Вольт амперная характеристика проводника это

Для любого электрического прибора важна зависимость между током через прибор и приложенным напряжением. Зная эту зависимость, можно определить ток при заданном напряжении или, наоборот, напряжение, соответствующее заданному току.

Если сопротивление прибора по­стоянно, не зависит от тока или напря­жения, то связь между током и напря­жением выражается законом Ома:

i = u/R или i = Gu. (3.1)

Ток прямо пропорционален напря­жению. Коэффициентом пропорциональ­ности является проводимость G = 1/R.

График зависимости между током и напряжением называется вольт-амперной характеристикой данного прибора или просто характеристикой. Для прибора, подчиняющегося закону Ома, характе­ристикой является прямая линия, про­ходящая через начало координат (рис. 3.1).

Рис. 3.1. Вольт-амперная характеристика ли­нейного прибора

Чем больше сопротивление R, тем меньше проводимость G и тем меньше ток при данном напряжении. Поэтому для больших сопротивлений характе­ристика идет более полого. Сопротив­ление R связано с углом наклона а характеристики зависимостью

R = u/i = k ctg a, (3.2)

где к — коэффициент пропорциональ­ности, учитывающий единицы величин, входящих в формулу, и масштаб, в котором значения величин отложены на осях.

Иначе можно написать:

G= 1/Д = j/u =/с’ig ос, (3.3)

где к’ = 1/к.

Заметим, что нельзя писать R = ctg a или G = tg а, так как R и G — физи­ческие величины, имеющие определен­ную размерность и единицы для коли­чественной оценки, a tg а и ctg а — тригонометрические функции, выражае­мые только числом. Кроме того, в за­висимости от масштаба на осях угол а при данном R может быть различным.

Приборы, принцип действия которых подчиняется 1 закону Ома, а вольт-ампер­ная характеристика имеет вид прямой линии, проходящей через начало коорди­нат, называются линейными.

Существуют также приборы, у кото­рых сопротивление не постоянно, а за­висит от напряжения или тока. Для таких приборов связь между током и напряжением выражается не законом Ома, а более сложным образом и вольт-амперная характеристика , не является прямой линией, проходящей через начало координат. Эти приборы называются нелинейными.

Электронно-дырочный переход, по существу, представляет собой полупро­водниковый диод. Нелинейные свойства диода видны при рассмотрении его вольт-амперной характеристики. Пример такой характеристики для диода небольшой мощности дан на рис. 3.2. Она пока­зывает, что прямой ток в десятки миллиампер получается при прямом напряжении в десятые доли вольта. Поэтому прямое сопротивление бывает обычно не выше нескольких десятков ом. Для более мощных диодов прямой ток составляет сотни миллиампер и

Рис. 3.2. Вольт-амперная характеристика по­лупроводникового диода

больше при том же малом напряже­нии, a Rnp соответственно снижается до единиц и долей ома.

Урок 2. Вольтамперная характеристика проводника. Закон Ома. Сверхпроводимость. Физика 11 класс

Характеристику для обратного тока, малого по сравнению с прямым током, обычно показывают в другом масштабе, что и сделано на рис. 3.2. Обратный ток при обратном напряжении до сотен вольт у диодов небольшой мощности составляет единицы или десятки микро­ампер. Это соответствует сопротивлению несколько сотен килоом и больше. Так как иобр » ипр, то эти напряжения также отложены в разных масштабах. Вслед­ствие различия в масштабах получился излом кривой в начале координат. При неизменном масштабе характеристика была бы плавной кривой, без излома.

Характеристика для прямого тока вначале имеет значительную , нелиней­ность, так как при увеличении мпр сопротивление запирающего слоя умень­шается. Поэтому кривая идет со все боль­шей крутизной. Но при напряжении в десятые доли вольта запирающий слой практически исчезает и остается только сопротивление п- и р-областей, которое приближенно можно считать постоян­ным. Поэтому далее характеристика ста­новится почти линейной. Небольшая не­линейность здесь объясняется тем, что при увеличении тока п- и р-области нагреваются и от этого их сопротив­ление уменьшается.

