Теристор или тиристор что это

Тиристором называется полупроводниковый радиокомпонент, основная функция которого состоит в управлении электрическим током высокой мощности при получении маломощного управляющего сигнала. По принципу действия тиристор чрезвычайно похож на транзистор – тот тоже управляет напряжением, приложенным к коллектору и эмиттеру с помощью сигнала, подаваемого на базу.

Однако на деле тиристор работает, как диод. Он может находиться только в двух рабочих состояниях – открыт и закрыт. В первом случае управляемый тиристором ток без искажений проходит через него в сторону потребителей. Во втором – подача мощности прекращается. То есть тиристор, по сути, представляет собой электрический ключ, и это свойство данного радиокомпонента с успехом используется в схемах коммутации электросигналов.

Конечно, существуют и другие элементы, которые могут использоваться в качестве ключей. Например, те же транзисторы успешно исполняют эту функцию в цифровых схемах. Однако преимущество тиристоров на фоне всех других полупроводниковых радиокомпонентов состоит в быстродействии. Это обусловлено структурой данного элемента.

Устройство и виды тиристоров

Этот радиокомпонент состоит из 2-х последовательно расположенных p-n-переходов. Таким образом, внешние электроды тиристора интегрированы в p- и n-зоны и являются соответственно анодом и катодом. Внутренние p- и n-слои используются для управления, и с ними интегрируются управляющие выводы. В большинстве случаев управляющий электрод присоединяется к p-участку (тиристоры с управлением по катоду).

Благодаря данной структуре физические процессы насыщения и обеднения полупроводниковых слоёв протекают быстрее, и открытие, как и закрытие тиристора происходит лавинообразно – в течение наносекунд. Этим определяется отличное быстродействие тиристора. По этому параметру тиристор сильно опережает транзистор, уступая только интегральным микросхемам, да и то не всегда. Например, в высокочастотной технике микросхемы зачастую использовать не удаётся, и производители СВЧ-техники обращаются к старым добрым тиристорам.

Принцип работы тиристора

Принцип работы тиристора схож с принципом работы динистора, достаточно подробно описанным в статье «Динисторы. Принцип действия и применение». Поэтому мы не будем повторяться, лишь выделим принципиальное отличие между этими двумя приборами. Упрощенная структура тиристора и схема его включения показаны на рис. 2. Как видно из рис. 1, главным отличием тиристора от динистора является наличие управляющего электрода УЭ, чаще его обозначают символом G. При подаче на электрод УЭ положительного относительно катода импульса p-n-переход p3-n4 смещается в прямом направлении, и через него начинает протекать ток. Затем процессы в тиристоре развиваются по такому же сценарию, как и в динисторе. Отметим, что напряжение Е (рис. 2) должно быть ниже нормируемого напряжения тиристора.

Как работает ТИРИСТОР? Самое понятное объяснение!

Рис. 2. Упрощенные схемы устройства и включения тиристора

После отпирания тиристора напряжение на управляющем электроде следует снизить до нулевого уровня. Запирание тиристора происходит, когда ток тиристора становится ниже тока удержания IH. На рис. 3 приведена вольт-амперная характеристика тиристора. На ней отмечены значения тока управляющего электрода, при которых происходит включение (открытие) тиристора.

Рис. 3. Вольт-амперная характеристика тиристора

Между токами соблюдается следующее соотношение: IУПР.СПР > IУПР2 > IУПР1. Чем больше ток управления, тем меньше должно быть напряжение анода для включения тиристора. При токе управления IУПР.СПР на вольт-амперной характеристике тиристора отсутствуют участки с отрицательным сопротивлением, поэтому этот ток управления называется током спрямления. Производители тиристоров указывают его в документации. Там же приводится минимальная длительность импульса тока управления.

Перечислим основные параметры тиристора, которые указывают в документации производители:

  • максимально допустимый ток в прямом направлении IT(AV);
  • повторяющееся пиковое напряжение в прямом направлении VDRM;
  • повторяющееся пиковое напряжение в обратном направленииVPRM;
  • импульсный ток ITSM;
  • I 2 t;
  • максимальная скорость изменения приложенного напряжения dV/dt;
  • максимальная скорость изменения прямого тока di/dt;
  • ток удержания IH.

