Сила тока это физическая величина равная

В статье рассматривается понятие силы тока, ее определение и единицы измерения, а также приводятся примеры ее применения.

Сила тока: основные формулы и их значение обновлено: 4 сентября, 2023 автором: Научные Статьи.Ру
Помощь в написании работы

В физике сила тока является одним из основных понятий, которое помогает нам понять, как электрический ток движется в проводниках. Сила тока измеряется в амперах и определяется как количество электрического заряда, проходящего через проводник за единицу времени. В этой лекции мы рассмотрим определение силы тока, единицы измерения, формулу для расчета, а также рассмотрим некоторые свойства и примеры применения силы тока.

Нужна помощь в написании работы?

Написание учебной работы за 1 день от 100 рублей. Посмотрите отзывы наших клиентов и узнайте стоимость вашей работы.

Сила тока

Физика

Упорядоченное движение электрических зарядов в проводнике

Си́ла то́ка, скалярная физическая величина I I I , характеризующая упорядоченное движение электрических зарядов и равная отношению заряда Δ q Delta q Δ q , протекающего через определённую поверхность S S S за время Δ t Delta t Δ t , к величине этого промежутка времени: I = Δ q / Δ t I = Delta q/Delta t I = Δ q /Δ t , или I = d q / d t . I = dq/dt. I = d q / d t . В Международной системе единиц (СИ) единица силы тока является основной и называется ампер (обозначается А). 1 А – это ток, при котором через поперечное сечение проводника проходит заряд в 1 Кл за 1 с. Сила тока связана со скоростью v v v движения электрических зарядов ( электронов ) в проводнике соотношением Упорядоченное движение электрических зарядов в проводнике. Упорядоченное движение электрических зарядов в проводнике. I = d q / d t = e n S ⋅ d l / d t = e n S v I = dq/dt = enS cdot dl/dt = enSv I = d q / d t = e n S ⋅ d l / d t = e n S v , где e e e – заряд электрона, n n n – концентрация электронов, l l l – длина проводника (рис. 1).

Измерения силы тока обычно осуществляют по магнитному действию тока с помощью амперметра (в том числе милли -, микро -, наноамперметра) или гальванометра . Эти приборы включают в электрическую цепь последовательно с тем элементом цепи, в котором измеряют силу тока.

Опубликовано 16 марта 2023 г. в 13:37 (GMT+3). Последнее обновление 16 марта 2023 г. в 13:37 (GMT+3). Связаться с редакцией

Информация

Физика

ЭЛЕКТРИЧЕСКИЙ ТОК — Сила Тока / Физика 8 класс

Области знаний: Электрический ток

Формулы и соотношения

Для расчетов следует знать основные законы и следствия из них.

Формула сила тока

Они указывают на зависимость искомой физической величины от других.

Используя основные соотношения, можно выполнить расчет других параметров (мощности, падения напряжения на одном из потребителей и т. д.).

К основным законам следует отнести следующие:

  1. Правила Ома.
  2. Закон теплового действия тока.
  3. Законы Кирхгофа (I и II).

Первый связывает ток с электросопротивлением, ЭДС и напряжением. Для переменного он сильно отличается, поскольку вводится понятие активной и реактивной нагрузок. Второй применяется для расчета количества теплоты, выделяемого проводником при прохождении через него электротока.

Законы Кирхгофа применяются в электронике для расчета токов. Примером такого прибора является УЗО (устройство защитного отключения). Его принцип действия основан на I законе Кирхгофа.

Закон Ома

Закон Ома радиолюбители применяют для расчета не только участка электроцепи, но и всей схемы. Он представлен в двух формулировках: для участка цепи и полной. В первом случае берется какой-либо участок без учета источника питания. Во втором — появляется ЭДС и внутреннее сопротивления гальванического элемента (источника питания).

 мощность тока

Формулировка в первом случае следующая: ток, протекающий через заданный участок цепи, прямо пропорционально зависит от значения напряжения (U), и обратно пропорционален электрическому сопротивлению этого участка (R). Формула силы тока имеет такой вид: I = U / R. Если рассматривать полную цепь, состоящую из резистора, источника питания и амперметра, то появляются параметры ЭДС и внутреннее сопротивление элемента питания (Rип).

Формулировка имеет следующий вид: сила тока (i или I) прямо пропорционально зависит от ЭДС (e) в полной цепи и обратно пропорционально от алгебраической суммы сопротивлений резистора (R) и гальванического элемента (Rип). Запись закона в математической форме следующая: i = e / (R + Rип).