Обратный ток при увеличении обрат­ного напряжения сначала быстро воз-

растает. Это вызвано тем, что уже при небольшом обратном напряжении за счет повышения потенциального барьера в переходе резко снижается диффузионный ток, который направлен навстречу току проводимости. Следовательно, полный ток io6p = 1дР — 1ДИф резко увеличивается. Однако при дальнейшем повышении обратного напряжения ток растет не­значительно. Рост тока происходит вследствие нагрева перехода* за счет утечки по поверхности, а также за счет лавинного размножения носителей за­ряда, т. е. увеличения числа носителей заряда в результате ударной ионизации. Явление ударной ионизации состоит в том, что при более высоком обратном напряжении электроны приобретают большую скорость и, ударяя в атомы кристаллической решетки, выбивают из них новые электроны, которые, в свою очередь, разгоняются нолем и также вы­бивают из атомов электроны. Такой процесс усиливается с повышением на­пряжения.

При некотором значении обратного напряжения возникает пробой п — р-пере-хода, при котором обратный ток резко возрастает и сопротивление запирающе­го слоя резко уменьшается. Следует различать электрический и тепловой пробой п — р-перехода. Электрический пробой, области которого соответствует на рис. 3.2 участок АБВ характе­ристики, является обратимым, т. е. при этом пробое в переходе не происходит необратимых изменений (разрушения структуры вещества). Поэтому работа диода в режиме электрического пробоя допустима. Специальные диоды для стабилизации напряжения — полупро­водниковые стабилитроны — работают на участке БВ характеристики. Могут существовать два вида электрического пробоя, которые нередко сопутствуют друг другу: лавинный и туннельный.

Лавинный пробой объясняется ла­винным размножением носителей за счет ударной ионизации и за счет вырыва­ния электронов из атомов сильным электрическим полем. Этот пробой ха­рактерен для п — р-переходов большой толщины, получающихся при сравни­тельно малой концентрации примесей в

полупроводниках. Пробивное напряже­ние для лавинного пробоя составляет десятки или сотни вольт.

Туннельный пробой объясняется яв­лением туннельного эффекта. Сущность последнего состоит в том, что при поле напряженностью более 10 5 В/см, действующем в п — р-переходе малой толщины, некоторые электроны прони­кают через переход без изменения своей энергии. Тонкие переходы, в которых возможен туннельный эффект, получаются при высокой концентрации примесей. Напряжение, соответствующее туннельному пробою, обычно не превы­шает единиц вольт. Более подробно туннельный эффект рассматривается в гл. 8.

Области теплового пробоя соответ­ствует на рис. 3.2 участок ВГ. Тепло­вой пробой необратим, так как он сопровождается разрушением структуры вещества в месте п — р-перехода. Причи­ной теплового пробоя является наруше­ние устойчивости теплового режима и —р-перехода. Это означает, что коли­чество теплоты, выделяющейся в перехо­де от нагрева его обратным током, превышает количество теплоты, отво­димой от перехода. В результате темпе­ратура перехода возрастает, сопротив­ление его уменьшается и ток увели­чивается, что приводит к перегреву перехода и его тепловому разрушению.

Электростатика. Вольтамперная характеристика (ВАХ).

Вольтамперная характеристика (ВАХ) – определяет зависимость ( функцию ) тока от приложенного к элементу электрической цепи напряжения.

Вольтамперная характеристика (ВАХ)– определяет зависимость (функцию) тока от приложенного к элементу электрической цепи напряжения либо зависимость падения напряжения на элементе электрической цепи от протекающего через него тока для выбранного конкретного устройства или схемы. Вольтамперная характеристика — это график.

Наиболее употребляемая ВАХ нелинейных элементов (степень нелинейности определяется коэффициентом нелинейности K = UdI / IdU). Примерами элементов с существенно нелинейной ВАХ будут диод, тиристор, стабилитрон.