Ток IT(AV) определяется как средний ток синусоидальной полуволны частотой 50 Гц. Обычно VDRM =VPRM, именно эти величины напряжения нормирует производитель. Например, у 1200-В тиристора значения VDRM = VPRM = 1200 В. Производители гарантируют, что при этих значениях напряжения VPRM и VDRM не произойдет ни обратного пробоя тиристора, ни его ложного включения.

Импульсный ток ITSM это средний ток синусоидальной полуволны частотой 50 Гц при напряжении 0,6VPRM. Величина I 2 t позволяет определить значение всплесков тока, когда форма импульса отлична от синусоидальной полуволны, а длительность импульса заметно меньше 10 мс.

Ограничение скорости нарастания прикладываемого напряжения dV/dt определяется паразитными емкостями p-n-переходов. Если скорость нарастания напряжения превысит заданную производителем, возможно ложное включение тиристора. Ограничение скорости нарастания тока di/dt необходимо для защиты тиристора от локального перегрева в момент включения.

Примеры использования тиристора

Тиристоры нашли применение во многих устройствах, и существует множество схем их использования — от простейших регуляторов мощности (диммеров) до сложных многофазных реверсивных регулируемых выпрямителей.

Рис. 4. Схема простейшего регулятора мощности

Схема простейшего регулятора мощности показана на рис. 4. По мере заряда конденсатора С1 возрастает напряжение на управляющем электроде и, следовательно, его ток, что и приводит к включению тиристора. Схема подкупает своей простотой, но может использоваться лишь при небольшой нагрузке. При плавном нарастании напряжения управляющего электрода включение тиристора произойдет при малом токе управления (рис. 3), что приведет к дополнительной потере мощности на тиристоре.

Рис. 5. Структурная схема двухполупериодного регулирования мощности с СИФУ

Рис. 6. Временная диаграмма работы схемы двухполупериодного регулирования мощности с СИФУ

Поэтому для управления тиристорами используют специальную систему импульсно-фазового управления (СИФУ), формирующую импульсы управления с крутым фронтом. Структурная схема двухполупериодного регулирования мощности с СИФУ и временная диаграмма работы показаны на рис. 5 и 6 соответственно. Импульс управления поступает на тиристор в конце интервала времени Т1. В данном случае Т1=Т2, угол открытия тиристора отсчитывается от точки перехода напряжения через 0 и в данном случае составляет 90°.

Рис. 7. Схема двухполупериодного выпрямителя и временная диаграмма его работы

Пожалуй, наиболее распространено применение тиристоров в управляемых выпрямителях. На рис. 7 показаны схема двухполупериодного выпрямителя и временная диаграмма его работы. Предполагается, что мост работает на активно-индуктивную нагрузку, постоянная времени которой существенно превышает длительность периода сетевого напряжения, поэтому токи через тиристоры и ток сети I1 имеют прямоугольную форму.

Обратный диод VD0 образует контур протекания тока нагрузки при выключенных тиристорах. Выходное напряжение зависит от угла управления тиристорами α следующим образом:

Рис. 8. Трехфазная выпрямительная схема с нулевым проводом (выпрямитель Ларионова)

На рис. 8 показаны трехфазная выпрямительная схема с нулевым проводом (выпрямитель Ларионова) и графики выпрямленного напряжения и тока. Так же, как и в предыдущем случае, предполагается, что постоянная времени нагрузки значительно превышает длительность периода сетевого напряжения. Среднее выпрямленное напряжение на нагрузке вычисляется из следующего соотношения:

где U2 — действующее напряжение на вторичной обмотке.

Рис. 9. Трехфазная мостовая реверсивная выпрямительная схема

Трехфазная мостовая реверсивная выпрямительная схема показана на рис. 9. Мостовые выпрямители работают в этой схеме поочередно. Обратные диоды в реверсивной схеме, разумеется, отсутствуют, поэтому переключение мостов возможно только в случае уменьшения тока нагрузки до нуля. В противном случае произойдет короткое замыкание.

Описание конструкции и принцип действия

Тиристор состоит из трех частей: «Анод», «Катод» и «Вход», состоящий из трех p-n переходов, которые могут переключаться из положений «ВКЛ» и «ВЫКЛ» на очень высокой скорости. Но при этом, он также может быть переключен с позиции «ВКЛ» с различной продолжительности по времени, т. е. в течение нескольких полупериодов, чтобы доставить определенное количество энергии к нагрузке. Работа тиристора можно лучше объяснить, если предположить, что он будет состоять из двух транзисторов, связанных друг с другом, как пара комплементарных регенеративных переключателей.

