Терморезистор обозначение на схеме

Соблюдение теплового режима в современных электронных устройствах не менее важно, чем обеспечение параметров электрического тока. Перегрев для полупроводниковых приборов так же губителен, как и резкое увеличение напряжения. Поэтому для контроля температуры термочувствительных электронных приборов применяются электрические схемы с использованием температурных датчиков, таких как терморезистор. Другие названия: термистор, термосопротивление.

Обычный резистор обладает относительно стабильным сопротивлением. Разумеется, электрическое сопротивление обычного резистора может меняться при значительном его нагревании (в пределах допусков). Но в штатном режиме показания этих устройств стабильны, чего, собственно, добиваются разработчики.

При изготовлении терморезисторов умышленно подбирают такие материалы, сопротивление которых зависит от температуры. То есть, терморезистор – это полупроводниковый прибор, обладающий зависимостью его сопротивления от температуры. Можно сказать, что путем нагревания или охлаждения таких полупроводниковых устройств можно управлять их сопротивлениями.

Терморезистор и его изображение на схемах

Температурные зависимости полупроводниковых резисторов широко применяются на практике, о чем речь пойдёт ниже. Заметим только, что термисторы являются, по сути, переменными резисторами, сопротивление которых изменяется не механическим способом, а зависит от степени нагрева и температурных характеристик применяемых полупроводниковых материалов. Причем не важно, прямым или косвенным нагревом произошло изменение температурных показателей.

Конструкция

Самый простой термистор состоит из термочувствительного элемента, платиновых электродов и никелевых выводов. Вся эта конструкция заключена в герметичный корпус (Схема строения показана на рисунке 2).

В качестве термочувствительного материала используют оксиды металлов. Для защиты конструкции используют стеклянный, пластиковый или металлический корпус.

Конструкция простого термистора

В некоторых случаях в качестве резистивного материала используют медь или платину. Эти материалы обладают высокими показателями ТКС металлов в рабочем диапазоне температур. Однако их применение ограничено по причине дороговизны платины и ее нелинейности преобразования.

Использование медных терморезисторов ограничивается низкой коррозионной сопротивляемостью меди. Благодаря высокой теплопроводности этого металла резистивные элементы на основе меди встречаются в моделях с косвенным нагревом. Применяются для температур не выше 180 ºC.

Еще одним недостатком металлических термосопротивлений является их инерционность, достигающая нескольких минут. Такие конструкции мало пригодны для поддержания теплового режима электроприборов, но они идеально подходят в качестве датчиков для измерения температуры.

ТЕРМИСТОР как работает и где его можно найти

С целью уменьшения тепловой инерционности терморезисторы изготавливают из микропроводов, которые заключают в стеклянную колбочку (см. рис. 3). Такие датчики хорошо герметизированы, отличаются стабильностью, а их инерционность не превышает долей секунд.

Конструкция термистора в стеклянной колбе

Широкое распространение получили типы датчиков на базе полупроводниковых материалов. При нагревании полупроводников происходит насыщение этих материалов электронами и дырками, что приводит к уменьшению сопротивления.

Существуют конструкции плоских терморезисторов (рис. 4), а также полупроводниковые термисторы со сложной структурой резистивного элемента.

Конструкция плоского терморезистора

Сегодня все чаще можно встретить платы, на которых применен способ SMT монтажа. Для этих целей промышленность выпускает SMD-терморезисторы разных номиналов (см. рис. 5).

Терморезисторы для микроэлектроники

В большинстве конструкций терморезистивный элемент изготовляют методом порошковой металлургии. В этих целях используют материалы:

  • халькогениды;
  • оксиды металлов;
  • галогениды и другие.

Очертание резистивных элементов может иметь форму бусинок, стержней, трубочек, пластинок и т. п.

Какую конструкцию вы бы не выбрали, принцип работы остается неизменным – зависимость сопротивления от температуры. Отличаются изделия только параметрами.

Прямой и косвенный нагрев.

По способу нагрева терморезисторы делят на две группы:

    Прямой нагрев. Это когда терморезистор нагревается внешним окружающим воздухом или током, который протекает непосредственно через сам терморезистор. Терморезисторы с прямым нагревом, как правило, используются либо для измерения температуры, либо температурной компенсации. Такие терморезисторы можно встретить в термометрах, термостатах, зарядных устройствах (например, для Li-ion батарей шуруповёртов).

