Усилитель звука класса а своими руками

Около месяца назад я уже немного рассказал о данном усилителе (ссылки будут в конце статьи). А именно о простом транзисторном усилителе А-класса Джона Линсли Худа, придуманным им уже в далеком 1969 году. Из-за своей простоты и комфортного звучания, да и просто (возможно) пиара, данный усилитель популярен до сих пор. Как минимум это видно по большому количеству предложений из поднебесной как готовых, так и кит-наборов усилителей. На пробу был взят один такой кит-набор, правда сразу заменил примерно половину комплектующих на более с виду качественные.

Получившийся результат порадовал. Усилитель действительно звучит интересно, как говорят ближе к лампам, возможно.

В процессе изготовления в конструкцию (железо) усилителя несколько раз вводились корректировки, иногда весьма существенные. Одно из крупных изменений, это смена блоков питания, что заставило пересмотреть внутреннюю компоновку усилителя, перевернуть все с ног на голову. Дело в том, что корпус ( BRZHIFI BZ2607 311х260х70 ) был уже выбран и куплен. И хотя при кастинге учитывался некий запас по внутреннему объему ( массивные радиаторы с 10 мм подошвой откушали внутреннего объема по ширине прилично, осталось 300х160х64 ), он очень быстро испарился и сделать все аккуратно стало совсем не просто.

После первой версии усилителя, было решено сделать полностью свои платы. Хотелось снизить уровень некой «колхозности» конечного изделия и реализовать на чуть более современной электронной базе (к этому пришел не сразу и по прошествии времени, до конца не уверен в правильности выбора, но об этом в конце).

Новые платы усилителя и не только

Нарисовал и заказал у известного ресурса JLCPCB.COM платы. Чтобы платы вышли дешевыми, надо не вылезать за рамки 100х100 мм. В такой формат удалось впихнуть 4 разные платы на две заготовки. Это усилители левого и правого каналов (зеркальные). Плата дополнительного служебного источника питания, так как усилитель будет сделан по схеме двойного моно, с максимально возможным разнесением каналов. Плата входной коммутации.

По приходу, платы были разрезаны обычным дремелем и чутка обработаны напильником.

В процессе сборки обнаружилось несколько маленьких косячков, сказалась некая спешка, так как хотел заказать до нового года. В частности забыл, что резистор в цепи Цобеля должен быть приличной мощности. Пришлось немного изгаляться. Все «очепятки» были хоть и неприятны для перфекциониста, но не критичны для конечного результата.

HI-FI усилитель своими руками из двух деталей

Если кратко, по задумке. Схема усилителя оставлена практически без изменений. Ее можно посмотреть в ранней публикации.

В качестве входного транзистора применен 2SA1015Y с типовым нормированным уровнем шумов порядка 1dB. В качестве драйверного использовал 2SC5707 (поговаривают, что данный транзистор замечательно себя ведет и в качестве выходного для варианта усилителя наушников). Ну, а оконечниками выступают, всем до боли известные, 2SC5200 от Toshiba.

На входе усилителя стоит пара (в параллель) больших MKP10 от Wima 1,0 uF, дабы пухлому звуку было вольготно протискиваться по тракту и ни чего не мешало ))).

Электролиты по 470,0 uF на вольтодобавке и в цепи обратной связи, в цепи смещения средней точки оставил 100,0 uF, как в оригинале. Отдельно к плате подключаются основной конденсатор фильтра по питанию и разделительный выходной конденсатор, оба по 10 000,0 uF. На входе по питанию стоит еще дополнительно дроссель 10,0 uH, образующий с конденсатором LC фильтр.

Также на плате установлено реле для включения акустики с задержкой (так таковая защита для колонок не требуется, только задержка включения и быстрое отключение). К нормально замкнутым контактам реле подключен мощный низкоомный резистор для заряда и разряда разделительного выходного конденсатора.

В качестве соединений на плате применены фастоны, очень удобно и достаточно надежно.

