Электрическими двигателями называют механизмы, предназначенные для преобразования электрической энергии в механическое движение. Электромоторы сопровождают человека практически во всех сферах его деятельности. Без них невозможно представить современную жизнь. Несмотря на надежность и долговечность, все же случаются поломки и сбои в работе таких устройств. Знание характеристик, особенностей поможет правильно выбирать, обслуживать и при необходимости ремонтировать асинхронные двигатели.
В асинхронных двигателях переменного тока (АД) частота вращения ротора не синхронизирована с частотой магнитного поля, индуцируемого током обмотки статора. От этого принципа произошло определение этой группы электромашин. В синхронных электрических машинах частоты совпадают.
Виды асинхронных двигателей
В настоящее время разработано и применяется множество различных разновидностей АД, которые различаются конструктивно и по характеристикам. Бывают однофазные, двухфазные, трехфазные, многофазные конструкции, которые работают от сети переменного тока. Различается количество полюсов. Применяются модификации с постоянной и переменной частотой тока, последние называются инверторными. По типу ротора различают 2 вида: фазные электродвигатели и с короткозамкнутым ротором. Асинхронные электрические моторы выгодно отличаются от других преобразователей энергии компактностью, долговечностью высоким КПД.
АД распространены очень широко, и являются самым популярным типом электромашин. Асинхронные электродвигатели используют в компрессорах, системах водоснабжения, отопления, кондиционирования, автомобилестроении. Особенно востребованы такие устройства в областях, где требуется точно выдерживать скорость вращения вала, например при производстве полимеров, стеклотканей, проволоки.
Относительно маломощные однофазные агрегаты работают в вентиляторах, маломощной бытовой технике. Более производительные двухфазные агрегаты популярнее, их применяют в приводах стиральных машин, холодильников, иных приборов.
Значительно шире используются трехфазные асинхронные электромашины, в первую очередь в промышленности. Ими оснащают электроприводы станков, подъемных кранов, лифтов, многого другого. Этому способствуют надежность и экономичность электродвигателей.
Принцип работы
Заключается в формировании электромагнитного поля вокруг проводника, по которому протекает электрический ток. Для асинхронного электродвигателя данный процесс начинается сразу после подачи напряжения на обмотки статора, после чего в роторе наводится ЭДС взаимоиндукции, индуцирующей вихревые токи в металлическом каркасе. Наличие вихревых токов обуславливает генерацию собственной ЭДС, которая формирует электромагнитное поле ротора. Наиболее эффективный КПД асинхронной электрической машины получается при работе от трехфазной сети.
АСИНХРОННЫЙ двигатель, принцип работы и строение, простыми словами. (ТРЕХФАЗНЫЙ).
Конструктивно обмотки статора имеют смещение в пространстве друг относительно друга на 120°, что показано на рисунке 2 ниже:
Такой прием позволяет отстроить магнитное поле рабочих обмоток в строгом соответствии с напряжением трехфазной сети, которое имеет аналогичную разность кривых электрической величины.
На рисунке 3 выше все три фазы изображены в разных цветах для упрощения понимания процесса, также здесь изображена кривая токов, протекающих в фазах асинхронного электродвигателя. Теперь рассмотрим физические процессы в обмотках двигателя для трех позиций показанных на рисунке:
- I – в этой позиции максимальный ток протекает в красной обмотке электродвигателя, а значение силы тока в желтой и синей равны. Основной поток силовых линий формируется красной фазой, а два других дополняют его.
- II – в данной точке желтая синусоида равна нулю, поэтому никакого потока не создает, а сила тока красной и синей равны. Поток формируется сразу двумя фазами и смещается по часовой стрелке вправо, совершая поворот.
- III – третья точка характеризуется максимумом токовой нагрузки для синей кривой, а красная и желтая имеет равную амплитуду, но противоположную по направлению. В результате чего максимум магнитных линий южного и северного полюса сместиться еще на 30°.
