Шестнадцатиричная система счисления позиционная или непозиционная

Системы счисления – одна из самых базовых тем в информатике, поэтому разберемся в этой теме по порядку.

Допустим, необходимо посчитать количество цветов на поляне. Можно загибать пальцы, делать зарубки на дереве, как это делали древние люди, и так далее. Можно сделать вывод, что форма счета может быть любой, также, как и форма записи. Для способа записи чисел ввели такое понятие, как система счисления.

Существует два типа систем счисления:
Непозиционная
Позиционная

В непозиционной системе счисления величина, которая обозначает цифру, не зависит от положения в числе.

К таким системам счисления можно отнести египетскую и римскую системы счисления.

Пример. Число в римской системе счисления – это набор стоящих подряд заглавных латинских букв, таких как I, V, X, L, C, В и M, которые обозначают числа 1, 5, 10, 50, 100, 500 и 1000 соответственно.

Тогда число 67 в римской системе счисления можно записать, как LXVII.

Непозиционные системы счисления годны для записи числа, но при сложных вычислениях вызывают массу неудобств хотя бы потому, что в них отсутствуют единые правила формирования больших чисел.

Позиционные системы счисления основаны на том, что «вес» цифры зависит от её положения – или позиции – в числе, отсюда и такое название.

Самые популярные в информатике позиционные системы счисления: двоичная, восьмеричная, десятичная, шестнадцатеричная.

Десятичная система счисления

Исторически сложилось, что это самая распространенная система счисления. Именно её мы используем, когда мы делаем покупки в магазине, набираем номер телефона или открываем страницу в книге. На каждой позиции может стоять только одна цифра из диапазона от 0 до 9.

Основанием (то есть, количество цифр) является число 10. Это значит, что «вес» любой цифры в числе будет кратен 10 в степени, равной позиции этой цифры. При этом позиции (их называют разрядами) отсчитываются с правого конца числа, начиная с нуля.

Пример. Чтобы разобраться подробнее, возьмем число 123. Давайте «разложим» это число по разрядам. Для этого каждую цифру числа умножим на основание системы, в данном случае число 10, возведенное в степень, равную номеру разряда. Цифра 3 стоит в нулевом разряде, цифра 2 – в первом, а цифра 1 – во втором. Получается, значение равно:

В данной лекции мы рассмотрим основные понятия и свойства систем счисления. Система счисления – это способ представления чисел с помощью цифр. Существует несколько типов систем счисления, включая позиционные и непозиционные. Позиционные системы счисления, такие как десятичная и двоичная, основаны на позиции цифры в числе. Непозиционные системы счисления, такие как римская, не зависят от позиции цифры. Мы рассмотрим примеры и сравним эти два типа систем счисления. Давайте начнем!

Позиционные системы счисления

Нужна помощь в написании работы?

Мы — биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Позиционные системы счисления

Позиционная система счисления – это система, в которой значение числа определяется не только самими цифрами, но и их позицией или разрядом в числе.

В позиционной системе счисления используется база или основание, которое определяет количество различных цифр, которыми можно представить числа. Наиболее распространенными позиционными системами счисления являются десятичная система (основание 10) и двоичная система (основание 2).

В десятичной системе счисления используются десять различных цифр от 0 до 9. Каждая цифра имеет свое значение, которое зависит от ее позиции в числе. Например, число 1234 в десятичной системе счисления означает 1 тысячу, 2 сотни, 3 десятка и 4 единицы.

В двоичной системе счисления используются только две цифры – 0 и 1. Каждая цифра также имеет свое значение, которое зависит от ее позиции в числе. Например, число 101 в двоичной системе счисления означает 1 четверку, 0 двойки и 1 единицу.

Позиционные системы счисления имеют ряд преимуществ. Они позволяют представлять числа любой величины и точности, а также выполнять арифметические операции с числами. Кроме того, позиционные системы счисления легко применять в вычислительной технике и программировании.

