цепи

формула закон Ома для полной цепи

Закон Ома для полной цепи

Итак, последнее выражение носит название «закон Ома для полной цепи»

закон Ома для полной цепи формула

Е — ЭДС источника питания, В

R — сопротивление всех внешних элементов в цепи, Ом

I — сила ток в цепи, А

r — внутреннее сопротивление источника питания, Ом

Внутреннее сопротивление и ЭДС

Электродвижущая сила и внутреннее сопротивление ведут нескончаемую битву внутри наших источников напряжения. Что стоит за этими концепциями? Каковы их отношения и каковы последствия их существования?

Электродвижущая сила

Электродвижущая сила звучит как термин из учебника по физике, и мало кто даже из радиолюбителей точно знает, для чего она нужна и что это значит. В Википедии описание выглядит так:

Электродвижущая сила (ЭДС) – фактор, вызывающий протекание тока в электрической цепи, равный электрической энергии, полученной единичным зарядом, перемещаемым в устройстве (источнике) электрического тока в направлении, противоположном силе электрического поля, действующего на это обвинение.

Понять это с первого раза может далеко не каждый. Единственное, что стоит помнить из этого описания, – это тот факт, что электродвижущую силу часто сокращают как ЭДС – это просто короче и проще. В английском языке аббревиатура EMF, которая означает Electromotive Force.

Начнем с того, что электродвижущую силу очень часто путают с напряжением, наверное потому, что оба эти значения выражаются в вольтах. Но если посмотрим на определение напряжения, то можно увидеть что оно полностью отличается от описания ЭДС и намного короче:

Электрическое напряжение – разница электрических потенциалов между двумя точками электрической цепи или электрического поля.

Так является ли ЭДС чем-то совершенно другим, чем напряжение? Не совсем. Фактически, ЭДС и напряжение – это одно и то же физическое понятие. Они оба вызывают протекание тока и оба говорят об энергии, которую несет электрический заряд. Что же делает их особенными?

Говоря проще – ЭДС это то что хотим, а напряжение – это то что получаем. Рассмотрим тему на примере водяной установки. В этом случае можно назвать электродвижущую силу номинальным давлением насоса, который достаем из коробки. Номинальный означает то, что насос теоретически способен производить. Другими словами, ЭДС описывает сколько «толкающей силы» источник может дать. Но действительно ли получим эту силу на практике?

Теперь переходим к напряжению, эквивалентом которого в водяной системе является фактическое давление воды, которое получаем после подключения нашего насоса. Конечно любые засоры в трубах или повреждение установки снижают это давление, так же как резистор вызывает падение напряжения в цепи. Но на интересует может ли насос протолкнуть воду с мощностью, обещанной производителем, и обычно это не так. Точно так же, если у нас есть аккумулятор с ЭДС 9 В, то после его подключения и измерения напряжения на клеммах может оказаться, что там всего 8,5 В. Почему? У каждого источника напряжения есть свои недостатки, которые нельзя преодолеть физически.

Таким образом, ЭДС – это виртуальная величина. Можем определить это как напряжение, которого достигли бы, если бы аккумулятор не имел дефектов и его эффективность составляла 100%. Электроника даже изобрела концепцию идеального источника напряжения, заключающуюся в том, что в определенных ситуациях человек закрывает глаза на недостатки источника и принимает рабочее напряжение, равное ЭДС (U = ЭДС). Но в действительности идеальных батарей, аккумуляторов и генераторов не существует, поэтому вырабатываемое во время работы напряжение всегда ниже значения ЭДС.

Эта потеря велика или нет? Чтобы проверить можно взять обычную батарею AA. На этикетке указано 1,5 В. Это значение производители называют номинальным напряжением. Так это имеется ввиду ЭДС или рабочее напряжение? Чтобы измерить ЭДС батареи, понадобится вольтметр. Важно чтобы измеряемая батарея была новой – надо видеть полный заряд, которым ее снабдил производитель, а не какое-либо остаточное напряжение в использованной батарее.

Можете измерить несколько батарей от разных производителей, и каждая из них даст разный результат. Один раз 1,60 В, в другой 1,65 В или 1,57 В. Почему же на каждой из этих батарей есть метка 1,5 В, хотя их ЭДС выше? Установите на них небольшой резистор, и результат колеблется между 1,55 В и 1,62 В, что все равно больше, чем предсказывал производитель. Что же тут происходит?