По данному принципу магнитное поле статора вращается в асинхронной электрической машине в течении периода. За счет магнитного взаимодействия с полем статора асинхронного электродвигателя происходит поступательное движение ротора вокруг своей оси. Можно сказать, что ротор пытается догнать поле статора. Именно за счет разницы во вращении полей данный тип электрической машины получил название асинхронной.
Отличие от синхронного двигателя
Наряду с простыми асинхронными электрическими машинами в промышленности также используются и синхронные агрегаты. Основным отличием синхронного двигателя является наличие вспомогательной обмотки на роторе, предназначенной для создания постоянного магнитного потока, что показано на рисунке 4 ниже.
Эта обмотка создает магнитный поток, не зависящий от наличия электродвижущей силы в обмотках статора электродвигателя. Поэтому при возбуждении синхронного электродвигателя его вал начинает вращаться одновременно с полем статора. В отличии от асинхронного типа, где существует разница в движении, которая физически выражается как скольжение и рассчитывается по формуле:
где s – это величина скольжения, измеряемая в процентах, n1 – частота, с которой вращается поле статора, n2 – частота, с которой вращается ротор.
Синхронные электродвигатели применяются в тех устройствах, где важно соблюдать высокую точность синхронизации подачи питания и начала движения. Также они обеспечивают сохранение рабочих характеристик в момент пуска.
Принцип работы асинхронного электродвигателя
Сегодня в подавляющем большинстве случаев используются двигатели асинхронного типа, поскольку они отличаются неприхотливостью в работе, высокой надежностью, а также способностью справляться с большими эксплуатационными нагрузками. С точки зрения конструкции, они являются достаточно простыми и включают в себя следующие элементы:
- сердечник статора;
- вал;
- сердечник ротора;
- станина
- обмотка.
Фактически весь двигатель располагается внутри станины, которая должна иметь достаточную физическую прочность, чтобы выдерживать большие нагрузки. При этом, чем больше мощность агрегата, тем прочнее должна быть станина. В роли магнитного проводника, который является основой рабочего поля, выступает сердечник статора. В его пазы укладывается обмотка, через которую проходит электрический ток, который приводит к формированию ЭДС.
Ротор представляет собой подвижный элемент, который может быть фазным или короткозамкнутым, в зависимости от конструкционных особенностей. В состав входит сердечник, который создан из шихтованной стали, а также «беличья клетка». Вся данная конструкция насаживается на стальной вал, который передает механическое усилие и обеспечивает тем самым вращение.
Принцип функционирования асинхронного двигателя заключается в том, что вокруг проводника, где протекает электрический ток, формируется электромагнитное поле. Однако благодаря влиянию вихревых токов, создается собственная ЭДС, которая формирует отдельное электромагнитное поле статора. В результате возникает разница во вращении полей, где ротор по факту стремится догнать поля статора, вследствие чего и возникает асинхронизация.
Принцип работы электродвигателя постоянного тока
Если рассматривать электрический двигатель постоянного тока, то в его основе лежит статор — индуктор (неподвижная часть), внутри которого располагается щеточно- коллекторный узел и якорь. При этом между ними присутствуют воздушный зазор. Якорь представляет собой узел, который состоит из листов, а также проводников (набора обмоток), которые уложены в специальные пазы.
Сам коллектор имеет цилиндрическую форму и выполнен из специальных изолированных пластин медного типа. Он специальным образом насаживается на вал мотора, который имеет определенные выступы, куда подходят концы секций обмотки якоря. Из особенностей и преимуществ электрических двигатели постоянного тока выделяют следующее:
- простое и интуитивно понятное управление;
- высокая надежность и устойчивость к большим физическим нагрузкам;
- универсальность практического использования, поскольку при необходимости его можно использовать как генератор;
- легкий пуск без необходимости установки дополнительных узлов;
- возможность изменения направления вращения вала.
Принцип работы электрического двигателя постоянного тока заключается во взаимодействии магнитных полей, что заставляет якорь поворачиваться на определенный угол.