Плата разводилась с учетом минимальных по длине соединений, все транзисторы размещены кучно. «Грязная» земля в одном месте (нижний ряд фастонов). На верхней стороне платы полигон сигнального общего, соединенный с GND в одной точке. Питание для реле гальванически развязано. Применение чип компонентов, ОАЛА, не шибко бы позволило уменьшить (особенно транзисторы) занимаемый усилителем размер, да и просто хотелось видеть некую уже привычную визуальную аутентичность агрегата.

Также предусмотрел перемычку, позволяющую точно измерить ток покоя усилителя, но настраивал по старинке (ток всего усилителя).

По хорошему, для настройки тока, надо было использовать подстроечник с боковым размещением регулировочного винта (как раз доступен между электролитами). Ибо в моем случае, пришлось откидывать платы с радиаторами в сторону. Неудобно, возможно доработаю.

Питание усилителя

Как и предыдущий вариант, было решено использовать импульсные блоки питания, тем более корпус иного и не позволял. Применены два Mean Well EPP-120S. Реализация двойного моно.

Дополнительный источник питания

Для питания служебных схем (подсветка, реле и еще кое-что интересное) было решено сделать еще один маленький модуль.

На плате установлен БП от той же Mean Well IRM-10-24, выдающий 24 вольта и 10 Ватт, линейные стабилизаторы на 12 и 5 вольт. Схема задержки включения реле усилителей. Все разъемы и расположение контактов спроектированы так, что не тот разъем не воткнешь. По ошибке ни чего не сгорит.

На фото, плата лежит на специальной бекплейт-нашлепке, напечатанной на 3D принтере.

Плата коммутации источника

Мне очень не нравятся RCA разъемы, считаю их диким пережитком прошлого. Они занимают много места, у обычного исполнения сначала соединяется сигнальный контакт и только потом общий. Считаю, что правильно использовать XLR и TSR разъемы (есть и комбо). В моем варианте будут TSR 6,3 мм.

Для удобства, уменьшения соплей от проводов и легкой сборки/разборки, была сделана еще одна плата.

На плате два TSR стерео разъема.

Один Full Direct, сигнал от источника звука поступает напрямую в усилитель минуя все что можно, включая регулятор громкости. Также, он имеет более высокий приоритет, если в него вставлен «джек», то вся остальная часть коммутации отключается.

Второй разъем может работать в двух режимах. Стандартный — практически тоже самое, что Full Direct, только появляется возможность регулировать громкость. Дополнительный режим (включается кнопкой на передней панели, справа от регулятора громкости) — перед РГ подключается еще одна штучка. За переключение отвечает сигнально реле Takamisawa NA24W-K.

Теперь немного попечатаем

Чтобы все это хозяйство аккуратно разместить в корпусе, воспользуемся 3D принтером.

Для уменьшение длины сигнальных проводов, компоновка усилителя такая: спереди блоки питания и все, что не влияет особо на звук, сзади усилителя вся сигнальная слаботочка. Исключение разъем и внутренний кабель питания, пусть и не идеально, но эта проблема разрешилась удачно.

На 3D принтере был напечатан большой холдер для крепления блоков питания (отчасти защищает от поражения высоким напряжением и изолирует от металлического корпуса), больших конденсаторов, переменного резистора регулировки громкости ALPS 10 кОм (он также отнесен назад усилителя и приводится через удлинитель), а также реализовано некое подобие кабель менеджмента.

Ну и начинаем потихоньку собирать

Сначала затолкаем все в холдер. Снизу (между основанием холдера и металлической нижней крышкой корпуса) будет еще дополнительная диэлектрическая нашлепка.

Платы усилителя, силовые транзисторы через тонкую слюду вместе с пастой MX2.

И пытаемся впихнуть все это хозяйство в компактный корпус.

Соединения вышли достаточно короткие и было решено отказаться от использования толстых межблочных/микрофонных проводов. Оказалось вполне достаточно витых пар. Главное требование, для исключения земляных петель, соединять общие у входа и выхода, только в одном месте. К примеру, с разъема на РГ идет только сигнал, а общий подключен только со стороны платы коммутации и выполняет функцию экранирования. Снимаем с РГ (ползунок) сигнал и именно по этому соединению происходит двухстороннее подключение общих проводников (экранирование и уравнивание потенциалов).