Если посмотрим в книги по электротехнике, те, которые касаются аккумуляторов, то там найдем определение до 10 различных типов напряжения! Вот несколько примеров:

  1. Теоретическое напряжение (theoretical voltage) – величина энергии, возникающая от батарей в зависимости от материалов. Например использование цинка и меди в качестве электродов даст напряжение 1,1 В, в то время как самые современные литиевые батареи могут достигать даже 3,5 В.
  2. Напряжение холостого хода (open-circuit voltage) – можем описать их как «напряжение батареи из коробки» или просто ЭДС. Это значение часто немного ниже теоретического напряжения, потому что конструкция батареи влечет за собой определенные ограничения.
  3. Рабочее напряжение (closed-circuit voltage) – батареи под нагрузкой теряют часть ЭДС. Насколько велико падение зависит от нескольких вещей, о которых расскажем далее.
  4. Номинальное напряжение – (nominal voltage) – ЭДС каждой батареи (угольной, щелочной или литиевой) может быть разным – иногда это 1,55 В, в другой раз, например, 1,62 В. Почему же тогда на каждой из них написано 1,5 В? Причина – стандартизация. Чтобы избежать путаницы и не заставлять потребителя задаваться вопросом, какое именно напряжение будет наилучшим в данном случае, было введено несколько стандартных напряжений, таких как 1,5 В, 3 В и 9 В, которым назначены ячейки. Во всех случаях ЭДС немного выше номинального напряжения, так что это «обман» в нашу пользу.
  5. Напряжение отключения (cut-off voltage) – при разрядке источник теряет энергию и, таким образом, снижает значение его ЭДС и рабочего напряжения. Через некоторое время наступит момент, когда напряжение станет слишком низким для продолжения питания устройства и он будет считаться разряженным. Но эта граница довольно плавная и зависит от нагрузки. Разряженный аккумулятор может не питать фонарик, но если поместим его в электронные часы, он сможет запитывать его еще несколько дней.

Электродвижущая сила. Внутреннее сопротивление источника тока.

Сторонними силами называются любые силы, действующие на электрически заряженные частицы в цепи, за исключением электростатических (т. е. кулоновских).

Сторонние силы. Для поддержания постоянной разности потенциалов на концах проводника, а значит, и тока необходимо наличие сторонних сил неэлектрической природы, с помощью которых происходит разделение электрических зарядов.

Электродвижущая сила Внутреннее сопротивление источника тока

Сторонними силами называются любые силы, действующие на электрически заряженные частицы в цепи, за исключением электростатических (т. е. кулоновских).

Сторонние силы приводят в движение заряженные частицы внут­ри всех источников тока: в генераторах, на электростанциях, в гальванических элементах, аккумуляторах и т. д.

При замыкании цепи создается электрическое поле во всех про­водниках цепи. Внутри источника тока заряды движутся под действием сторонних сил против кулоновских сил (электроны движут­ся от положительно заряженного электрода к отрицательному), а во всей остальной цепи их приводит а движение электрическое поле (см. рис. выше).

В источниках тока в процессе работы по разделению заряженных частиц происходит превращение разных видов энергии в электричес­кую. По типу преобразованной энергии различают следующие виды электродвижущей силы:

— электростатическая — в электрофорной машине, в которой происходит превращение механической энергии при трении в электрическую;

— термоэлектрическая — в термоэлементе — внутренняя энергия нагретого спая двух проволок, изготовленных из разных металлов, превращается в электрическую;

— фотоэлектрическая — в фотоэлементе. Здесь происходит превращение энергии света в элек­трическую: при освещении некоторых веществ, например, селена, оксида меди (I), кремния наблюдается потеря отрицательного электрического заряда;

— химическая — в гальванических элементах, аккумуляторах и др. источниках, в которых происходит превращение химической энергии в электрическую.

Электродвижущая сила (ЭДС) — характеристика источников тока. Понятие ЭДС было введено Г. Омом в 1827 г. для цепей постоянного тока. В 1857 г. Кирхгофф определил ЭДС как работу сторонних сил при переносе единичного электрического заряда вдоль замкнутого контура:

где ɛ — ЭДС источника тока, Аст — работа сторонних сил, q — количество перемещенного заряда.

Электродвижущую силу выражают в вольтах.

Можно говорить об электродвижущей силе на любом участке цепи. Это удельная работа сторонних сил (работа по перемещению единичного заряда) не во всем контуре, а только на данном участке.

Внутреннее сопротивление источника тока .

Пусть имеется простая замкнутая цепь, состоящая из источника тока (например, гальванического элемента, аккумулятора или генератора) и резистора с сопротивлением R. Ток в замкну­той цепи не прерывается нигде, следовательно, oн существует и внутри источника тока. Любой источник представляет собой некоторое сопротивление дли тока. Оно называется внутренним сопротивлением источника тока и обозначается буквой r.

В генераторе r — это сопротивление обмотки, в гальваническом элементе — сопротивление раствора электролита и электродов.

Таким образом, источник тока характеризуется величинами ЭДС и внутреннего сопротивлении, которые определяют его качество. Например, электростатические машины имеют очень большую ЭДС (до десятков тысяч вольт), но при этом их внутреннее сопротивление огромно (до со­тни Мом). Поэтому они непригодны для получения сильных токов. У гальванических элементов ЭДС всего лишь приблизительно 1 В, но зато и внутреннее сопротивление мало (приблизительно 1 Ом и меньше). Это позволяет с их помощью получать токи, измеряемые амперами.

Оцените статью
TutShema
Добавить комментарий