NTC-термисторы и позисторы.

По зависимости изменения сопротивления от температуры терморезисторы делят на два типа:

  • NTC-термисторы;
  • PTC-термисторы (они же позисторы).

Давайте разберёмся, какая между ними разница.

Классификация

По характеру изменения сопротивления при изменении температуры терморезисторы делятся на две группы:

  • Термистор (Thermistor NTC), терморезистор с отрицательным ТКС – сопротивление уменьшается при нагреве;
  • Позистор (Thermistor PTC), терморезистор с положительным ТКС – сопротивление увеличивается при нагреве.

По способу подогрева терморезисторы делятся на две группы:

  • прямого подогрева – сопротивление которого изменяется при прохождении непосредственно через ЧЭ;
  • косвенного подогрева – сопротивление изменяется при прохождении тока через специальный подогреватель, расположенный в непосредственной близости от ЧЭ.

Принципиальное отличие терморезистора косвенного подогрева от прямого – гальваническая изоляция цепи нагрева от измерительной цепи.

Конструкция и принцип действия

Принцип действия терморезисторов основан на изменении сопротивления в зависимости от температуры.

Для создания темрорезисторов применяются полупроводниковые материалы с высокой зависимостью сопротивления от температуры.

Термисторы в основном выполняют из смеси окислов переходных металлов, способных изменять в соединениях свою валентность. Для термисторов применяются оксиды металлов:

  • оксид кобальта (Co3O4)
  • оксид никеля (NiO);
  • оксид магния (MgO);
  • диоксид титана (TiO2),
  • оксид марганца (Mn3O4);
  • оксид меди (CuO);
  • оксид ванадия (V2O5);
  • оксид железа (Fe2O3).

Например, советские терморезисторы ММТ-1, ММТ-4 созданы на основе окислов CuO – Mn3O4.

Для позисторов применяются оксиды бария и стронция. Например, советсвие позисторы СТ6 созданы на основе титаната бария (BaTiO3).

Электрические свойства терморезисторов определяются множеством параметров: соотношение исходных материалов, структура материала, расположение и валентность катионов в кристаллической решетке и других. Производство терморезисторов происходит в следующей последовательности:

  • смесь окислов металлов смешивают и прессуют для придания формы (диска, цилиндра и т.д.);
  • заготовки подвергают обжигу в печи (время нахождения в печи – несколько часов при температуре около 1400 °C);
  • прикрепляют контактные выводы к заготовкам;
  • термочувствительный элемент терморезисторов покрывают лаком или помещают в герметичную оболочку.

У терморезисторов зависимость выходного сопротивления от температуры нелинейная. Реальный график зависимости сопротивления от температуры показан на рисунке.

График зависимости сопротивления от температуры NTC резистора

Для применения терморезисторов производители приводят таблицу значений «отношение сопротивлений – температура». Под отношением сопротивлений принимается отношение текущего сопротивления к номинальному (при температуре 25 °С), так как номенклатура номинальных сопротивлений большая и не стандартизирована.

Для термисторов производители так же приводят коэффициенты для уравнения Стейнхарта — Харта (Steinhart-Hart):

1/T=A+B×ln⁡(R/Rt)+C×ln^2⁡(R/Rt)+D×ln^3⁡(R/Rt)

, где:

— сопротивление при текущей температуре T;
— текущая температура, К;
— коэффициенты.

В формуле используется четыре коэффициента A, B, C, D. Обычно в расчетах коэффициент C равен нулю и производители указывают только три коэффициента.

Практически можно пользоваться упрощенной формулой:

Вольт амперная характеристика (ВАХ) термистора и позистора показана на рисунке. Вид ВАХ зависит от многих параметров, таких как: материал резистора, конструкции, габаритов, температуры и т.д. Нелинейность ВАХ объясняется нагревом терморезистора за счет проходящего через него тока.