Шестнадцатиричная система счисления позиционная или непозиционная

Уважаемые коллеги, мы рады предложить вам, разрабатываемый нами учебный курс по программированию ПЛК фирмы Beckhoff с применением среды автоматизации TwinCAT . Курс предназначен исключительно для самостоятельного изучения в ознакомительных целях. Перед любым применением изложенного материала в коммерческих целях просим связаться с нами. Текст из предложенных вам статей скопированный и размещенный в других источниках, должен содержать ссылку на наш сайт heaviside.ru . Вы можете связаться с нами по любым вопросам, в том числе создания для вас систем мониторинга и АСУ ТП.

Системы счисления

Уважаемые коллеги, эта статья будет полностью состоять из теории, мы рассмотрим системы счисления. При чтении этой статьи вы познакомитесь с двоичной и шестнадцатеричной системами счисления. Возможно, кому-то из читателей материал по системам счисления и переводу чисел из одной системы в другую может показаться сложным или скучным. Однако автор настоятельно рекомендует понять хотя бы их базовые принципы, так как в области программирования ПЛК, как и во многих других сферах программирования, они все еще достаточно актуальны и часто требуются на практике.

Бит, байт и размер данных

В прошлых статьях, когда мы рисовали схемы на языке LD, мы использовали тип данных BOOL. BOOL — это простейший тип данных, который может принимать всего два значения: и , они же FALSE и TRUE и содержит в себе количество информации, соответствующее одному биту. Бит — это наименьшее количество информации. Один бит равен количеству информации, получаемой в результате осуществления одного из двух равновероятных событий. Например, выпадение орла или решки при бросании монетки. Помимо бита для обозначения количества информации применяют понятие байта. В современных системах обычно имеют в виду, что байт состоит из восьми бит. При записи в качестве единицы измерения биты записываются как «бит», а байты как «Б», например, бит, Б. Как и для других единиц измерения, для записи количества информации перед единицей измерения используются десятичные приставки СИ . Кроме того, для битов и байтов используют двоичные приставки .

НазваниеОбозначениеСтепень
килоК
мегаМ
гигаГ
терраТ
петаП

Например, Кбит = бит = КБ = Б.

НазваниеОбозначениеСтепеньМножитель
кибибайтКи (Ki)
мебибайтМи (Mi)
гибибайтГи (Gi)
тебибайтТи (Ti)
пебибайтПи (Pi)1,024,899,906,842,624

Например, Кибит = бит = КиБ = Б.

Иногда при написании десятичных приставок имеются в виду двоичные, то есть при записи КБ имеется в виду Б. Такое использование приставок формально хоть и не является корректным, но очень часто встречается на практике.

Также стоит отметить, что иногда под словом байт подразумевается размер регистров процессора, то есть количество бит, которое процессор может обрабатывать за раз. Размер регистров процессора называется разрядность (или битность) процессора. Из контекста всегда можно понять, что имеется в виду: бит или один разряд процессора. Современные процессоры, работающие под управлением Windows, имеют разрядность в или бита.

Системы счисления

Наверное, всем известно, что компьютеры оперируют данными в виде единиц и нолей. Такая система счисления называется двоичной позиционной. Система счисления — это способ записи цифр. Двоичная система наиболее удобна для применения в электронных схемах. Нулю соответствует отсутствие напряжения, единице — его наличие, или наоборот, в электронике достаточно часто единице соответствует отсутствие напряжение, нулю его наличие.

История знает попытки создания компьютеров на основе других систем счисления. Например, советский компьютер Сетунь , который использовал троичную систему счисления, или американский Mark I с десятичной системой. Но какого-либо серьезного распространения компьютеры, основанные на системах счисления, отличных от двоичной, не получили.