Для линейных элементов ВАХ является прямой линией, проходящею через начало координат и описывается законом Ома I = U / R. Угол наклона ВАХ характеристики обусловлен электрическим сопротивлением проводника R (или его электропроводимости G):

Построим в системе х0у графики зависимости тока от напряжения для резистора. Ось 0у будет силой тока, 0х – напряжением. Для сбора информации требуемой для построения выбранной зависимости, нам необходимо пропускать через резистор напряжение, и фиксировать одновременно величину тока. Выполняем замеры и наносим точки:

первая точка на графике U=0,I=0;

вторая точка — U=2,6, I=0,01;

девятая точка: U=14,7, I=0,08.

Выполняем построение графика по полученным данным:

Электростатика. Вольтамперная характеристика (ВАХ).

Получаем почти прямую линию. То, что она слегка кривая, объясняется погрешностью измерений. Делаем вывод, что поскольку у нас образовалась прямая линия, то такие элементы, как резисторы будут элементами с линейной вольтамперной характеристикой.

Вольт амперная характеристика проводника это

«Физика — 10 класс»

Что заставляет заряды двигаться вдоль проводника?
Как электрическое поле действует на заряды?

Вольт-амперная характеристика.

В предыдущем параграфе говорилось, что для существования тока в проводнике необходимо создать разность потенциалов на его концах. Сила тока в проводнике определяется этой разностью потенциалов. Чем больше разность потенциалов, тем больше напряжённость электрического поля в проводнике и, следовательно, тем большую скорость направленного движения приобретают заряженные частицы. Это означает увеличение силы тока.

Для каждого проводника — твёрдого, жидкого и газообразного — существует определённая зависимость силы тока от приложенной разности потенциалов на концах проводника.

Зависимость силы тока в проводнике от напряжения, подаваемого на него, называют вольт-амперной характеристикой проводника.

Её находят, измеряя силу тока в проводнике при различных значениях напряжения. Знание вольт-амперной характеристики играет большую роль при изучении электрического тока.

Закон Ома.

Наиболее простой вид имеет вольт- амперная характеристика металлических проводников и растворов электролитов. Впервые (для металлов) её установил немецкий учёный Георг Ом, поэтому зависимость силы тока от напряжения носит название закона Ома.

На участке цепи, изображённой на рисунке 15.3, ток направлен от точки 1 к точке 2. Разность потенциалов (напряжение) на концах проводника равна U = φ1 — φ2. Так как ток направлен слева направо, то напряжённость электрического поля направлена в ту же сторону и φ1 > φ2.

Измеряя силу тока амперметром, а напряжение вольтметром, можно убедиться в том, что сила тока прямо пропорциональна напряжению.

Закон Ома для участка цепи:

Сила тока на участке цепи прямо пропорциональна приложенному к нему напряжению U и обратно пропорциональна сопротивлению этого участка R.

Применение обычных приборов для измерения напряжения — вольтметров — основано на законе Ома. Принцип устройства вольтметра такой же, как и у амперметра. Угол поворота стрелки прибора пропорционален силе тока.

Сила тока, проходящего по вольтметру, определяется напряжением между точками цепи, к которой он подключён. Поэтому, зная сопротивление вольтметра, можно по силе тока определить напряжение. На практике прибор градуируют так, чтобы он сразу показывал напряжение в вольтах.

Сопротивление.

Основная электрическая характеристика проводника — сопротивление. От этой величины зависит сила тока в проводнике при заданном напряжении.

Свойство проводника ограничивать силу тока в цепи, т. е. противодействовать электрическому току, называют электрическим сопротивлением проводника.

С помощью закона Ома (15.3) можно определить сопротивление проводника:

Для этого нужно измерить напряжение на концах проводника и силу тока в нём.

На рисунке 15.4 приведены графики вольт-амперных характеристик двух проводников. Очевидно, что сопротивление проводника, которому соответствует график 2, больше, чем сопротивление проводника, которому соответствует график 1.