Самые простые микросхемы демонстрируют два транзистора, которые совмещены таким образом, что ток коллектора после команды «Пуск» поступает на NPN транзистора TR 2 каналы непосредственно в PNP-транзистора TR 1. В это время ток с TR 1 поступает в каналы в основания TR 2 . Эти два взаимосвязанных транзистора располагаются так, что база-эмиттер получает ток от коллектора-эмиттера другого транзистора. Для этого нужно параллельное размещение.

Тиристор КУ221ИМ

Несмотря на все меры безопасности, тиристор может непроизвольно переходить из одного положения в другое. Это происходит из-за резкого скачка тока, перепада температур и прочих разных факторов. Поэтому перед тем, как купить тиристор КУ202Н, Т122 25, Т 160, Т 10 10, его нужно не только проверить тестером (прозвонить), но и ознакомиться с параметрами работы.

Типичные тиристорные ВАХ

Для начала обсуждения этой сложной темы, просмотрите схему ВАХ-характеристик тиристора:

характеристика тиристора ВАХ

  1. Отрезок между 0 и (Vвo,IL) полностью соответствует прямому запиранию устройства;
  2. В участке Vво осуществляется положение «ВКЛ» тиристора;
  3. Отрезок между зонами (Vво, IL) и (Vн,Iн) – это переходное положение во включенном состоянии тиристора. Именно в этом участке происходит так называемый динисторный эффект;
  4. В свою очередь точки (Vн,Iн) показывают на графике прямое открытие прибора;
  5. Точки 0 и Vbr – это участок с запиранием тиристора;
  6. После этого следует отрезок Vbr — он обозначает режим обратного пробоя.

Естественно, современные высокочастотные радиодетали в схеме могут влиять на вольт-амперные характеристики в незначительной форме (охладители, резисторы, реле). Также симметричные фототиристоры, стабилитроны SMD, оптотиристоры, триодные, оптронные, оптоэлектронные и прочие модули могут иметь другие ВАХ.

ВАХ-тиристора

Кроме того, обращаем Ваше внимание, что в таком случае защита устройств осуществляется на входе нагрузки.

Проверка тиристора

Перед тем, как купить прибор, нужно знать, как проверить тиристор мультиметром. Подключить измерительный прибор можно только к так называемому тестеру. Схема, по которой можно собрать такое устройство, представлена ниже:

тестер тиристоров

Согласно описанию, к аноду необходимо подвести напряжение положительного характера, а к катоду – отрицательного. Очень важно использовать величину, которая соответствует разрешению тиристора. На чертеже показаны резисторы с номинальным напряжением от 9 до 12 вольт, это значит, что напряжение тестера немного больше, чем тиристора. После того, как Вы собрали прибор, можно начинать проверять выпрямитель. Нужно нажать на кнопку, которая подает импульсные сигналы для включения.

Проверка тиристора осуществляется очень просто, на управляющий электрод кнопкой кратковременно подается сигнал на открытие (положительный относительно катода). После этого если на тиристоре загорелись бегущие огни, то устройство считается нерабочим, но мощные приборы не всегда сразу реагируют после поступления нагрузки.

схема тестера для тиристоров

Помимо проверки прибора, также рекомендуется использовать специальные контроллеры или блок управления тиристорами и симисторами ОВЕН БУСТ или прочие марки, он работает примерно также, как и регулятор мощности на тиристоре. Главным отличием является более широкий спектр напряжений.

Видео: принцип работы тиристора

Тиристоры: назначение и применение.

Тиристор — полупроводниковое устройство для передачи сигнала в электрических сетях. В отличие от транзисторов и электронных ключей, тиристор обеспечивает постоянное соединение, которое не зависит от силы управляющего тока и не прекращается при его отсутствии.

В конструкции тиристора присутствуют три контакта: управляющий электрод, катод и анод. Анод подключается к источнику питания через плюс и помечается светодиодным датчиком, катод присоединяется к минусу. Управляющий ток регулируется с помощью резистора, а отключение происходит только вручную или после снижения напряжения до определенных показателей.

Для каждого типа тиристоров характерны свои показатели минимально и максимально допустимого тока и напряжения, при котором прибор переходит в закрытое состояние.

Какие бывают тиристоры

Тиристоры отличаются по конструкции, материалу изготовления, техническим характеристикам. Изначально эти устройства направлены на то, чтобы выдерживать высокое напряжение, поэтому некоторые модели оснащены теплоотводом для предотвращения перегрева.