Системы счисления делятся на позиционные, непозиционные и смешанные:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9

  • Позиционные системы счисления — системы счисления, в которых значение каждого числового знака (цифры) в записи числа зависит от его позиции (разряда). Например, рассмотрим число , — означает количество сотен, — количество десятков, — количество единиц. Так, арабская система счисления, которой все мы пользуемся в повседневной жизни, является десятичной позиционной системой. Обратим внимание на слово «десятичная». В данном примере оно связано с основанием системы счисления, а именно количеством знаков, используемых для записи числа в той или иной системе. В десятичной системе для записи используются цифры . Основанием является число .
  • Смешанные системы счисления, — системы счисления, в которых числа, заданные в некоторой системе счисления с основанием P, изображаются с помощью цифр другой системы счисления с основанием Q, где Q
  • Непозиционные системы счисления — системы счисления, в которых величина, обозначаемая цифрой, не зависит от положения в числе. При этом система может накладывать ограничения на положение цифр, например, чтобы они были расположены в порядке убывания. Примерами непозиционных счисления являются римская , египетская и система остаточных классов .

0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Далее в этой статье речь пойдет только о позиционных системах счисления. Как говорилось выше, в компьютерах применяют двоичную позиционную систему счисления. Для начала давайте разберемся, что такое число и чем оно отличается от цифры. Число используется для счета и выражает количество. Цифры — это набор знаков для записи чисел. В арабской системе счисления цифрами являются знаки , в двоичной — и . Каждая цифра в записи числа, называется разрядом. В информатике разряд числа считается справа налево, начиная с нуля. При записи в десятичной системе числа цифра является нулевым разрядом, цифра — первым, цифра — вторым разрядом.

Двоичная система счисления имеет основание , то есть в ней используется всего две цифры: и . Числа ноль и один в десятичной и в двоичной системах выглядят абсолютно одинаково и записываются как и соответственно. А вот цифры в двоичной системе нет, поэтому приходится добавить еще один разряд, число два в двоичной системе будет записываться как . Что бы записать число три, надо добавить к двойке единицу, выглядит это так . Для записи числа четыре снова надо добавить еще один разряд, в результате получаем . Пять записывается как и так далее.

ДесятичнаяДвоичная
Шестнадцатеричная система счисления

Двоичная система весьма неудобна для восприятия человеком. Например, число , записанное в двоичной системе, будет выглядеть как , а число соответствует записи . Для более удобного восприятия человеком числа часто представляют в шестнадцатеричной системе счисления. Переводить числа из одной системы счисления в другую мы научимся позже в этой статье.

Как и в других позиционных системах счисления, принцип записи чисел в шестнадцатеричной системе схож с рассмотренной выше двоичной системой и всем знакомой с детства десятичной. Разница лишь в том, что следующей после цифры идет (десятичная ), а новый разряд добавляется после цифры (десятичная ). В шестнадцатеричной системе счисления для записи используются следующие цифры:

Десятичная цифраШестнадцатеричная цифра
A
B
C
D
E
F

Применение именно шестнадцатеричной системы обусловлено легкостью перевода данных в нее из двоичной и обратно, а также наглядностью записи, которая обусловлена тем, что один разряд шестнадцатеричного числа эквивалентен четырем разрядам двоичного числа. То есть байт двоичного кода записывается ровно двумя цифрами шестнадцатеричного числа. Число , в двоичной системе выглядит как , а в шестнадцатеричной . Причем четыре старших разряда двоичного числа записываются шестнадцатиричной , а четыре младших разряда двоичного числа записываются шестнадцатеричным числом .

В этой статье мы используем сразу три системы счисления. Не всегда можно понять, какая система счисления применяется для записи числа, если это не указанно явно. Например, цифры могут означать три в двоичной системе, одиннадцать в десятичной и семнадцать в шестнадцатеричной. Во избежание путаницы, в математике принято указывать основание применяемой системы счисления в виде индекса после записанного числа. К примеру, запись означает, что применена двоичная система. Если индекс не указан предполагается что применена десятичная система.

При написании программ достаточно часто возникает необходимость указать в какой системе счисления записано число. В языках МЭК это делается с помощью префиксов добавляемых к числу.

ПрефиксСистема счисления
#двоичная
#восьмеричная
отсутствуетдесятичная
#шестнадцатеричная

То есть двоичное число в TwinCAT записывается как # .

Восьмеричная система хоть и поддерживается в TwinCAT, но в настоящее время почти не используется. Изложенного выше материала должно быть достаточно для ее понимания.