Сопротивление проводника не зависит от напряжения и силы тока.

Сопротивление зависит от материала проводника и его геометрических размеров.

Сопротивление проводника длиной l с постоянной площадью поперечного сечения S равно:

где ρ — величина, зависящая от рода вещества и его состояния (от температуры в первую очередь).

Величину ρ называют удельным сопротивлением проводника.

Удельное сопротивление материала численно равно сопротивлению проводника из этого материала длиной 1 м и площадью поперечного сечения 1 м 2 .

Единицу сопротивления проводника устанавливают на основе закона Ома и называют её омом.

Проводник имеет сопротивление 1 Ом, если при разности потенциалов 1 В сила тока в нём 1 А.

Единицей удельного сопротивления является 1 Ом • м. Удельное сопротивление металлов мало. А вот диэлектрики обладают очень большим удельным сопротивлением. Например, удельное сопротивление серебра 1,59 • 10 -8 Ом • м, а стекла порядка 10 10 Ом • м. В справочных таблицах приводятся значения удельного сопротивления некоторых веществ.

Значение закона Ома.

Из закона Ома следует, что при заданном напряжении сила тока на участке цепи тем больше, чем меньше сопротивление этого участка. Если по какой-то причине (нарушение изоляции близко расположенных проводов, неосторожные действия при работе с электропроводкой и пр.) сопротивление между двумя точками, находящимися под напряжением, оказывается очень малым, то сила тока резко возрастает (возникает короткое замыкание), что может привести к выходу из строя электроприборов и даже возникновению пожара.

Именно из-за закона Ома нельзя говорить, что чем выше напряжение, тем оно опаснее для человека. Сопротивление человеческого тела может сильно изменяться в зависимости от условий (влажности, температуры окружающей среды, внутреннего состояния человека), поэтому даже напряжение 10—20 В может оказаться опасным для здоровья и жизни человека. Следовательно, всегда необходимо учитывать не только напряжение, но и силу электрического тока. При работе в физической лаборатории нужно строго соблюдать правила техники безопасности!

Закон Ома — основа расчётов электрических цепей в электротехнике.

Источник: «Физика — 10 класс», 2014, учебник Мякишев, Буховцев, Сотский

Следующая страница «Электрические цепи. Последовательное и параллельное соединения проводников»
Назад в раздел «Физика — 10 класс, учебник Мякишев, Буховцев, Сотский»

Законы постоянного тока — Физика, учебник для 10 класса — Класс!ная физика

Что такое вольт-амперная характеристика проводника? Почему вольт-амперная характеристика для проводника с большим сопротивлением

Обучайтесь и развивайтесь всесторонне вместе с нами, делитесь знаниями и накопленным опытом, расширяйте границы знаний и ваших умений.

поделиться знаниями или
запомнить страничку

  • Все категории
  • экономические 43,679
  • гуманитарные 33,657
  • юридические 17,917
  • школьный раздел 612,672
  • разное 16,911

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

  • Обратная связь
  • Правила сайта

Вольт амперная характеристика проводника это

Если изолированный проводник поместить в электрическое поле то на свободные заряды в проводнике будет действовать сила В результате в проводнике возникает кратковременное перемещение свободных зарядов. Этот процесс закончится тогда, когда собственное электрическое поле зарядов, возникших на поверхности проводника, скомпенсирует полностью внешнее поле. Результирующее электростатическое поле внутри проводника будет равно нулю (см. § 1.5).

Однако, в проводниках при определенных условиях может возникнуть непрерывное упорядоченное движение свободных носителей электрического заряда. Такое движение называется электрическим током . За направление электрического тока принято направление движения положительных свободных зарядов. Для существования электрического тока в проводнике необходимо создать в нем электрическое поле.

Количественной мерой электрического тока служит сила тока – скалярная физическая величина, равная отношению заряда Δ, переносимого через поперечное сечение проводника (рис. 1.8.1) за интервал времени Δ, к этому интервалу времени:

Если сила тока и его направление не изменяются со временем, то такой ток называется постоянным .