На основании формул можно вывести некоторые соотношения. Они связывают одну физическую величину с другой. Это позволяет без особых проблем находить неизвестные параметры. Формулы называют еще следствием из законов. Вот некоторые из них:

  1. Нахождение сопротивлений резистора и источника питания: R = U / I, R = (e / i) — Rип и Rип = (e / i) — R.
  2. Напряжение и ЭДС: U = I * R и e = i * (R + Rип).

Кроме того, нужно знать еще одну формулу, с помощью которой находится мощность: P = U * I = U^2 / R = R * I^2.

Формула теплого действия

Электроток, протекающий через проводник, оказывает на последний тепловое воздействие. При этом происходит преобразование электроэнергии в тепловую. Объясняется этот феномен взаимодействием свободных носителей заряда с узлами кристаллической решетки, т. е. приводит к выделению некоторого количества теплоты Q.

Амперметр

Два ученых открыли (независимо друг от друга) закон вычисления тепловой энергии, которая выделяется при протекании электричества за некоторое время (t). Он получил название «закон Джоуля- Ленца». Его формулировка следующая: количество теплоты, которое выделяет проводник в результате прохождения через него электричества, прямо пропорционально зависит от I, U и t. Математическая форма следующая: Q = UIt = RtI^2 = (tU^2) / R = Pt.

Физики рекомендуют воспользоваться формулами-следствиями из него:

  1. Ток: I = Q / (Ut) = [(Q / (Rt)]^(1/2).
  2. Напряжение: U = Q / (It) = [QRt]^(1/2).
  3. Время протекания тока: t = Q / (UI) = Q / (RI^2) = Q / (U^2 / R) = Q / P.

Когда ток не совершает какую-либо механическую работу и не действует на какой-либо элемент цепи, тогда выполняется преобразование всей электроэнергии в тепловую, т. е. Q = A.

Правила Кирхгофа

В физике всего два закона Кирхгофа. Формулировка первого имеет следующий вид: ток, входящий в узел цепи, равен исходящему току. Для примера следует рассмотреть схему 1. Она состоит из потребителей, которые являются резисторами.

Сила тока

Схема 1. Первый закон Кирхгофа

Ток I1 входит в узел А. После него распределяется на I2 и I3. Следовательно, I1 = I2 + I3. С узла D выходит ток I1, который состоит из I2 и I6.

Однако для расчета электрических цепей недостаточно одного закона Кирхгофа. Рекомендуется использовать также и второй (схема 2). Его формулировка следующая: в произвольном замкнутом контуре всегда выполняется равенство алгебраической суммы всех ЭДС и падений U на каждом элементе резистивного типа. Необходимо отметить, что е и U являются векторными величинами. Их направление указывается с помощью знаков «+» и «-», которые определяются по такому алгоритму:

  1. Сделать выбор направления, по которому осуществляется обход: по часовой или против часовой стрелки.
  2. Осуществить выбор направления протекания токов по цепи.
  3. Расставить знаки е: совпадение с направлением — «+», а в другом случае — «-».

Физики рекомендуют рассматривать любой закон на практическом примере. На схеме 2 показаны следующие элементы: резистор R, источники питания с ЭДС Е1 и Е2. Следует отметить, что r1 и r2 — внутренние сопротивления источников питания с Е1 и Е2 соответственно.

Сила тока и сопротивление

Схема 2. Второй закон Кирхгофа

На схеме 2 видно, что Е1 направлена по часовой стрелке, а Е2 — в обратную сторону. Закон запишется таким образом: Е1 — Е2 = I1 * r1 — I2 * r2. Чтобы выразить величину Е2, следует рассмотреть правую ветвь: Е2 = I2 * r2 + I * R. Таким же образом находится и Е1: Е1 = I1 * r1 + I * R. Ток через резистор R будет равен алгебраической сумме I1 и I2.