  • диодные тиристоры, проводящие ток только в одном или в двух направлениях;
  • низковольтные тиристоры для установки в системах низкого напряжения;
  • силовые тиристоры, используемые при низких частотах вкупе с высоким током и напряжением;
  • тиристорные модули — стартеры для плавного пуска электрооборудования, представляющие собой комбинацию из двух тиристоров.

Где применяются тиристоры

Назначение и применение тиристоров очень обширно. Они используются в разнообразных схемах, где важно поддерживать стабильную работу при перепадах напряжения и обеспечивать автоматический пуск.

  • для монтажа сигнализаций;
  • в системах освещения, полива и других схемах, которые предполагают режим автозапуска;
  • в автомобильных, промышленных и других двигателях;
  • в преобразователях, усилителях, инверторах;
  • в электрооборудовании.

Тиристоры благодаря особенностям своей конструкции позволяют наладить бесперебойную работу автоматики, сделать сеть стабильной, обеспечить надежное соединение и мягкий пуск. Эти устройства компактны, отличаются простой установкой и эксплуатацией с низким риском поломок, высокой производительностью и долговечностью.

В нашем каталоге вы найдете разные типы тиристоров: низковольтные, силовые, тиристорные модули и другие. Проконсультироваться по поводу выбора модели или заказать товар можно по телефону вверху страницы. Звонок по России бесплатный.

Классификация

В зависимости от количества выводов можно вывести классификацию тиристоров. По сути все очень просто: тиристор с двумя выводами называется динисторами (соответственно имеет только анод и катод). Тиристор с тремя и четырьмя выводами, называются триодными или тетродными. Также бывают тиристоры и с большим количеством чередующихся полупроводниковых областей. Одним из самых интересных является симметричный тиристор (симистор), который включается при любой полярности напряжения.

Обычно тиристор представляют в виде двух транзисторов, связанных между собой, каждый из которых работает в активном режиме.

В связи с таким рисунком можно назвать крайние области — эмиттерными, а центральный переход — коллекторным.
Чтобы разобраться как работает тиристор стоит взглянуть на вольт-амперную характеристику.

К аноду тиристора подали небольшое положительное напряжение. Эмиттерные переходы включены в прямом направлении, а коллекторный в обратном. (по сути все напряжение будем на нем). Участок от нуля до единицы на вольт-амперной характеристике будет примерно аналогичен обратной ветви характеристики диода. Этот режим можно назвать — режимом закрытого состояния тиристора.
При увеличении анодного напряжения происходит происходит инжекция основных носителей в области баз, тем самым происходит накопление электронов и дырок, что равносильно разности потенциалов на коллекторном переходе. С увеличением тока через тиристор напряжение на коллекторном переходе начнет уменьшаться. И когда оно уменьшится до определенного значения, наш тиристор перейдет в состояние отрицательного дифференциального сопротивления (на рисунке участок 1-2).
После этого все три перехода сместятся в прямом направлении тем самым переведя тиристор в открытое состояние (на рисунке участок 2-3).
В открытом состоянии тиристор будет находится до тех пор, пока коллекторный переход будет смещен в прямом направлении. Если же ток тиристора уменьшить, то в результате рекомбинации уменьшится количество неравновесных носителей в базовых областях и коллекторный переход окажется смещен в обратном направлении и тиристор перейдет в закрытое состояние.
При обратном включении тиристора вольт-амперная характеристика будет аналогичной как и у двух последовательно включенных диодов. Обратное напряжение будет ограничиваться в этом случае напряжением пробоя.

Общие параметры тиристоров

1. Напряжение включения — это минимальное анодное напряжение, при котором тиристор переходит во включенное состояние.
2. Прямое напряжение — это прямое падение напряжения при максимальном токе анода.
3. Обратное напряжение — это максимально допустимое напряжение на тиристоре в закрытом состоянии.
4. Максимально допустимый прямой ток — это максимальный ток в открытом состоянии.
5. Обратный ток — ток при максимальной обратном напряжении.
6. Максимальный ток управления электрода
7. Время задержки включения/выключения
8. Максимально допустимая рассеиваемая мощность

Таким образом, в тиристоре существует положительная обратная связь по току — увеличение тока через один эмиттерный переход приводит к увеличению тока через другой эмиттерный переход.
Тиристор — не полностью управляющий ключ. То есть перейдя в открытое состояние, он остается в нем даже если прекращать подавать сигнал на управляющий переход, если подается ток выше некоторой величины, то есть ток удержания.