Перевод чисел из двоичной системы в десятичную и обратно

В сети материала со строгим изложением теоретических выкладок по переводу чисел из одной системы счисления в другую достаточно много. Здесь мы рассмотрим лишь один из удобных на практике способов перевода чисел между различными системами, несильно вдаваясь в теорию этого процесса.

В позиционных системах счисления любое число можно представить в виде где: — основание системы счисления. — числа, равные цифре, стоящей в разряде k.

Выглядит сложно, но на практике довольно просто, число можно представить в виде:

(4*100)+(8*10)+(3*1)= (4*10^2)+(8*10^1)+(3*10^0)

Кстати, именно из-за такой формы записи разряды чисел считают, начиная с нуля, а не с единицы.

Число ​ (десятичное )​ можно представить в виде:

10,0000_2+1,0000_2+10_2+1_2=(1*2^5)+(1*2^4)+(1*2^1)+(1*2^0)

Вспомнив, что можно продолжить выражение.

(1*2^5)+(1*2^4)+(1*2^1)+(1*2^0)= 32+16+2+1=51

Можно заметить, что достаточно запомнить, какое десятичное значение соответствует каждому двоичному разряду и просуммировать их при переводе.

Номер
разряда
Двоичное
значение
Десятичное
значение

Для перевода из двоичной системы в десятичную и обратно приведенную выше таблицу следует выучить наизусть.

Давайте решим несколько примеров для закрепления:

128+16+2+1=147

128 + 64 + 32 + 16 + 8 = 248

Перевод из десятичной системы в двоичную производится следующим образом: из десятичного числа вычитается ближайшее меньшее число, из только что выученной нами наизусть таблицы, и записывается соответствующие ему двоичное, после чего действие повторяется с остатком. Когда остатка не осталось, суммируем все записанные двоичные числа.

Приведем пример с числом :

  1. Ближайшее меньшее к число из таблицы . Записываем . Остатком будет .
  2. Повторяем действие. Ближайшее к число из таблицы — . Пишем . Остаток .
  3. Ближайшее к число . Записываем . Остаток .
  4. Числу соответствует число , его и записываем.
  5. В результате предыдущих действий мы получили числа , , , . После сложения получится .

Как видите, перевод из двоичной системы счисления в десятичную и обратно не составляет большой сложности.

Перевод чисел из двоичной системы в шестнадцатеричную и обратно

В целом порядок перевода в десятичную и в шестнадцатиричную систему схожи. Главное отличие в том, таблица перевода будет повторяться каждые четыре строчки, так как 16=24. Таким образом, выучив всего четыре строчки, вы сможете переводить числа любого размера.

Номер
разряда
Двоичное
значение
Шестнадцатеричное
значение

В таблице намеренно показано больше чем четыре строчки, что бы читатели могли увидеть как именно повторяются значения.

Повторим некоторые примеры, которые мы приводили для десятичной системы:

80_{16}+10_{16}+2_{16}+1_{16}=93_{16}

80_{16} + 40_{16} + 20_{16} + 10_{16} + 8_{16} = F8_{16}

Перевод из шестнадцатеричной системы в двоичную производится аналогично переводу из десятичной в двоичную, но проще, так как производится группами по 4 бита. Напомним, из шестнадцатеричного числа вычитается ближайшее меньшее число из таблицы перевода между двоичными и шестнадцатеричными числами, после чего действие повторяется с остатком. После того, как остатка не будет, суммируем все записанные двоичные числа.

Приведем пример с числом (десятичное ):

  1. Ближайшее меньшее к число из таблицы , записываем . Остатком будет .
  2. Повторяем действие, ближайшее к число из таблицы — , записываем . Остаток .
  3. Ближайшее к число — , записываем . Остаток .
  4. Числу соответствует число , его и записываем.
  5. В результате предыдущих действий мы получили числа , , , . После сложения получится .

Еще один простой способ перевода чисел между системами счисления – это использование стандартного калькулятора в Windows (предварительно необходимо переключить в режим «Программист»).