Пример решения

Для закрепления знаний следует перейти к их практическому применению. Используя данные на схеме 2, следует вычислить ток, который протекает через резистор R. Кроме того, известно, что I1 в 2 раза больше I2. Нужно определить количество теплоты при следующих параметрах: максимальный ток I и время 5 минут. Решение осуществляется следующим образом:

  1. Общий ток через R: I = I1 + I2 = 2 * I2 + I2 = 3 * I2.
  2. Необходимо рассмотреть левую ветвь: Е1 = I1 * r1 + I * R = 2 * I2 * r1 + 3 * I2 * R.
  3. Составить уравнение: 12 = 2 * I2 * 0,1 + 3 * I2 * 2.
  4. Упростить его: I2 * (2 * 0,1 + 3 * 2) = I2 * (0,2 + 6) = 6,2 * I2 = 12.
  5. Решить равенство: I2 = 12 / 6,2 = 1,94 (A).
  6. Вычислить искомое значение тока: I = 3 * I2 = 3 * 1,94 = 5,81 (А).
  7. Количество теплоты (t = 5 минут = 5 * 60 = 300 секунд): Q =t * R * I^2 = 300 * 20 * 33,76 = 202536,6 Дж = 0,2 МДж.

Для проверки правильности решения специалисты рекомендуют воспользоваться специальными приложениями для построения и расчета электрических принципиальных схем.

Таким образом, начинающему радиолюбителю необходимо ознакомиться с основными законами физики, а затем приступать к расчетам схем. Не следует упускать из вида силу тока, поскольку от этого параметра зависит правильность работы любого устройства.

Сила тока. Амперметр

В процессе своего движения вдоль проводника заряженные частицы (в металлах это электроны) переносят некоторый заряд. Чем больше заряженных частиц, чем быстрее они движутся, тем больший заряд будет ими перенесён за одно и то же время. Электрический заряд, проходящий через поперечное сечение проводника за 1 секунду, определяет силу тока в цепи.

Сила тока (I) — скалярная величина, равная отношению заряда (q), прошедшего через поперечное сечение проводника, к промежутку времени (t), в течение которого шёл ток.
I = q t , где (I) — сила тока, (q) — заряд, (t) — время.
Единица измерения силы тока в системе СИ — ([I]~=~1~A) (ампер).

В 1948 г. было предложено в основу определения единицы силы тока положить явление взаимодействия двух проводников с током:

при прохождении тока по двум параллельным проводникам в одном направлении проводники притягиваются, а при прохождении тока по этим же проводникам в противоположных направлениях — отталкиваются.

За единицу силы тока (1~A) принимают силу тока, при которой два параллельных проводника длиной (1) м, расположенные на расстоянии (1) м друг от друга в вакууме, взаимодействуют с силой (0,0000002) H (рис. 1 .).

Definition_Ampere.png

Рис. 1 . Определение единицы силы тока
Единица силы тока называется ампером ((A)) в честь французского учёного А.-М. Ампера (рис. 2 ).

Ampere_Andre_1825.png

Андре-Мари Ампер
(1775 — 1836)
Рис. 2 . Ампер Андре-Мари

А.-М. Ампер ввёл термины: электростатика, электродинамика, соленоид, ЭДС, напряжение, гальванометр, электрический ток.

Ампер — довольно большая сила тока. Например, в электрической сети квартиры через включённую (100) Вт лампочку накаливания проходит ток с силой, приблизительно равной (0,5A). Ток в электрическом обогревателе может достигать (10A), а для работы карманного микрокалькулятора достаточно (0,001A).

Помимо ампера на практике часто применяются и другие (кратные и дольные) единицы силы тока, например, миллиампер (мА) и микроампер (мкА):
(1 мA = 0,001 A) , (1 мкA = 0,000001 A) , (1 кA =1000 A).
То есть (1 A = 1000 мA) , (1 A = 1000000 мкA) , (1 A = 0,001 кA).

Если электроны перемещаются в одном направлении, т.е. — от одного полюса источника тока к другому, то такой ток называют постоянным .

Переменным называется ток, сила и направление которого периодически изменяются.

В бытовых электросетях используют переменный ток напряжением (220) В и частотой (50) Гц. Это означает, что ток за (1) секунду (50) раз движется в одном направлении и (50) раз — в другом. У многих приборов имеется блок питания, который преобразует переменный ток в постоянный (у телевизора, компьютера и т.д.).

Направление тока

Раньше в учебниках по физике писали так: когда-то давно решили, что ток направлен от плюса к минуса, а потом узнали, что по проводам текут электроны. Но электроны эти — отрицательные, а значит к минусу идти не могут. Но раз уже условились о направлении, поэтому оставим, как есть. Вопрос тогда возникал у всех: почему нельзя поменять направление тока? Но ответ так никто и не получил.

Сейчас пишут немного иначе: положительные частицы текут по проводнику от плюса к минусу, туда и направлен ток. Здесь вопросов ни у кого не возникает.