Стрелочные индикаторы подключаются параллельно клемм акустики. Их подсветка 12 вольт, последовательно от двух индикаторов, как 24 вольта на плату со служебным питанием.

А при чем тут уж и еж?

Ну вот и добрались до некой изюминки данного усилителя.

Было просто интересно собрать усилитель А-класса. Не ставилась задача получить абсолютно правильный девайс. Это была просто некая разминка для головы и рук.

Сейчас, в другом проекте, буду использовать DSP процессор. И подумалось, а не впихнуть и сюда самый простенький DSP, как некий полигон для будущих экспериментов. Основная задача для процессора тут, ввести компенсацию АЧХ комнаты и акустических систем.

В усилитель был водружен народный и простой DSP ADAU1701 от Analog Devices (плата 3 ревизии от ЧипДипа). На борту самого чипа уже есть двухканальный АЦП и 4х канальный ЦАП. Пускай ADAU1701 звезд с неба не хватает (ни разу не Hi-End), но как известно, львиную долю (более половины то точно) искажений в звуковой тракт вносят акустика помещения и колонки, так что хватит над чем работать и ему.

На заднюю стенку усилителя был прикручен 8-ми контактный разъем (к сожалению, мам таких я не видел), что нашелся в хозяйстве.

Он используется для заливки прошивки в процессор по I2C. Также на разъем выведено питание 5 вольт, если захочется сделать некий проводной пульт с крутилками (к примеру, параметрик EQ). Осталось 4 контакта и тут можно будет вывести наружу дополнительные два ЦАП (к примеру для сабвуфера), или можно вывести GPIO процессора и сделать дополнительное простое управление чем нить, или попробовать подключить I2S и тогда реализовать цифровой вход в усилитель. Короче, вариантов много.

Что вышло в итоге

Ток покоя в данном исполнении выставил порядка 1,8 А для 8 Омной нагрузки (можно было чуть меньше даже) и 30 вольт питания усилителя. Если вспомним предыдущую реализацию, то там хорошо получалось при минимум 2,6А, а идеально при 3 Ампер. Мощность RMS при 8 Омах около 12 Ватт на канал. Усилитель из розетки перманентно кушает примерно 120-125 Ватт.

На картинке видна красивая большая вторая гармоника, маскирующая третью не очень благозвучно звучащую.

Что касается сравнения звучания (пока ветвь с DSP не рассматриваем), к сожалению сейчас нет возможности сравнить оба варианта одновременно (первый частично подвергся экзекуции). Но сложилось впечатление, что китайский вариант на старых транзисторах звучал прикольней. В нем можно было расслышать в паузах всяческие шумовые артефакты (скорей всего из-за приятно «фонящего» входного транзистора 2N2907), дающие дополнительные обертона (или что там) в музыке. Новый вариант усилителя, мне показался слишком чистым в звучании, ни флуктуационного шипения в паузах, ни той теплоты. Хотя, возможно, я просто прислушался и в квартире не так холодно стало).

Возможно, я вернусь к слепому сравнению двух версий усилителя, но позже. И, если китайский вариант мне понравится больше, можно попробовать поэкспериментировать с тем же входным транзистором.

Зачем все это? Как сказал мой старый друг, имеющий в своей коллекции полдюжины сетапов разных эпох: «Современные аппараты не вызывают эмоций. Только чистый, лабораторный звук. Никаких искажений, шипений, ничего что мне нравится.».

Ссылки на предыдущие посты: начало и продолжение.

Внутренний дизайн

Усилитель начинается с питания. Разделение двух каналов для стерео правильнее всего вести уже с двух разных трансформаторов, но я ограничился одним трансформатором с двумя вторичными обмотками. После этих обмоток каждый канал существует сам по себе, поэтому надо не забывать умножать на два всё упомянутое снизу. На макетке делаем мосты на диодах Шоттки для выпрямителя.