Значение создания асинхронной машины
Михаил Осипович Доливо-Добровольский внес огромный вклад в развитие электротехники, создав трехфазный асинхронный двигатель. Это было революционное изобретение, которое существенно улучшило эффективность и экономичность промышленных производств.
Первые прототипы двигателя были разработаны в 1889 году и уже к началу XX века Доливо-Добровольский внедрил свое изобретение на промышленных предприятиях в разных странах мира. Благодаря своей простоте и надежности, трехфазный асинхронный двигатель продолжает широко применяться в самых разных отраслях – в промышленных производствах, на транспорте, в бытовых приборах (стиральных машинах и вентиляторах кондиционеров), в сельском хозяйстве, сфере энергетики, в металлургической промышленности при добыче полезных ископаемых, на водоочистительных станциях, в медицине, авиационной, а также автомобильной промышленности.
С помощью трехфазного асинхронного двигателя была осуществлена широкомасштабная электрификация мира, что дало толчок к промышленному и технологическому прогрессу. Кроме того, создание этого типа двигателя повысило эффективность промышленного производства и сократило затраты на электроэнергию.
Трехфазный асинхронный двигатель до сих пор остается самым популярным видом электродвигателей. Эта разработка стала очередным подтверждением высочайшего уровня российской науки, которая, в буквальном смысле, способна преображать всю человеческую цивилизацию, благодаря своим прорывным изобретениям.
ИНТЕРЕСНЫЙ ФАКТ
Михаил Доливо-Добровольский также создал искрогасительную решетку для выключателей, фазометр и стрелочный частотомер.
Популярные вопросы
Вопрос: Работа какого ученого вдохновила М. Доливо-Добровольского на созданием асинхронной машины?
Ответ: Итальянского электротехника Галилео Феррариса.
Вопрос: В каком году был получен первый патент на асинронный трехфазный двигатель?
Ответ: В 1889 году.
Воинская и трудовая доблесть
Способы пуска и схемы подключения
Асинхронный электродвигатель с короткозамкнутым ротором обладает низкой себестоимостью, большими пусковыми токами и низким усилием на старте. Поэтому для различных целей могут применять различные способы пуска, снижающие бросок тока в обмотках и улучшающие рабочие характеристики:
- прямой – напряжение на электродвигатель подается через пускатели или контакторы;
- переключение схемы соединения обмоток электродвигателя со звезды на треугольник;
- понижение напряжения;
- плавный пуск;
- изменение частоты питающего напряжения.
Однофазного асинхронного двигателя.
Для асинхронного однофазного электродвигателя могут использоваться три основных способа пуска:
- С расщеплением полюсов – используется в электродвигателях особой конструкции, но недостатком методы является постоянная потеря мощности.
- С конденсаторным пуском – вводит пусковой конденсатор в момент запуска асинхронного двигателя и убирает его со схемы через несколько секунд после начала работы. Обладает максимальным вращательным моментом.
- С резисторным пуском электродвигателя – обеспечивает начальный сдвиг между векторами ЭДС обмоток для скольжения в асинхронной машине.
Трехфазного асинхронного двигателя.
Трехфазные асинхронные агрегаты могут подключаться такими способами:
- Напрямую в цепь через пускатель или контактор, что обеспечивает простоту процесса, но формирует максимальные токи. Этот способ не подходит в случае больших механических нагрузок на вал.
- Переключением схемы со звезды на треугольник – применяется для снижения токов в обмотках электродвигателя за счет уменьшения питающего напряжения с линейного на фазное.
- Путем подключения через преобразователь напряжения, реостаты или автотрансформатор для снижения разности потенциалов. Также используется изменение числа пар полюсов, частоты питающего напряжения и прочие.
Помимо этого трехфазные асинхронные двигатели могут использовать прямую и реверсивную схему включения в цепь. Первый вариант применяется только для вращения вала электродвигателя в одном направлении. В реверсивной схеме можно переключать движение рабочего органа в прямом и обратном направлении.