Так и какая версия верна?

На самом деле, обе. Носители заряда в каждом типе материала разные. В металлах — это электроны, в электролитах — ионы. У каждого типа частиц свои знаки и потребность в том, чтобы бежать к противоположно заряженному полюса источника тока.

Не будем же мы для каждого типа материала выбирать направление тока, чтобы решить задачу! Поэтому принято направлять ток от плюса к минусу. В большинстве задач школьного курса направление тока роли не играет, но есть то самое коварное меньшинство, где этот момент будет очень важным. Поэтому запомните — направляем ток от плюса к минусу.

Направление тока от плюса к минусу

Источник тока

Вода в шланге берется из водопровода, ключа с водой в земле — в общем, не из ниоткуда. Электрический ток тоже имеет свой источник.

В качестве источника может выступить, например, гальванический элемент (привычная батарейка). Батарейка работает на основе химических реакций внутри нее. Эти реакции выделяют энергию, которая потом передается электрической цепи.

У любого источника обязательно есть полюса — «плюс» и «минус». Полюса — это его крайние положения. По сути клеммы, к которым присоединяется электрическая цепь. Собственно, ток как раз течет от «+» к «-».

Обобщенный закон Ома

Обобщенный закон Ома определяет связь между основными электрическими величинами на участке цепи постоянного тока, содержащем резистор и идеальный источник ЭДС (рис.1.2):

;

Формула справедлива для указанных на рис.1.2 положительных направлений падения напряжения на участке цепи (Uab), идеального источника ЭДС (Е) и положительного направления тока (I).

Закон Джоуля-Ленца

Выражение закона Джоуля — Ленца

Интегральная форма закона

Словесное определение закона Джоуля — Ленца

Если принять, что сила тока и сопротивление проводника не меняется в течение времени, то закон Джоуля — Ленца можно записать в упрощенном виде:

Применив закон Ома и алгебраические преобразования, получаем приведенные ниже эквивалентные формулы:

Эквивалентные выражения теплоты согласно закона Ома

Словесное определение закона Джоуля — Ленца

Если принять, что сила тока и сопротивление проводника не меняется в течение времени, то закон Джоуля — Ленца можно записать в упрощенном виде:

20.Магни́тное по́ле— силовое поле, действующее на движущиесяэлектрические заряды и на тела, обладающиемагнитным моментом, независимо от состояния ихдвижения; магнитная составляющаяэлектромагнитного поля

Магнитное поле может создаваться током заряженных частиц и/илимагнитными моментамиэлектроноватомах (и магнитными моментами другихчастиц, что обычно проявляется в существенно меньшей степени) (постоянные магниты).

Кроме этого, оно возникает в результате изменения во времени электрического поля.

Основной силовой характеристикой магнитного поля является вектор магнитной индукции(вектор индукции магнитного поля). С математической точки зрения— векторное поле, определяющее и конкретизирующее физическое понятие магнитного поля. Нередко вектор магнитной индукции называется для краткости просто магнитным полем (хотя, наверное, это не самое строгое употребление термина).

Ещё одной фундаментальной характеристикой магнитного поля (альтернативной магнитной индукции и тесно с ней взаимосвязанной, практически равной ей по физическому значению) является векторный потенциал.

Вместе, магнитное и электрическоеполя образуют электромагнитное поле, проявлениями которого являются, в частности свети все другие электромагнитные волны.

Магнитное поле создаётся (порождается) током заряженных частиц или изменяющимся во времени электрическим полем, или собственными магнитными моментами частиц (последние для единообразия картины могут быть формальным образом сведены к электрическим токам)

Графическое изображение магнитных полей

img48_4

Для графического изображения магнитных полей используются линии магнитной индукции. Линия магнитной индукции –это линия, в каждой точке которой вектор магнитной индукции направлен по касательной к ней.

Сила тока некоторых электроприборов

Для лучшего понимания, сколько же составляет один ампер на практике, в таблице 1 приведены средние значения силы тока для некоторых электроприборов.

УстройствоЗначение силы тока $I$, А
Лампочка карманного фонаря0,1
Обычная лампа накаливания0,3 — 0,5
Холодильник0,8 — 1
Телевизор1,2 — 2
Электрический утюг3
Пылесос4 — 9
Стиральная машина6 — 10
Двигатель троллейбуса160 — 220
Молнияболее 400 000

Таблица 1. Значения силы тока в различных потребителях электроэнергии

Связь единицы измерения заряда и единицы измерения силы тока

Хоть мы уже и говорили о заряде и единице его измерения (кулон) ранее, в физике принято определять его через ампер.