Рисунок 1.8.1.

Упорядоченное движение электронов в металлическом проводнике и ток . – площадь поперечного сечения проводника, – электрическое поле

В Международной системе единиц СИ сила тока измеряется в амперах (А). Единица измерения тока устанавливается по магнитному взаимодействию двух параллельных проводников с током (см. § 1.16).

Постоянный электрический ток может быть создан только в замкнутой цепи , в которой свободные носители заряда циркулируют по замкнутым траекториям. Электрическое поле в разных точках такой цепи неизменно во времени. Следовательно, электрическое поле в цепи постоянного тока имеет характер замороженного электростатического поля. Но при перемещении электрического заряда в электростатическом поле по замкнутой траектории, работа электрических сил равна нулю (см. § 1.4). Поэтому для существования постоянного тока необходимо наличие в электрической цепи устройства, способного создавать и поддерживать разности потенциалов на участках цепи за счет работы сил неэлектростатического происхождения . Такие устройства называются источниками постоянного тока . Силы неэлектростатического происхождения, действующие на свободные носители заряда со стороны источников тока, называются сторонними силами .

Природа сторонних сил может быть различной. В гальванических элементах или аккумуляторах они возникают в результате электрохимических процессов, в генераторах постоянного тока сторонние силы возникают при движении проводников в магнитном поле. Источник тока в электрической цепи играет ту же роль, что и насос, который необходим для перекачивания жидкости в замкнутой гидравлической системе. Под действием сторонних сил электрические заряды движутся внутри источника тока против сил электростатического поля, благодаря чему в замкнутой цепи может поддерживаться постоянный электрический ток.

При перемещении электрических зарядов по цепи постоянного тока сторонние силы, действующие внутри источников тока, совершают работу.

Физическая величина, равная отношению работы сторонних сил при перемещении заряда от отрицательного полюса источника тока к положительному к величине этого заряда, называется электродвижущей силой источника (ЭДС):

Таким образом, ЭДС определяется работой, совершаемой сторонними силами при перемещении единичного положительного заряда. Электродвижущая сила, как и разность потенциалов, измеряется в вольтах (В).

При перемещении единичного положительного заряда по замкнутой цепи постоянного тока работа сторонних сил равна сумме ЭДС, действующих в этой цепи, а работа электростатического поля равна нулю.

Цепь постоянного тока можно разбить на отдельные участки. Те участки, на которых не действуют сторонние силы (т. е. участки, не содержащие источников тока), называются однородными . Участки, включающие источники тока, называются неоднородными .

При перемещении единичного положительного заряда по некоторому участку цепи работу совершают как электростатические (кулоновские), так и сторонние силы. Работа электростатических сил равна разности потенциалов Δφ12 = φ1 – φ2 между начальной (1) и конечной (2) точками неоднородного участка. Работа сторонних сил равна по определению электродвижущей силе 12, действующей на данном участке. Поэтому полная работа равна

12 = φ1 – φ2 + 12.

Величину 12 принято называть напряжением на участке цепи 1–2. В случае однородного участка напряжение равно разности потенциалов:

12 = φ1 – φ2.

Немецкий физик Г. Ом в 1826 году экспериментально установил, что сила тока , текущего по однородному металлическому проводнику (т. е. проводнику, в котором не действуют сторонние силы), пропорциональна напряжению на концах проводника:

где = const.

Величину принято называть электрическим сопротивлением . Проводник, обладающий электрическим сопротивлением, называется резистором . Данное соотношение выражает закон Ома для однородного участка цепи: сила тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника.

В СИ единицей электрического сопротивления проводников служит ом (Ом). Сопротивлением в 1 Ом обладает такой участок цепи, в котором при напряжении 1 В возникает ток силой 1 А.