Вольт-амперная характеристика позистора (PTC) и термистора (NTC)

Элементная база блоков питания

В блоках питания помимо использования обыкновенных резисторов используются два типа специализированных резисторов — Варистор и Термистор.
Также, кроме обыкновенных конденсаторов используются специализированные помехоподавляющие конденсаторы: конденсаторы типа Y и конденсаторы типа X (их еще называют конденсаторы класса защиты X/Y)

В качестве примера приведем кусок реальной схемы до выпрямительного мостика, хочется повторится – схема реальная, хотя впечатление такое, что этот шедевр — сборище пассивных элементов защиты от ВЧ помех со страниц какого то учебника по борьбе с помехами.

Рис. Пример реального участка схемы блока питания — фильтра от ВЧ помех.

Варистор

Варистор – полупроводниковый резистор, сопротивление которого изменяется при изменении приложенного напряжения. Основная задача варистора в блоках питания – защита цепей от перенапряжения.

Рис. Принцип работы варистора в блоках питания, увеличение скорости срабатывания предохранителя или защита от импульсных бросков напряжения.

Варистор включается параллельно входному напряжению 220В, и фактически постоянно находится под этим напряжением, однако ток в этом состоянии через варистор очень мал. В случае возникновения выброса по напряжению, сопротивление варистора резко падает и шунтирует защищаемые цепи, ток в этом состоянии может достигать нескольких тысяч ампер. Несмотря на свою эффективность варистор в блоках питания АТХ довольно редкий гость, чаще его можно увидеть в сетевых фильтрах или в некомпьютерных блоках питания.

Рис. Для увеличения скорости срабатывания защиты, предохранитель и варистор объеденяют вместе.

Обозначение варистора на плате.

VZ (Принтер)MV (Источник бесперебойного питания)ZNR (Блок питания АТХ)
MOV (Источник бесперебойного питания)Z (Блок питания светодиодного прожектора)DNR
фото отсутствуетфото отсутствуетфото отсутствует
RURVVAR
фото отсутствует
VDR

Обозначение варистора на схеме.

Рис. Условное обозначение варистора на схеме

Особенности применения варисторов.

  • Варисторы являются безинерционным элементом. Полностью восстанавливает свои свойства мгновенно, в результате чего чрезвычайно эффективен при борьбе с импульсными выбросами напряжения.
  • Количество импульсов прикладываемых к варистору ограничено, фактически это значит, что со временем варистор теряет свои свойства.

Терморезистор

Терморезистор – полупроводниковый резистор, сопротивление которого изменяется при изменении температуры.
Различают два вида терморезисторов
Термистор (NTC-термистор) — сопротивление терморезистора с повышением температуры уменьшается.
Позистор (PTC-позистор) — сопротивление терморезистора с повышением температуры увеличивается
Применение терморезисторов в блоках питания

Рис. Принцип работы NTC-термистора в блоках питания, мягкий пуск.
Основная задача термистора в блоках питания — ограничение пускового тока. При включении блока питания термистор имеет температуру окружающей среды и сопротивление в несколько Ом. Конденсатор выпрямителя в момент включения представляет из себя короткозамкнутую нагрузку, в цепи происходит скачок тока, но термистор не даёт ему подняться выше предела, зависящего от сопротивления термистора. При прохождении тока через термистор, последний разогревается и его сопротивление падает почти до десятых долей Ома, и далее он не влияет на работу устройства. Происходит так называемый мягкий пуск.

Обозначение термистора на плате.

THTHRTR
RTHRTPTC

Обозначение термистора на схеме.

Рис. Условное обозначение терморезистора на схеме

На практике может встречаться комбинация состоящая, из двух или более приведенных обозначений.

Рис. Пример комбинации при обозначении терморезистора

Особенности применения термисторов.

  • Термисторы являются инерционным элементом. Полностью восстанавливает свои свойства только через 5-10 мин. Фактически при кратковременном отключении питания, при повторном пуске термистор не работает как элемент защиты.
  • Выводы термистора являются радиаторами, необходимо оставлять выводы как можно длиннее.
  • Температура термистора в состоянии сопротивления близкого к нулю может доходить до 250 градусов, нежелательно устанавливать корпус термистора в непосредственной близости от других элементов.