Хотя такой способ может показаться соблазнительным, но стоит научиться переводить в уме числа хотя бы до одного байта (как читатель теперь уже может убедиться самостоятельно, в один байт можно записать числа в диапазоне от до ). С приобретением практики это станет не сложнее умножения двузначных чисел.

Шестнадцатеричная система счисления

Шестнадцатеричная система счисления, так же как восьмеричная, широко используется в компьютерной науке из-за простоты перевода в нее двоичных чисел. В случае шестнадцатеричной записи числа получаются более компактными.

В качестве алфавита шестнадцатеричной системы счисления используются цифры от 0 до 9 и шесть первых латинских букв – A, B, C, D, E, F. При переводе в десятичную систему буквы заменяются числами 10, 11, 12, 13, 14, 15 соответственно.

При переводе двоичного числа в шестнадцатеричное, первое разбивается на группы по четыре разряда, начиная с конца. В случае, если количество разрядов не кратно четырем, первая четверка дописывается нулями впереди. Каждой четверке соответствует одноразрядное число шестнадцатеричной системы счисления.

Двоичное представление шестнадцатеричных чисел

10001100101 = 0100 1100 0101 = 4 C 5 = 4C5

В случае обратного перевода шестнадцатеричные цифры заменяются соответствующими четырехразрядными двоичными числами.

Перевод из шестнадцатеричной системы счисления в десятичную выполняется аналогично переводу из двоичной и восьмеричной. Только здесь в качестве основания степени выступает число 16, а цифры от A до F заменяются десятичными числами от 10 до 15.

4C5 = 4 * 16 2 + 12 * 16 1 + 5 * 16 0 = 4 * 256 + 192 + 5 = 1221

Максимальное двухразрядное число, которое можно получить с помощью шестнадцатеричной записи, – это число FF.

FF16 = 15 * 16 1 + 15 * 16 0 = 240 + 15 = 25510

В двоичном представлении FF будет выглядеть как восьмиразрядное число 11111111. Наименьшей рабочей ячейкой компьютерной памяти является байт, который состоит из 8-ми битов. Каждый бит может быть в двух состояниях – «включено» и «выключено». Одному из них сопоставляют ноль, другому – единицу.

Следовательно, в одном байте можно сохранить любое двоичное число в диапазоне от 00000000 до 11111111. В десятичном представлении это числа от 0 до 255. В шестнадцатеричном – от 0 до FF. С помощью шестнадцатеричной системы счисления удобно кратко, с помощью двух цифр-знаков, записывать значения байтов. Например, 0E или F5.

Несмотря на то, что 25510 – это максимальное значение, которое можно сохранить в байте, состояний у 8-ми битного байта 256, так как одно из них отводится под хранение нуля. Количество возможных состояний ячейки памяти вычисляется по формуле 2 n , где n – количество составляющих ее бит. В случае восьми бит получаем:

Калькулятор для перевода систем счисления онлайн.

Система счисления — это метод записи числа при помощи указанного набора специальных знаков (цифр).

  • даёт представление множества чисел (целых и/или вещественных);
  • даёт каждому числу уникальное представление (либо, хотя бы, стандартное представление);
  • отображает алгебраическую и арифметическую структуру числа.

Запись числа в некоторой системе счисления называется кодом числа.

Отдельная позиция в отображении числа называется разряд, значит, номер позиции — номер разряда.

Количество разрядов в записи числа называют разрядностью и совпадает с его длиной.

Системы счисления делятся на позиционные и непозиционные. Позиционные системы счисления делятся

на однородные и смешанные.

Непозиционная система счисления — древнейшая, здесь все цифры числа имеют величину, которая не

зависит от позиции (разряда).

Т.е., если есть 5 палочек, значит число соответственно равно 5, так как каждой палочке, вне зависимости

от её места в строке, соответствует только 1 предмет.

Позиционная система счисления — значение каждой цифры зависит от позиции (разряда) этой цифры в числе.

Например, стандартная 10-я система счисления является позиционной. Допустим дано число 453.

Цифра 4 означает число сотен и соответствует числу 400, 5 — кол-во десятков и соответствует значению

50, а 3 — единицы и значению 3. Легко заметить, что с увеличением разряда увеличивается значение.