Можно и на обычных диодах или даже готовых мостах, но тогда их необходимо шунтировать конденсаторами, да и падение напряжения на них больше. После мостов идут CRC-фильтры из двух конденсаторов по 33000 мкф и между ними резистор 0.75 Ом. Если взять меньше и ёмкость, и резистор, то CRC-фильтр станет дешевле и меньше греться, но увеличатся пульсации, что не комильфо. Данные параметры, имхо, являются разумными с точки зрения цена-эффект. Резистор в фильтр нужен мощный цементный, при токе покоя до 2А он будет рассеивать 3 Вт тепла, поэтому лучше взять с запасом на 5-10 Вт. Остальным резисторам в схеме мощности 2 Вт будет вполне достаточно.

Далее переходим к самой плате усилителя. В интернет-магазинах продаётся куча готовых китов, однако не меньше и жалоб на качество китайских компонентов или безграмотных разводок на платах. Поэтому лучше самому, под свою же «рассыпуху». Я сделал оба канала на единой макетке, чтобы потом прикрепить её ко дну корпуса. Запуск с тестовыми элементами:

Всё, кроме выходных транзисторов Tr1/Tr2, находится на самой плате. Выходные транзисторы монтируются на радиаторах, об этом чуть ниже. К авторской схеме из оригинальной статьи нужно сделать такие ремарки:

— не всё нужно сразу впаивать намертво. Резисторы R1, R2 и R6 лучше сначала поставить подстроечными, после всех регулировок выпаять, измерить их сопротивление и припаять окончательные постоянные резисторы с аналогичным сопротивлением. Настройка сводится к следующим операциям. Сначала с помощью R6 выставляется, чтобы напряжение между X и нулём было ровно половиной от напряжения +V и нулём. В одном из каналов мне не хватило 100 кОм, так что лучше брать эти подстроечники с запасом. Затем с помощью R1 и R2 (сохраняя их примерное соотношение!) выставляется ток покоя – ставим тестер на измерение постоянного тока и измеряем этот самый ток в точке входа плюса питания. Мне пришлось ощутимо снизить сопротивление обоих резисторов для получения нужного тока покоя. Ток покоя усилителя в классе А максимальный и по сути, в отсутствие входного сигнала, весь уходит в тепловую энергию. Для 8-омных колонок этот ток, по рекомендации автора, должен быть 1.2 А при напряжении 27 Вольт, что означает 32.4 Ватта тепла на каждый канал. Поскольку выставление тока может занять несколько минут, то выходные транзисторы должны быть уже на охлаждающих радиаторах, иначе они быстро перегреются и умрут. Ибо греются в основном они.

— не исключено, что в порядке эксперимента захочется сравнить звучание разных транзисторов, поэтому для них тоже можно оставить возможность удобной замены. Я попробовал на входе 2N3906, КТ361 и BC557C, была небольшая разница в пользу последнего. В предвыходных пробовались КТ630, BD139 и КТ801, остановился на импортных. Хотя все вышеперечисленные транзисторы очень хороши, и разница может быть скорее субъективной. На выходе я поставил сразу 2N3055 (ST Microelectronics), поскольку они нравятся многим.

— при регулировке и занижении сопротивления усилителя может вырасти частота среза НЧ, поэтому для конденсатора на входе лучше использовать не 0.5 мкф, а 1 или даже 2 мкф в полимерной плёнке. По Сети ещё гуляет русская картинка-схема «Ультралинейный усилитель класса А», где этот конденсатор вообще предложен как 0.1 мкф, что чревато срезом всех басов под 90 Гц:

— пишут, что эта схема не склонна к самовозбуждению, но на всякий случай между точкой Х и землёй ставится цепь Цобеля: R 10 Ом + С 0.1 мкф.
— предохранители, их можно и нужно ставить как на трансформатор, так и на силовой вход схемы.
— очень уместным будет использование термопасты для максимального контакта между транзистором и радиатором.