Проводники, подчиняющиеся закону Ома, называются линейными . Графическая зависимость силы тока от напряжения (такие графики называются вольт-амперными характеристиками , сокращенно ВАХ) изображается прямой линией, проходящей через начало координат. Следует отметить, что существует много материалов и устройств, не подчиняющихся закону Ома, например, полупроводниковый диод или газоразрядная лампа. Даже у металлических проводников при токах достаточно большой силы наблюдается отклонение от линейного закона Ома, так как электрическое сопротивление металлических проводников растет с ростом температуры.

Для участка цепи, содержащего ЭДС, закон Ома записывается в следующей форме:

Это соотношение принято называть обобщенным законом Ома или законом Ома для неоднородного участка цепи .

На рис. 1.8.2 изображена замкнутая цепь постоянного тока. Участок цепи () является однородным.

Рисунок 1.8.2.

Цепь постоянного тока

Участок () содержит источник тока с ЭДС, равной .

По закону Ома для неоднородного участка,

Сложив оба равенства, получим:

Эта формула выражет закон Ома для полной цепи : сила тока в полной цепи равна электродвижущей силе источника, деленной на сумму сопротивлений однородного и неоднородного участков цепи.

Сопротивление неоднородного участка на рис. 1.8.2 можно рассматривать как внутреннее сопротивление источника тока . В этом случае участок () на рис. 1.8.2 является внутренним участком источника. Если точки и замкнуть проводником, сопротивление которого мало по сравнению с внутренним сопротивлением источника ( ток короткого замыкания

Сила тока короткого замыкания – максимальная сила тока, которую можно получить от данного источника с электродвижущей силой и внутренним сопротивлением . У источников с малым внутренним сопротивлением ток короткого замыкания может быть очень велик и вызывать разрушение электрической цепи или источника. Например, у свинцовых аккумуляторов, используемых в автомобилях, сила тока короткого замыкания может составлять несколько сотен ампер. Особенно опасны короткие замыкания в осветительных сетях, питаемых от подстанций (тысячи ампер). Чтобы избежать разрушительного действия таких больших токов, в цепь включаются предохранители или специальные автоматы защиты сетей.

В ряде случаев для предотвращения опасных значений силы тока короткого замыкания к источнику последовательно подсоединяется некоторое внешнее сопротивление. Тогда сопротивление равно сумме внутреннего сопротивления источника и внешнего сопротивления, и при коротком замыкании сила тока не окажется чрезмерно большой.

Если внешняя цепь разомкнута, то , т. е. разность потенциалов на полюсах разомкнутой батареи равна ее ЭДС.

Если внешнее нагрузочное сопротивление включено и через батарею протекает ток , разность потенциалов на ее полюсах становится равной

На рис. 1.8.3 дано схематическое изображение источника постоянного тока с ЭДС равной и внутренним сопротивлением в трех режимах: «холостой ход», работа на нагрузку и режим короткого замыкания (к. з.). Указаны напряженность электрического поля внутри батареи и силы, действующие на положительные заряды: – электрическая сила и – сторонняя сила. В режиме короткого замыкания электрическое поле внутри батареи исчезает.

Рисунок 1.8.3.

Схематическое изображение источника постоянного тока: 1 – батарея разомкнута; 2 – батарея замкнута на внешнее сопротивление ; 3 – режим короткого замыкания

Для измерения напряжений и токов в электрических цепях постоянного тока используются специальные приборы – вольтметры и амперметры .

Вольтметр предназначен для измерения разности потенциалов, приложенной к его клеммам. Он подключается параллельно участку цепи, на котором производится измерение разности потенциалов. Любой вольтметр обладает некоторым внутренним сопротивлением . Для того, чтобы вольтметр не вносил заметного перераспределения токов при подключении к измеряемой цепи, его внутреннее сопротивление должно быть велико по сравнению с сопротивлением того участка цепи, к которому он подключен. Для цепи, изображенной на рис. 1.8.4, это условие записывается в виде:

Это условие означает, что ток , протекающий через вольтметр, много меньше тока , который протекает по тестируемому участку цепи.