Рассмотрим нереверсивную схему пуска асинхронного электродвигателя (рисунок 9). Здесь, через трехполюсный автомат QF1 питание подается на пускатель KM1. При нажатии кнопки SB2 произойдет подача напряжения на обмотки электродвигателя, его остановка осуществляется кнопкой SB1. Тепловое реле KK1 применяется для контроля температуры нагрева, а лампочка HL1 сигнализирует о включенном состоянии контактора.
Реверсивная схема (смотрите рисунок 10) устроена аналогичным образом, но в ней используются два пускателя KM1 и KM2. Прямое включение асинхронного электродвигателя производиться кнопкой SB2, а обратное SB3.
Применение
Область применения асинхронных электродвигателей охватывает достаточно большой сегмент хозяйственной деятельности человека. Поэтому их можно встретить в различных типах станочного оборудования – токарных, шлифовальных, фрезерных, прокатных и т.д. В работе грузоподъемных кранов, талей, тельферов и прочих механизмов.
Их используют для лифтов, горнодобывающей техники, землеройного оборудования, эскалаторов, конвейеров. В быту их можно встретить в вентиляторах, микроволновках, хлебопечках и прочих вспомогательных устройствах. Такая популярность асинхронных электродвигателей обусловлена их весомыми преимуществами.
Устройство асинхронного двигателя
Рис.3 Устройство ротора асинхронного двигателя
Для привода барабана в стиральных машинах всегда применялись двухскоростные конденсаторные асинхронные двигатели.
Конденсаторный двигатель — разновидность асинхронного двигателя, в обмотки которого включен конденсатор для создания сдвига фазы тока. Подключается в однофазную сеть посредством специальных схем. Работоспособная схема подключения такого двигателя содержит конденсатор (пусковой конденсатор), от чего и произошло название.
Давайте рассмотрим простейшую схему подключения конденсаторного двигателя на примере Рис.4
А — рабочая обмотка
В — пусковая обмотка
С — пусковой конденсатор
Простая схема подключения асинхронного двигателя через конденсатор
Рис.4
А теперь представьте, если бы в пусковой обмотке не было конденсатора. Тогда магнитное поле создаваемое статором, создавало бы такое же магнитное поле в роторе. При такой схеме подключения, двигатель можно представить лишь в качестве трансформатора и совпадающие по фазе токи не смогли бы создать вращающее круговое магнитное поле, а пусковой момент был бы настолько мал, что ротор оставался бы почти неподвижным.
Неисправности и диагностика. Пуск асинхронного двигателя стиральной машины
Характерный признак неисправности при работе конденсаторных асинхронных двигателей проявляется как правило в ослаблении вращающего момента, вследствие чего ротор двигателя, особенно под нагрузкой, не в силах совершить полный оборот.Из-за этого в стиральной машине, барабан с бельём совершает неполные покачивающие движения напоминающие колебание маятника. В подобных двигателях стиральных машин можно выделить несколько причин такой неисправности.
Самая распространённая причина — это потеря ёмкости пускового конденсатора, из-за чего сдвиг фаз токов пусковой и рабочей обмотки становится незначительным и не создаётся мощного вращающего момента ротора двигателя. Хотя при этом в режиме холостого хода (без нагрузки) двигатель может запускаться нормально. Подобная проблема не относится непосредственно к неисправности самого двигателя. В этом случае требуется только замена пускового конденсатора.
Другая причина — это межвитковое замыкание одной из обмоток двигателя. Причём поведение в работе двигателя иногда схоже с потерей ёмкости пускового конденсатора, но сопровождается сильным нагревом статорной обмотки, завышенным потребляемым током, иногда появляется запах гари и характерный гудящий звук. Иногда, при межвитковом замыкании в цепи обмоток режима отжима, обмотки режима стирки могут быть абсолютно исправны и работать нормально, и наоборот. В этом случае двигатель подлежит замене. Если нет возможности его заменить, то можно обратиться на предприятие где профессионально занимаются ремонтом электродвигателей.