Слесарно-столярное

Теперь о традиционно самой сложной части в DIY — корпусе. Габариты корпуса задаются радиаторами, а они в классе А должны быть большими, помним про 30 Ватт тепла с каждой стороны. Сначала я недоучёл эту мощность и сделал корпус со средненькими радиаторами 800см² на канал. Однако при выставленном токе покоя 1.2А они нагрелись до 100°С уже за 5 минут, и стало ясно, что нужно нечто помощнее. То есть нужно либо ставить радиаторы побольше, либо использовать кулеры. Делать квадрокоптер мне не хотелось, поэтому были куплены гигантские красавцы HS 135-250 площадью 2500 см² на каждый транзистор. Как показала практика, такая мера оказалась немного избыточной, зато теперь усилитель спокойно можно трогать руками – температура равна лишь 40°С даже в режиме покоя. Некоторой проблемой стало сверление отверстий в радиаторах под крепления и транзисторы – изначально купленные китайские свёрла по металлу сверлили крайне медленно, на каждую дырку уходило бы не менее получаса. На помощь пришли кобальтовые свёрла с углом заточки 135° от известного немецкого производителя — каждое отверстие проходится за несколько секунд!

Сам корпус я сделал из оргстекла. Заказываем у стекольщиков сразу нарезанные прямоугольники, выполняем в них необходимые отверстия для креплений и красим с обратной стороны чёрной краской.

Покрашенное с обратной стороны оргстекло смотрится очень красиво. Теперь остаётся только всё собрать и наслаждаться музы… ах да, при окончательной сборке ещё важно для минимизации фона правильно развести землю. Как было выяснено за десятилетия до нас, C3 нужно присоединять к сигнальной земле, т.е. к минусу входа-входа, а все остальные минуса можно отправить на «звезду» возле конденсаторов фильтра. Если всё сделано правильно, то никакого фона не расслышать, даже если на максимальной громкости поднести ухо к колонке. Ещё одна «земляная» особенность, которая характерна для звуковых карт, не развязанных с компьютером гальванически – это помехи с материнки, которые могут пролезть через USB и RCA. Судя по интернету, проблема встречается часто: в колонках можно услышать звуки работы HDD, принтера, мышки и фон БП системника. В таком случае проще всего разорвать земляную петлю, заклеив изолентой заземление на вилке усилителя. Опасаться тут нечего, т.к. останется второй контур заземления через компьютер.

Регулятор громкости на усилителе я не стал делать, поскольку достать какой-нибудь качественный ALPS не удалось, а шуршание китайских потенциометров мне не понравилось. Вместо него был установлен обычный резистор 47 кОм между «землёй» и «сигналом» входа. Тем более регулятор у внешней звуковой карты всегда под рукой, да и в каждой программе тоже есть ползунок. Регулятора громкости нет только у винилового проигрывателя, поэтому для его прослушивания я приделал внешний потенциометр к соединительному кабелю.

Простой усилитель класса А.

Данная статья является продолжением работы на тему использования усилителей работающих в А классе для высококачественного звуко-усиления.
Представляю на Ваше рассмотрение, хорошо отработанную схему усилителя на кремниевых транзисторах.
Неоспоримым преимуществом кремния — является способность работать при гораздо более высоких температурах (по сравнению с германием). При хорошем тепловом контакте транзистора с радиатором, можно считать допустимой температуру радиатора 90…95 град.

КТ818 КТ819

Понятно, что при столь высокой разнице температур радиатора и окружающей среды, теплообмен происходит очень эффективно.
Поэтому при одинаковых площадях радиаторов выходных транзисторов, на кремнии можно получить примерно в 2 раза больше мощности по сравнению с германием.
Большой ассортимент кремниевых средне и высокочастотных транзисторов большой мощности, позволяет построить высококачественный усилитель А класса при совсем простой схеме.

Данная схема обеспечивает выходную мощность 20 ватт на нагрузке 4 ом. Диапазон рабочих частот усилителя 20…25000 Гц.
В качестве транзистора VT1 здесь можно использовать КТ208Д, КТ209Д, КТ361Г, Е, КТ3107Б, Г, И, К. В качестве транзистора VT2 можно использовать транзисторы КТ815, КТ801, П701, транзистор VT3 КТ814, VT4 — КТ818БМ, ГМ, транзистор VT5 — КТ819БМ, ГМ.
Схема может работать без подбора транзисторов по коэффициенту усиления, однако поскольку она содержит всего 2 каскада усиления, желательно иметь коэффициент усиления транзистора VT1 — не менее 150, транзисторов VT2, VT5 — не менее 50, транзистора VT4 — не менее 80.
Оценить коэффициент усиления транзистора не сложно. Достаточно включить испытуемый транзистор по вот такой схеме (для мощных транзисторов).