  • полупроводниковые приборы
  • электроника для начинающих
  • электроника
  • тиристор

Тенденции развития и перспективы использования тиристоров

Новые материалы и технологии для повышения эффективности тиристоров

Современные исследования и разработки в области полупроводниковых материалов и технологий направлены на улучшение характеристик тиристоров, таких как увеличение напряжения переключения, снижение потерь мощности и улучшение коммутационных характеристик. Новые материалы и структуры тиристоров могут обеспечить более высокую эффективность и производительность, что приведет к улучшению их применения в различных системах электроэнергии.

Интеграция тиристоров в «умные» сети и системы

С развитием «умных» сетей и систем управления электроэнергией возникает потребность в более интеллектуальных и эффективных устройствах управления мощностью. Тиристоры могут быть интегрированы в умные системы для более точного и динамического управления электропитанием. Это позволит эффективнее регулировать нагрузки, учитывать изменения в потреблении энергии и интегрировать различные источники энергии, такие как солнечные батареи и ветрогенераторы.

Роль тиристоров в развитии возобновляемых источников энергии

Возобновляемые источники энергии, такие как солнечная и ветровая энергия, становятся все более популярными в современных энергетических системах. Тиристоры могут использоваться в инверторах и контроллерах этих источников энергии, чтобы обеспечить эффективное преобразование переменного тока в постоянный и управлять выработкой энергии с учетом изменчивости возобновляемых источников.

Прогноз развития рынка тиристоров

Рынок тиристоров ожидается продолжать расти, привлекая внимание отраслей энергетики, промышленности и электроники. Прогнозируется, что новые технологии и улучшенные материалы приведут к повышению производительности и расширению областей применения тиристоров. Особый интерес будет уделяться применению тиристоров в силовых электронных системах, устройствах для регулирования электропитания, ИБП и электроприводах.

Комбинация повышенной эффективности, интеграции в умные системы и роста использования возобновляемых источников энергии способствует перспективам расширения применения тиристоров и их активной роли в современной энергетике и промышленности.

Классификационные признаки

По способу управления различают следующие виды тиристоров:

Диодные (динисторы)

Активируются импульсом высокого напряжения, подаваемым на анод и катод. В конструкции присутствуют 2 электрода, без управляющего.

Триодные (тринисторы)

Разделяются на две группы. В первой управляющее напряжение поступает катод и электрод управления, во второй – на анод и управляющий электрод.

Симисторы

Выполняют функции двух включенных параллельно тиристоров.

Оптотиристоры

Их функционирование осуществляется под действием светового потока. Функцию управляющего электрода выполняет фотоэлемент.

По обратной проводимости тиристоры разделяются на:

  • обратно проводящие;
  • обратно непроводящие;
  • с ненормируемым обратным значением напряжения;
  • пропускающие токи в двух направлениях.

Основные характеристики тиристоров, на которые стоит обратить внимание при покупке

  • Максимально допустимый ток. Эта величина характеризует наибольшее значение тока открытого тиристора. У мощных устройств она составляет несколько сотен ампер.
  • Максимально допускаемый обратный ток.
  • Прямое напряжение. Этот параметр тиристора равен падению напряжения при максимально возможном токе.
  • Обратное напряжение. Характеризует максимально допустимое напряжение на устройстве, находящемся в закрытом состоянии, при котором оно не утрачивает способность выполнять свои функции.
  • Напряжение включения. Это наименьшая величина, при которой возможно функционирование тиристора.
  • Минимальный ток управляющего электрода. Равен величине тока, которого достаточно для активации устройства.
  • Наибольшая допустимая рассеиваемая мощность.

Прибор можно проверить несколькими способами, один из них – использование специального самодельного тестера, собираемого по представленной ниже схеме:

Такая схема предназначена для работы при напряжении 9-12 В. Для других значений напряжения питания производят перерасчет величин R1-R3.

  • К аноду подключают положительный полюс, к катоду подводят «-».
  • На управляющий электрод с помощью кнопки SA подают сигнал к открытию устройства.
  • Если светодиод загорается до нажатия кнопки SA или не загорается после нажатия, то прибор является неработоспособным.
Оцените статью
TutShema
Добавить комментарий