Иногда при неисправности в двигателе одна или несколько обмоток могут быть в полном обрыве.
В остальных случаях проблем работы двигателей, можно выделить неисправности связанные с коммутирующими устройствами и модулями управления, но это мы не будем рассматривать в данном материале.
Для того, чтобы отличить неисправность непосредственно двигателя от неисправности коммутирующих его устройств, необходимо произвести измерения электрического сопротивления обмоток, в частности электрического пробоя обмоток на корпус статора, подключить двигатель напрямую измерив потребляемый рабочий ток. Данные о потребляемом токе указаны на шильдике двигателя, а электрические сопротивления и схема соединения обмоток указываются в сервисной инструкции для мастеров.
Ниже, на Рис.5 и Рис.6 приведена схема проверки двухскоростного асинхронного электродвигателя стиральной машины. Мы взяли самую сложную встречающуюся схему колодки двигателя с применением тахогенератора и термозащиты. Тахогенератор (Т) и термозащита (ТН) при проверке двигателя напрямую не подключаются к схеме. Для того,чтобы измерить ток в обмотках амперметр (A) подключается последовательно в разрыв цепи, но можно использовать и токовые клещи. Завышенный рабочий ток может свидетельствовать о межвитковом замыкании обмоток статора. Пусковой конденсатор (С), может быть общим для пусковых обмоток отжима и стирки. Но иногда используются и схемы с двумя пусковыми конденсаторами. Изменение направления вращения двигателя для режима стирки происходит путём изменения подключения полюсов обмоток. В режиме отжима двигатель вращается всегда в одну сторону.
Рис.5 Схема подключения для
проверки обмотки отжима
Рис.6 Схема подключения для
проверки обмотки стирки
Отличие асинхронного электродвигателя от синхронного
С виду внешне они похожи, порой даже специалист не отличит по внешним признакам синхронный электродвигатель от асинхронного. У обоих электродвигателей есть неподвижный статор, состоящий из обмоток (катушек), которые уложены в пазы сердечника, набранного из пластин, выполненных из электротехнической стали, и подвижный ротор. Кроме того, функция этих типов электродвигателей одна и та же — создание вращающегося магнитного поля статора.
Ротор синхронного двигателя имеет обмотку возбуждения с независимым питанием. Статоры синхронного и асинхронного двигателя устроены одинаково, функция в каждом случае одна и та же — создание вращающегося магнитного поля статора.
У этих двух типов двигателей разные области применения: синхронные электродвигатели отличаются гораздо большей мощностью и полезной нагрузкой, но они дороже и сложней. И поэтому асинхронные двигатели востребованы там, где достаточно их характеристик, ведь они дешевле и проще в изготовлении.
Недостатки и преимущества двигателей
Синхронные двигатели
![]() | ![]() | ![]() |
Синхронные двигатели имеют довольно сложную конструкцию, обусловленную наличием щеточного узла. Кроме того, для их работы требуется дополнительный источник постоянного тока. Еще одним недостатком является невозможность их эксплуатации в условиях частых пусков и остановов. Однако все это компенсируется большой мощностью, высоким КПД, устойчивостью к перепадам напряжения в питающей сети и стабильной частотой вращения вала, вне зависимости от величины нагрузки на него.
Синхронные электрические машины рентабельны при мощностях свыше 100 кВт и основное применение находят для вращения мощных вентиляторов, на различных металлургических производствах, для привода насосов, которые обладают не только значительной мощностью, но и долгим режимом функционирования т.д.
Асинхронный двигатель
![]() | ![]() | ![]() |
Асинхронный двигатель в отличие от синхронных машин более чувствителен к колебаниям напряжения и не может сохранять номинальную скорость вращения, при увеличении нагрузки. В большинстве случаев недостатки компенсируются путем применения преобразователей частоты и других устройств пуска. Но простота конструкции, длительный срок эксплуатации, универсальность применения, способность работать в режиме частых включений и остановок делают эти машины наиболее распространенными в промышленном и бытовом секторе.