Резистор R1 обеспечивает ток в базу примерно 1 ма. Измерительный миллиамперметр измеряет ток коллектора (я использовал стрелочный тестер с пределом измерений 300 ма). Отношение тока коллектора к базовому току — будет коэффициентом усиления транзистора.
Для транзисторов средней мощности, надо уменьшить базовый ток в 10 раз (R1 36k), а для транзистора малой мощности, базовый ток уменьшаем в 100 раз (R1 360k). В качестве источника питания, я использовал 3 щелочные (алкалиновые) батарейки размера АА, которые просто спаял между собой хорошо разогретым паяльником, с использованием не толстого провода (паять надо быстро, чтобы не перегреть батарейку).

При использовании нагрузки 8 ом, напряжение питания нужно увеличить до 39…40 вольт, резистор R10 до 0,25 Ом.
Настройка усилителя сводится к установке половины напряжения питания на коллекторе VT5.
Усилитель потребляет значительную мощность, примерно 100 ватт на каждый канал. Поэтому источник питания должен быть серьезным.
Силовой трансформатор для блока питания, нужно применять мощностью не менее 250 ватт, либо использовать два однотипных трансформатора (на каждый канал) с такой же общей мощностью.
Схема источника питания показана на рисунке ниже.

Вторичная обмотка силового трансформатора должна иметь выходное напряжение ХХ 26 — 27 вольт. Такая схема должна быть на каждый канал усилителя, причем при нагрузке 4 ом, возможно лучше сразу поставить конденсаторы по 22000 мкФ.
Диодный мост с номинальным током не менее 10 А либо 4 диода на 10 А. Большая емкость конденсаторов объясняется значительным током потребления, в том числе и в режиме покоя усилителя, когда пульсации особенно заметны.
Применять электронные фильтры или стабилизаторы я не стал, поскольку они иногда являются причиной самовозбуждения усилителя и источником помех и наводок.

Детали для усилителя:
Резисторы могут быть любой мощности не менее 0.125 ватт за исключением R9 5 ватт, R10 2 ватт. Очень важен номинал резистора R10. От этого зависит правильный режим работы усилителя.
Конденсатор С1 лучше поставить пленочный, С4 пленочный или слюдяной.
Выходные транзисторы КТ818, КТ819 обязательно с буквой «М» в конце (в металлическом корпусе), БМ, ГМ. Радиаторы под них я использовал ребристые размером 120*170, толщиной 35 мм. Если радиаторы будут меньше, то необходим принудительный обдув.
На КТ815 небольшой радиатор-пластинка 2-3 кв. см. На П701 радиатор не нужен.
На резисторе R9 рассеивается значительная мощность. При наличии осциллографа и генератора можно попробовать ее уменьшить. Подаем сигнал на вход,на выход подключаем эквивалент нагрузки и осциллограф. Резистором R4 добиваемся симметричного ограничения максимально возможной амплитуды сигнала. Далее увеличивая резистор R9 добиваемся начала ограничения сигнала сверху. Выпаиваем и измеряем номинал. После этого устанавливаем резистор на 25…30% меньше.
При желании поэкспериментировать можно собрать совсем упрощенную схему.

Транзисторы здесь должны иметь больший К ус. Первый не менее 200, второй не менее 100.
Резистор R7 мощностью не менее 50 ватт. При отсутствии такого можно использовать электрический чайник и утюг по 2000 ватт на220в, соединенные параллельно, либо 2 ТЭН на 2000 ватт. — получается сопротивление около 10 ом. Кстати это можно использовать и как эквивалент нагрузки.
Данная схема позволяет получить 4…5 ватт (потреблять будет все равно около 90 ватт.) На коллекторе VT2 нужно выставить 12 вольт.

Удачи Вам в творчестве и конструировании!

Оцените статью
TutShema
Добавить комментарий