Выразим из определения силы тока ($I = frac$) сам заряд и получим следующую формулу.

Если $I = 1 space А$, а $t = 1 space с$, то мы получим единицу электрического заряда — $1 space Кл$.

$1 space кулон = 1 space ампер cdot 1 space с$, или
$1 space Кл = 1 space А cdot 1 space с = 1 space А cdot с$.

За единицу электрического заряда принимают электрический заряд, проходящий сквозь поперечное сечение проводника при силе тока $1 space А$ за время $1 space с$.

Источники тока. Эдс источника

Источник тока — это устройство, в котором происходит преобразование какого-либо вида энергии в электрическую энергию.

ЭДС — энергетическая характеристика источника. Это физическая величина, равная отношению работы, совершенной сторонни­ми силами при перемещении электрического заряда по замкнутой цепи, к этому заряду:

Измеряется в вольтах (В).

Источник ЭДС — двухполюсник, напряжение на зажимах которого не зависит от тока, протекающего через источник и равно его ЭДС. ЭДС источника может быть задана либо постоянным, либо как функция времени, либо как функция от внешнего управляющего воздействия.

18. Закон Ома: сила тока, текущего по однородному участку проводника, прямо пропорциональна падению напряжения на проводнике:

-закон Ома в интегральной форме R – электрическое сопротивление проводника

Величина, обратная сопротивлению, называется проводимостью. Величина, обратная удельному сопротивлению, называется удельной проводимостью: Единица, обратная Ом, называется Сименсом [См].

— закон Ома в дифференциальной форме.

Обобщенный закон Ома

Обобщенный закон Ома определяет связь между основными электрическими величинами на участке цепи постоянного тока, содержащем резистор и идеальный источник ЭДС (рис.1.2):

;

Формула справедлива для указанных на рис.1.2 положительных направлений падения напряжения на участке цепи (Uab), идеального источника ЭДС (Е) и положительного направления тока (I).

Закон Джоуля-Ленца

Выражение закона Джоуля — Ленца

Интегральная форма закона

Словесное определение закона Джоуля — Ленца

Если принять, что сила тока и сопротивление проводника не меняется в течение времени, то закон Джоуля — Ленца можно записать в упрощенном виде:

Применив закон Ома и алгебраические преобразования, получаем приведенные ниже эквивалентные формулы:

Эквивалентные выражения теплоты согласно закона Ома

Словесное определение закона Джоуля — Ленца

Если принять, что сила тока и сопротивление проводника не меняется в течение времени, то закон Джоуля — Ленца можно записать в упрощенном виде:

20.Магни́тное по́ле— силовое поле, действующее на движущиесяэлектрические заряды и на тела, обладающиемагнитным моментом, независимо от состояния ихдвижения; магнитная составляющаяэлектромагнитного поля

Магнитное поле может создаваться током заряженных частиц и/илимагнитными моментамиэлектроноватомах (и магнитными моментами другихчастиц, что обычно проявляется в существенно меньшей степени) (постоянные магниты).

Кроме этого, оно возникает в результате изменения во времени электрического поля.

Основной силовой характеристикой магнитного поля является вектор магнитной индукции(вектор индукции магнитного поля). С математической точки зрения— векторное поле, определяющее и конкретизирующее физическое понятие магнитного поля. Нередко вектор магнитной индукции называется для краткости просто магнитным полем (хотя, наверное, это не самое строгое употребление термина).

Ещё одной фундаментальной характеристикой магнитного поля (альтернативной магнитной индукции и тесно с ней взаимосвязанной, практически равной ей по физическому значению) является векторный потенциал.

Вместе, магнитное и электрическоеполя образуют электромагнитное поле, проявлениями которого являются, в частности свети все другие электромагнитные волны.

Магнитное поле создаётся (порождается) током заряженных частиц или изменяющимся во времени электрическим полем, или собственными магнитными моментами частиц (последние для единообразия картины могут быть формальным образом сведены к электрическим токам)

Графическое изображение магнитных полей

img48_4

Для графического изображения магнитных полей используются линии магнитной индукции. Линия магнитной индукции –это линия, в каждой точке которой вектор магнитной индукции направлен по касательной к ней.

Оцените статью
TutShema
Добавить комментарий