Таким образом, заданное число запишем в виде суммы 400+50+3=453.

Однородная система — для каждого разряда (позиции) числа набор допустимых символов (цифр)

одинаковый. Как пример снова используем 10-ю систему. Если записывать число в однородной 10-й системе,

то можно использовать в каждом разряде только одну цифру в интервале 0 — 9, т.о., допускается число 450

(1-й разряд — 0, 2-й — 5, 3-й — 4), а 4F5 — нет, так как символ F не входит в набор цифр от 0 до 9.

Смешанная система — в каждом разряде (позиции) числа набор допустимых символов (цифр) может

отличаться от наборов в других разрядах. Хороший пример — система измерения времени. В разряде

секунд и минут существует 60 разнообразных символов ( «00» — «59»), в разряде часов – 24 символа

(«00» — «23»), в разряде суток – 365 и т. д.

В непозиционных системах счисления вес цифры не зависим от позиции, которую она занимает в

числе. К примеру, в римской системе счисления в числе XXXII (32) вес цифры X в каждой позиции

Цифрами в римской системе служат: I(1), V(5), X(10), L(50), C(100), D(500), M(1000).

Размер числа в римской системе счисления определяют как сумму либо разность цифр в числе. Когда

меньшая цифра стоит слева от большей – она вычитается, когда справа – прибавляется.

Самая первая система счисления — единичная (непозиционная).

В позиционных системах счисления вес каждой цифры изменяется в зависимости от ее позиции в

последовательности цифр, которые изображают число.

Каждая позиционная система характеризуется своим основанием.

Основание позиционной системы счисления – это количество разных знаков либо символов, которые

используются для изображения цифр в этой системе.

Основанием принимают всякое натуральное число — 2, 3, 4, 16 и т.д. То есть, существует безграничное

множество позиционных систем.

Перевод систем счисления. Числа можно перевести из одной системы счисления в другую.

Таблица соответствия цифр в различных системах счисления.

Восьмеричная СС

Восьмеричная система применяется в технике и гаджетах. В качестве основания выступает 8. Содержит для записи цифры в диапазоне от 0 до 7.

Пример – 254. Для того, чтобы перевести его в 10-ю СС, нужно каждый разряд исходного «компонента» умножить на 8n, где n – это количественный номер разряда. Получится: 2*8 2 + 5*8 1 + 4*8 0 = 128+40+4=17210.

Шестнадцатеричная система

Шестнадцатеричную систему счисления используют в современных компьютерах достаточно часто. Пример – с ее помощью можно задать цвет.

Она имеет основание 16. Для выражения чисел система использует числа 0-9, а также буквы A-F. Буквенные записи соответственно будут равны 10, 11, 12, 13, 14 и 15.

Чтобы лучше понимать принцип «работы» этой СС, стоит рассмотреть наглядный пример – 4F1516. Чтобы перевести его в 8-ю, нужно:

  1. Преобразовать число в двоичное.
  2. Разбить на группы по 3 разряда (элемента).

Для перевода в 2-е число каждая цифра представлена в виде 4- разрядного числа:

В первой и последней группах не хватает разряда. Они дополняются нулями: 0100 1111 0101. Это значение разделяется на группы по 3 компонента справа-налево. Получается 010 011 110 101.

Для того, чтобы увидеть результат, нужно перевести каждую двоичную группу в восьмеричную систему. Разряды умножаются на 2 n , где n – это номер того или иного разряда. На выходе получится 23688.

Восьмеричную и шестнадцатеричную системы счисления активно изучают в школах на уроке информатики. Они не слишком нужны среднестатистическим пользователям, но пригодятся тем, кто планирует углубляться в программирование.

Двоичная система счисления

В информатике часто используется двоичная система счисления, так как компьютеры работают на основе двоичной логики (0 и 1). В этой системе всего два символа: 0 и 1.

Восьмеричная система счисления

Эта система имеет 8 символов: от 0 до 7. Ранее восьмеричная система часто использовалась в программировании, однако сейчас она менее популярна.

Оцените статью
TutShema
Добавить комментарий