Помехоподавляющие конденсаторы

Помехоподавляющие конденсаторы делятся на два типа X и Y, для подавления синфазной и противофазной составляющей помехи. Каждый тип для своего типа помехи.

Как практик, могу сказать, название помехи не играет большой роли на принцип борьбы с помехой. Как теоретик, лично я, всегда путаю термины синфазной и противофазной помехи между собой, поэтому дальше обе помехи мы будем разделять по принципу возникновения.

Конденсатор X типа

Конденсатор X типа – конденсатор для подавления помехи возникающей между фазой и нулем (не путать с заземлением). Задача Х конденсатора не пропускать помеху из внешней сети в блок питания, а так же не выпускать помеху созданную блоком питания во внешнюю сеть.

Рис. Принцип работы Х конденсатора.

Обозначение X конденсатора на плате.

CxС

Обозначение X конденсатора на схеме.

Обосначается как обычный конденсатор, с суффиксом x, например Cx

Рис. Обозначение Х конденсатора на схеме .

Особенности применения Х конденсаторов.

  • Конденсатор невозгораемый при любых условиях
  • Неисправность конденсатора не приведет к поражению электрическим током.
  • Емкость Х конденсатора, чем больше — тем лучше.
  • X2 конденсатор с рабочим напряжением 250В, выдерживают импульс до 2.5кВ.
  • Какая бы не была емкость Х конденсатора, полностью помеху убрать невозможно, можно только ее уменьшить.

Конденсатор Y типа

Конденсатор Y типа – конденсатор для подавления помехи возникающей между

  • фазой и землей (не путать с нулем)
  • нулем и землей.

Рис. Принцип работы Y конденсатора.

Обозначение Y конденсатора на плате.

Нет изображенияНет изображения
CYС

Обозначение Y конденсатора на схеме.

Обозначается как обычный конденсатор, с суффиксом Y, например Cy рядом с номиналом может стоять напряжение.

Рис. Обозначение Y конденсатора на схеме .

Особенности применения Y конденсаторов.

  • Конденсатор в случае пробоя уходит в обрыв
  • Неисправность конденсатора может привести к поражению электрическим током.
  • Емкость Y конденсатора, чем меньше — тем лучше.
  • Y2 конденсатор с рабочим напряжением 250В, выдерживают импульс до 5кВ.
  • Y конденсатор можно применять вместо X конденсатора, наоборот нет.
  • Какая бы не была емкость Y конденсатора, полностью помеху убрать невозможно, можно только ее уменьшить.

Быстродействующие диоды.

В блоках питания используются два типа выпрямительных диодов – общего назначения и импульсные. Импульсные диоды можно отнести к быстродействующим.

Iпр.макс., АНаименованиеКорпусUобр., ВUпад., Вtвосст., нс
11N4933. 1N4937DO-4150 — 6001,2200
1FR101. FR107DO-4150 — 10001,2150-500

Например FR107 1000в, 1А 0,500мкс

Где применяют терморезисторы

Самое очевидное применение резисторов, сопротивление которых зависит от температуры – измерение температуры. Замеряя сопротивление, можно определить температуру элемента (и окружающих предметов). В этом случае используется нагрев термосопротивления от окружающей среды.

Используя прямой нагрев (когда элемент нагревается проходящим через него током), можно реализовать защиту от переходных процессов. В этих случаях применяются термосопротивления с отрицательным ТКС. При пуске электродвигателей, при зарядке конденсаторов в начальный момент времени ток может достигнуть значительных величин и повредить элементы цепи. Но если последовательно с нагрузкой включить NTC, то на первом этап он будет иметь большое сопротивление и ограничит ток. ПО мере разогрева его сопротивление будет падать, влияние на цепь уменьшаться. После прогрева сопротивление уменьшится до незначительных величин, но к этому моменту переходные процессы уже закончатся.

Что такое термистор (терморезистор), для чего нужен

А позисторы можно использовать для организации тепловой защиты. Например, при перегрузке или заклинивании электродвигателя возникают большие токи. Резистор с положительным ТКС в нормальном режиме не будет заметно влиять на ток в цепи питания, но при появлении сверхтока нагреется, сопротивление увеличится и действие короткого замыкания ограничится.

