Сколько составляет скорость звука

Одна из основных задач какой-либо точной науки заключается в измерении и объяснении тех или иных процессов, а также их участников. За многие годы исследований, расчетов и споров научное сообщество пришло к пониманию того, что существуют определенные ограничения в некоторых явлениях. К примеру, скорость света в вакууме равна 299 792 458 м/с. Согласно специальной теории относительности, ничто не может двигаться быстрее. Другими словами, мы имеем верхний скоростной лимит для света. Однако такой лимит для скорости звука пока не был установлен. Ученые из Лондонского университета королевы Марии (Англия, Великобритания) провели расчеты, результатом которых стало открытие верхнего предела скорости звука. Что стало основой расчетов, каковы их результаты, и в каких областях можно применить новообретенные знания? Ответы на эти вопросы мы найдем в докладе ученых. Поехали.

Основа исследования

Звук это волны механических колебаний в какой-либо среде. Скорость распространения этих волн напрямую зависит от самой среды. К примеру, в твердых объектах звук распространяется быстрее, чем в воздухе. Однако и тут могут быть флуктуации в измерениях, поскольку важна не только среда как таковая, но и ее состояние (температура, давление и т.д.).

Логично, что скорость звука сложно назвать константой, так как в разных условиях она будет своя: в воздухе это 331 м/с, в воде 1500 м/с (тут будут вариации в зависимости от температуры, давления и солености воды), а в стекле 4800 м/с.

Но как же рассчитать верхний лимит скорости звука?

Как напоминают нам ученые, некоторые важные свойства конденсированных фаз* определяются фундаментальными физическими константами.

Конденсированные фазы* — состояние вещества, когда число его компонентов (атомов, молекул и т.д.) крайне велико, а взаимодействия между компонентами очень сильны. К числу таких фаз можно отнести и твердые вещества, и жидкости.

Радиус Бора позволяет охарактеризовать межатомное расстояние в ангстрем (1 Å = 0.1 нм) масштабах с точки зрения массы электрона (me), заряда (e) и постоянной Планка (h). Эти же фундаментальные константы входят в энергию Ридберга*, задавая масштаб характерной энергии связи в конденсированных фазах и химических соединениях.

Постоянная Ридберга* — предельное значение наивысшего волнового числа любого фотона, который может быть испущен атомом водорода. Также эта постоянная определяет волновое число фотона с наименьшей энергией, способного ионизировать атом водорода в его основном состоянии.

Тем не менее крайне важную роль в физике играют безразмерные и не зависящие от единиц измерения константы. К ним относятся постоянная тонкой структуры* и отношение массы протона к массе электрона*.

Постоянная тонкой структуры* (⍺) — фундаментальная физическая постоянная, которая характеризует силу электромагнитного взаимодействия. Эта постоянная определяет размер крайне малого изменения величины энергетических уровней атома и образования тонкой структуры, которые являются набором узких и близких частот в его спектральных линиях.

Визуализация скорости света и скорости звука

Отношение массы протона к массе электрона* (mp/me — константа, равная 1836,15267261.

Объединение этих констант позволяет определить новую безразмерную константу, описывающую верхнюю границу скорости звука (vu) в конденсированных фазах (формула №1):

где c — скорость света в вакууме, ⍺ — постоянная тонкой структуры, mp/me — отношение масс протона и электрона, vu — верхний предел скорости звука.

Подтверждение верности данной формулы было получено благодаря многочисленным экспериментам и моделированию атомарного водорода.

Скорость звука

Физика

Ско́рость зву́ка, скорость распространения в среде упругих волн . Определяется упругостью и плотностью среды. Для плоской гармонической волны в среде без дисперсии скорость звука равна c = ω / k > c = ω / k , где ω omega ω – частота , k boldsymbol k – волновое число . Со скоростью c c распространяется фаза гармонической волны, поэтому её называют также фазовой скоростью звука. В средах с дисперсией звука фазовая скорость различна для разных частот; в этих случаях используют понятие групповой скорости . При больших амплитудах упругой волны скорость распространения каждой точки профиля волны зависит от величины давления в этой точке, возрастая с ростом давления, что приводит к искажению формы волны (см. в статье нелинейная акустика ). Скорость звука в газах меньше, чем в жидкостях , а в жидкостях, как правило, меньше, чем в твёрдых телах . При температуре 20 °C и нормальном давлении скорость звука в воздухе составляет 343,1 м/c, в воде – 1490 м/c.

В газах и жидкостях звук распространяется в виде объёмных волн сжатия – разряжения. Если процесс распространения звука происходит адиабатически , то скорость звука равна c = x ( ∂ P / ∂ ρ ) s text= sqrt> c = x ( ∂ P / ∂ ρ ) s ​

​ , где P P – давление, ρ rho ρ – плотность вещества, индекс s s показывает, что производная берётся при постоянной энтропии . Эта скорость звука называется адиабатической.