Поскольку внутри вольтметра не действуют сторонние силы, разность потенциалов на его клеммах совпадает по определению с напряжением. Поэтому можно говорить, что вольтметр измеряет напряжение.

Амперметр предназначен для измерения силы тока в цепи. Амперметр включается последовательно в разрыв электрической цепи, чтобы через него проходил весь измеряемый ток. Амперметр также обладает некоторым внутренним сопротивлением A. В отличие от вольтметра, внутреннее сопротивление амперметра должно быть достаточно малым по сравнению с полным сопротивлением всей цепи. Для цепи на рис. 1.8.4 сопротивление амперметра должно удовлетворять условию

чтобы при включении амперметра ток в цепи не изменялся.

Измерительные приборы – вольтметры и амперметры – бывают двух видов: стрелочные (аналоговые) и цифровые. Цифровые электроизмерительные приборы представляют собой сложные электронные устройства. Обычно цифровые приборы обеспечивают более высокую точность измерений.

Рисунок 1.8.4.

Электрическое сопротивление

Электрическое сопротивление — это физическая величина, характеризующая противодействие проводника или электрической цепи электрическому току.

Электрическое сопротивление определяется как коэффициент пропорциональности $R$ между напряжением $U$ и силой постоянного тока $I$ в законе Ома для участка цепи.

Единица сопротивления называется омом (Ом) в честь немецкого ученого Г. Ома, который ввел это понятие в физику. Один ом ($1$ Ом) — это сопротивление такого проводника, в котором при напряжении $1$ В сила тока равна $1$ А.

Удельное сопротивление

Сопротивление однородного проводника постоянного сечения зависит от материла проводника, его длины $l$ и поперечного сечения $S$ и может быть определено по формуле:

где $ρ$ — удельное сопротивление вещества, из которого изготовлен проводник.

Удельное сопротивление вещества — это физическая величина, показывающая, каким сопротивлением обладает изготовленный из этого вещества проводник единичной длины и единичной площади поперечного сечения.

Из формулы $R=ρ/$ следует, что

Величина, обратная $ρ$, называется удельной проводимостью $σ$:

Так как в СИ единицей сопротивления является $1$ Ом, единицей площади $1м^2$, а единицей длины $1$ м, то единицей удельного сопротивления в СИ будет $1$ Ом$·м^2$/м, или $1$ Ом$·$м. Единица удельной проводимости в СИ — $Ом^м^$.

На практике площадь сечения тонких проводов часто выражают в квадратных миллиметрах (м$м^2$). В этом случае более удобной единицей удельного сопротивления является Ом$·$м$м^2$/м. Так как $1 мм^2 = 0.000001 м^2$, то $1$ Ом$·$м $м^2$/м$ = 10^$ Ом$·$м. Металлы обладают очень малым удельным сопротивлением — порядка ($1 ·10^$) Ом$·$м$м^2$/м, диэлектрики — в $10^-10^$ раз большим.

Моделирование вольт-амперных характеристик солнечных батарей

Рассмотрены вопросы математического моделирования характеристик солнечной батареи в диапазоне освещенностей и температур, соответствующих реальным условиям космического пространства.

Автор(ы) Базилевский А. Б.
Лукьяненко М. В.
Источник Сибирский аэрокосмический журнал
Научный журнал

Электрический ток в цепях с вентилями

Пример вольт-амперной характеристики такого вентиля представлена на рисунке ниже. Рисунок 1.
Вольт-амперная характеристика.
прямом направлении пренебречь невозможно, но можно пренебречь обратным током, то схема замещения и вольт-амперная.
Вольт-амперная характеристика.
Автор24 — интернет-биржа студенческих работ Допустим, что необходимо определить вольт-амперную характеристику

Автор Демьян Бондарь
Источник Справочник
Категория Электроника, электротехника, радиотехника
Статья от экспертов

Оцените статью
TutShema
Добавить комментарий