Кроме того, терморезисторы с различным ТКС применяют для создания инфранизкочастотных генераторов, измерения мощности СВЧ-излучения, для температурной компенсации режимов активных элементов и для многих других целей.

Основные характеристики

К основным параметрам термисторов, как представителей класса резисторов, относят:

  • номинальное сопротивление (при +20 или +25 градусах);
  • рассеиваемую мощность.

Имеются и специфические характеристики – например, температурный коэффициент сопротивления (ТКС). Этот параметр показывает, насколько изменяется сопротивление элемента при изменении температуры на 1 градус С. Чем выше ТКС, тем чувствительнее элемент, но, как правило, уже диапазон рабочих температур – этот параметр также важен при выборе. Для позисторов важной характеристикой служит опорная температура – точка перелома характеристики, определяющая рабочую зону элемента.

Во многих случаях важно знать и рабочие напряжения элементов – номинальное и максимальное.

Как проверить термистор на работоспособность

Первая проверка исправности термистора – измерение номинального сопротивления обычным мультиметром. Если замер ведется при комнатной температуре, которая не очень отличается от +25 °С, то и измеренное сопротивление не должно существенно отличаться от указанного на корпусе или в документации.

Если температура окружающего воздуха выше или ниже указанного значения, надо взять небольшую поправку.

Можно попытаться снять температурную характеристику термистора – чтобы сравнить её с заданной в документации или чтобы восстановить её для элемента неизвестного происхождения.

Есть три температуры, доступные для создания с достаточной точностью без измерительных приборов:

  • тающий лед (можно взять в холодильнике) – около 0 °С;
  • человеческое тело – около 36 °С;
  • кипящая вода – около 100 °С.

По этим точкам можно нарисовать приблизительную зависимость сопротивления от температуры, но для позисторов это может не сработать – на графике их ТКС, есть участки, где R температурой не определяется (ниже опорной температуры). Если термометр имеется, можно снять характеристику по нескольким точкам – опустив терморезистор в воду и нагревая её. Через каждые 15…20 градусов надо замерять сопротивление и наносить значение на график. Если надо снять параметры выше 100 градусов, вместо воды можно использовать масло (например, автомобильное – моторное или трансмиссионное).

Типовые зависимости сопротивления от температуры.

На рисунке изображены типовые зависимости сопротивлений от температуры – сплошной линией для PTC, штриховой – для NTC.

Где применяются

Самое очевидное применение терморезисторов – в качестве датчиков для измерения температуры. Для этой цели пригодны как термисторы с характеристикой NTC, так и PTC. Надо лишь выбрать элемент по рабочему участку и учесть характеристику термистора в измерительном приборе.

Можно построить термореле – когда сопротивление (точнее, падение напряжения на нём) сравнивается с заданным значением, и при превышении порога происходит переключение выхода. Такой прибор можно применять в качестве устройства теплового контроля или пожарного датчика. Создание измерителей температуры основано на явлении косвенного нагрева – когда терморезистор нагревается от внешнего источника.

Также в сфере использования термосопротивлений используется прямой нагрев – термистор нагревается током, проходящим через него. NTC-резисторы таким способом можно применить для ограничения тока – например, при зарядке конденсаторов большой ёмкости при включении, а также для ограничения тока пуска электродвигателей и т.п. В холодном состоянии термозависимые элементы имеют большое сопротивление. Когда конденсатор частично зарядится (или электродвигатель выйдет на номинальные обороты), термистор успеет нагреться протекающим током, его сопротивление упадет, и он перестанет оказывать влияние на работу схемы.

Таким же способом можно продлить срок службы лампы накаливания, включив последовательно с ней терморезистор. Он ограничит ток в самый сложный момент – при включении напряжения (именно в это время большинство ламп выходит из строя). После прогрева он перестанет оказывать влияние на лампу.

Для защиты электродвигателей во время работы служат, наоборот, термисторы с положительной характеристикой. Если ток в цепи обмотки будет повышаться из-за заклинивания двигателя или превышения нагрузки на валу, PTC-резистор нагреется и ограничит этот ток.