В идеальном газе c = γ P / ρ = γ R T / μ =sqrt=sqrt c = γ P / ρ

​ , где R R – универсальная газовая постоянная , Т textit Т – абсолютная температура, μ mu μ – молекулярная масса газа, γ gamma γ – отношение теплоёмкостей при постоянном давлении и постоянном объёме. Это т. н. лапласова скорость звука; в газе она совпадает по порядку величины со средней тепловой скоростью движения молекул. Величина c ′ = P / ρ >=sqrt c ′ = P / ρ

​ называется ньютоновой скоростью звука; она определяет скорость звука при изотермическом процессе распространения, который имеет место на очень низких частотах.

В идеальном газе при заданной температуре скорость звука не зависит от давления и растёт с ростом температуры как T sqrt> T

​ . При комнатной температуре относительное изменение скорости звука в воздухе составляет примерно 0,17 % на 1 °C. В жидкостях скорость звука, как правило, уменьшается с ростом температуры. Исключением является вода , в которой скорость звука при комнатной температуре увеличивается с ростом температуры, достигает максимума при температуре ≈ 74 approx 74 ≈ 74 °C и уменьшается с дальнейшим ростом температуры. Скорость звука в воде растёт с увеличением давления примерно на 0,01 % на 1 атм, а также с увеличением содержания растворённых в ней солей .

В морской воде скорость звука зависит от температуры, солёности и глубины. Эти зависимости имеют сложный вид; для расчёта скорости звука используются таблицы, рассчитанные по эмпирическим формулам. Поскольку температура, давление, а иногда и солёность меняются с глубиной, то скорость звука в океане является функцией глубины. Эта зависимость в значительной степени определяет характер распространения звука в океане, в частности определяет существование подводного звукового канала .

В неограниченной твёрдой среде распространяются продольные и сдвиговые (поперечные) упругие волны. В изотропном твёрдом теле фазовая скорость для продольной волны

c l = E ( 1 − σ ) ρ ( 1 + σ ) ( 1 − 2 σ ) = K + 4 / 3 G ρ , >=sqrt< frac> =sqrt< frac>, c l ​ = ρ ( 1 + σ ) ( 1 − 2 σ ) E ( 1 − σ ) ​

​ , для сдвиговой волны

c t = E 2 ρ ( 1 + σ ) = G ρ , >=sqrt< frac> =sqrt< frac>, c t ​ = 2 ρ ( 1 + σ ) E ​

где E E – модуль Юнга , G G – модуль сдвига, σ sigma σ – коэффициент Пуассона , K K – модуль объёмного сжатия. Скорость распространения продольных волн всегда больше, чем скорость сдвиговых волн, причём обычно выполняется соотношение c l > 2 c t >>sqrt > c l ​ > 2

​ c t ​ . В монокристаллах скорость звука зависит от направления распространения волны в кристалле (см. статью Кристаллоакустика ). В тех направлениях, в которых возможно распространение чисто продольных и чисто поперечных волн, в общем случае имеется одно значение c l > c l ​ и два значения c t > c t ​ . Если значения c t > c t ​ различны, то соответствующие волны иногда называют быстрой и медленной поперечными волнами. В общем случае для каждого направления распространения волны в кристалле могут существовать три смешанные волны с различными скоростями распространения, которые определяются соответствующими комбинациями модулей упругости.

В металлах и сплавах скорость звука существенно зависит от предшествующей механической и термической обработки; это явление частично связано с дислокациями , наличие которых также влияет на скорость звука. В металлах, как правило, скорость звука уменьшается с ростом температуры. При переходе металла в сверхпроводящее состояние величина ∂ c ∂ T frac ∂ T ∂ c ​ в точке перехода меняет знак. В сильных магнитных полях проявляются некоторые эффекты в зависимости скорости звука от магнитного поля, отражающие особенности поведения электронов в металле.

Измерения скорости звука используются для определения многих свойств вещества, таких как величина отношения теплоёмкостей для газов, сжимаемости газов и жидкостей, модулей упругости твёрдых тел, температуры Дебая и др. Измерение малых изменений скорости звука – чувствительный метод определения примесей в газах и жидкостях. В твёрдых телах измерение скорости звука и её зависимости от температуры, магнитного поля и других параметров позволяет исследовать строение вещества: зонную структуру полупроводников , форму ферми-поверхности в металлах и многое другое.

Редакция физических наук

Опубликовано 4 мая 2023 г. в 18:54 (GMT+3). Последнее обновление 4 мая 2023 г. в 18:54 (GMT+3). Связаться с редакцией

Оцените статью
TutShema
Добавить комментарий