Термисторы с отрицательным ТКС, также можно использовать в качестве компенсаторов нагрева других компонентов. Так, если параллельно резистору, задающему режим транзистора и имеющему положительный ТКС, установить NTC-термистор, то изменение температуры подействует на каждый элемент противоположным образом. В результате действие температуры компенсируется, и рабочая точка транзистора не сместится.

Существуют комбинированные приборы, называемые терморезисторами с косвенным нагревом. В одном корпусе такого элемента расположены термозависимый элемент и нагреватель. Между ними существует тепловой контакт, но гальванически они развязаны. Изменяя ток через нагреватель, можно управлять сопротивлением.

Терморезисторы с различными характеристиками широко используются в технике. Наряду со стандартными применениями, их сферу работы можно расширять. Все ограничивается только фантазией и квалификацией разработчика.

Похожие статьи:

Типы датчиков температуры: термисторы, термопары, термометры сопротивления, аналоговые и цифровые датчики

Что такое резистор и для чего он нужен?

Термометр сопротивления — датчик для измерения температуры: что это такое, описание и виды

Проверка электрических параметров автомобильного аккумулятора с помощью мультиметра

Принцип работы и основные характеристики стабилитрона

Какие виды батареек существуют: в чём отличия пальчиковых батареек AA от AAA

Позистор и термистор, в чем отличие?

Позистор (РТС-терморезистор) — это электронный компонент, имеющий положительный коэффициент сопротивления и выполняющий двойную функцию: нагревателя и температурного датчика. При подаче высокого напряжения или тока электронный компонент греется. Чем выше становится температура, тем сильнее увеличивается его внутреннее сопротивление, а значит меньше тока будет протекать через элемент. Нагрев РТС-компонента может происходить под воздействием внешней среды. В этом случае он работает, как датчик температуры. Позисторы имеют корпусное исполнение в виде круглых шайб, залитых эмалью, либо в виде керамических элементов, последовательно установленных в едином корпусе.

Позистор и термистор в чем отличие

На схеме позистор имеет следующее обозначение:

Позистор и термистор в чем отличие

Применение позистора

  • защита первичных цепей обмотки трансформаторов;
  • эффективный пускатель тока электродвигателей;
  • ограничитель тока в нагревательных устройствах (паяльники, клеевые пистолеты, отопительные радиаторы);
  • размагничивание старых кинескопных телевизоров.

Термистор

Термистор (NTC-терморезистор) – чувствительный электронный компонент с отрицательным коэффициентом сопротивления. При нагреве его внутреннее сопротивление начинает падать. Компонент может служить в виде температурного датчика или переменного резистора (в качестве защиты от перегрева в электрических цепях). Параметры термистора не линейны, это значит, что при повышении температуры сопротивление падает непропорционально и неравномерно.

Корпус термистора выполнен виде бусинок, покрытых керамикой или стеклом, которые отличаются между собой размерами.

Позистор и термистор в чем отличие

На схеме имеет следующее обозначение:

Позистор и термистор в чем отличие

Один из существенных недостатков терморезистора – это несовпадение характеристик при изготовлении по одному и тому же техпроцессу. Компоненты в одинаковых условиях могут выдавать разные данные, поэтому при замене одного компонента на аналогичный требуется повторная калибровка. При длительной эксплуатации в условиях повышенной температуры NTC-терморезисторы со временем начинают деградировать и нуждаются в замене. Максимальная температура эксплуатации датчиков – 300 градусов Цельсия.

Область применения термисторов NTC:

  • измерение температуры радиокомпонентов компьютера и мобильной техники (процессоров и чипов памяти, жестких дисков, видеокарт и т.д.);
  • в блоках питания и литий-ионных (Li-ion) батареях в качестве защиты от перегрева;
  • в офисной технике (лазерных принтерах и факсах);
  • в 3D-принтерах (для экструдеров и подогреваемых столиков).

По сути оба компонента умеют контролировать температуру, но сопротивление РТС- терморезистора с нагревом стремится к бесконечности, тогда как сопротивление NTC-терморезистора при тех же условиях стремится к нулю. Чтобы произвести измерение температуры, необходим контроллер, который будет вычислять данные сопротивления компонентов.

Оцените статью
TutShema
Добавить комментарий