С какой целью источники включают последовательно или параллельно

Источники напряжения обычно называют источниками питания. Для увеличения тока или напряжения, а может и того и другого источники питания (элементы, батареи) могут соединяться вместе. Существует три типа соединения элементов питания:
1. Последовательное соединение элементов.
2. Параллельное соединение элементов.
3. Последовательно-параллельное (смешанное) соединение элементов.

При последовательном соединении элементов питания выделяются две схемы: последовательно-дополняющая и последовательно-препятствующая.
В последовательно-дополняющей схеме положительный вывод первого элемента питания соединяется с отрицательным выводом второго элемента питания; положительный вывод второго элемента питания соединяется с отрицательным выводом третьего элемента питания и т.д. (рисунок 3.11.)

Рисунок 3.11.Последовательное соединение элементов питания.

При таком соединении источников питания через все элементы будет течь одинаковый ток:

Индексы в обозначениях токов указывают на номера отдельных источников питания (элементов или батарей питания)
А полное напряжение при последовательном соединении равно сумме напряжений (ЭДС) отдельных элементов:

Еобщ = Е1 + Е2 + Е3.

При последовательно-препятствующем включении источников питания, они соединяются друг с другом одноименными выводами. Но на практике такая схема не применяется или применяется, но очень редко.

Параллельное соединение элементов.

При параллельном соединении элементов питания, их одноименные выводы соединяются вместе, то есть плюс к плюсу, минус к минусу (рис 3.12).

Рисунок 3.11.Параллельное соединение элементов питания.

В этом случае общий ток будет равен сумме токов каждого элемента:

Общее напряжение при параллельном включении источников питания будет равно напряжению каждого отдельного источника.

Еобщ = Е1 = Е2 = Е3.

Параллельное подключение аккумуляторов

При параллельном подключении батареи соединяются соответствующими клеммами, т.е. положительные клеммы подключаются к положительным, а отрицательные — к отрицательным. Такая схема позволяет увеличить общую емкость батареи при сохранении постоянного напряжения.
Параллельное соединение часто используется в тех случаях, когда потребность устройства в напряжении остается неизменной, но требуется большая емкость или ток. Например, при параллельном подключении четырех 12-вольтовых батарей напряжение остается на уровне 12 В, но емкость до 400 Ач.

Параллельное подключение аккумуляторов

Преимущества параллельного соединения аккумуляторов:

Увеличение емкости: Параллельное соединение увеличивает емкость, что подходит для устройств, требующих более длительного времени работы.

Параллельно или последовательно? Вопрос с подвохом #энерголикбез


Сбалансированное напряжение: Напряжение остается постоянным, что очень важно для устройств с особыми требованиями к напряжению.

Последовательно-параллельное соединение аккумуляторов

Иногда для достижения определенного напряжения и емкости используется комбинация последовательного и параллельного соединений. Например, в 48-вольтовом гольф-каре четыре 12-вольтовые батареи могут быть подключены последовательно-параллельно. Две пары батарей соединяются последовательно, образуя два 24-вольтовых блока. Затем эти два блока соединяются параллельно для увеличения емкости при сохранении требуемого напряжения.

Последовательно-параллельное соединение аккумуляторов

Понимание того, как правильно подключать батареи в последовательной, параллельной или последовательно-параллельной конфигурации, очень важно для удовлетворения энергетических потребностей различных приложений. Неправильное подключение может привести к сокращению срока службы батареи, снижению производительности и даже к нарушению техники безопасности.

Если воспользоваться этими правилами и законом Ома, который подходит для каждого резистора, можно доказать, что сопротивление эквивалентного общего резистора будет равно сумме сопротивлений. Следствием первых двух правил будет являться третье правило.

Последовательное соединение используется, когда нужно целенаправленно включать или выключать какой-либо прибор, выключатель соединяют с ним по последовательной схеме. Например, электрический звонок будет звенеть только тогда, когда он будет последовательно соединен с источником и кнопкой. Согласно первому правилу, если электрический ток отсутствует хотя бы на одном из проводников, то его не будет и на других проводниках. И наоборот, если ток имеется хотя бы на одном проводнике, то он будет и на всех других проводниках. Также работает карманный фонарик, в котором есть кнопка, батарейка и лампочка. Все эти элементы необходимо соединить последовательно, так как нужно, чтобы фонарик светил, когда будет нажата кнопка.

Иногда последовательное соединение не приводит к нужным целям. Например, в квартире, где много люстр, лампочек и других устройств, не следует все лампы и устройства соединять последовательно, так как никогда не требуется одновременно включать свет в каждой из комнат квартиры. Для этого последовательное и параллельное соединение рассматривают отдельно, и для подключения осветительных приборов в квартире применяют параллельный вид схемы.

Параллельное соединение

В этом виде схемы все проводники соединяются параллельно друг с другом. Все начала проводников объединены в одну точку, и все концы также соединены вместе. Рассмотрим некоторое количество однородных проводников (резисторов), соединенных по параллельной схеме.

Parallelnoe soedinenie

Этот вид соединения является разветвленным. В каждой ветви содержится по одному резистору. Электрический ток, дойдя до точки разветвления, разделяется на каждый резистор, и будет равняться сумме токов на всех сопротивлениях. Напряжение на всех элементах, соединенных параллельно, является одинаковым.

Все резисторы можно заменить одним эквивалентным резистором. Если воспользоваться законом Ома, можно получить выражение сопротивления. Если при последовательном соединении сопротивления складывались, то при параллельном будут складываться величины обратные им, как записано в формуле выше.

Применение

Если рассматривать соединения в бытовых условиях, то в квартире лампы освещения, люстры должны быть соединены параллельно. Если их соединить последовательно, то при включении одной лампочки мы включим все остальные. При параллельном же соединении мы можем, добавляя соответствующий выключатель в каждую из ветвей, включать соответствующую лампочку по мере желания. При этом такое включение одной лампы не влияет на остальные лампы.

Все электрические бытовые устройства в квартире соединены параллельно в сеть с напряжением 220 В, и подключены к распределительному щитку. Другими словами, параллельное соединение используется при необходимости подключения электрических устройств независимо друг от друга. Последовательное и параллельное соединение имеют свои особенности. Существуют также смешанные соединения.

Работа тока

Последовательное и параллельное соединение, рассмотренное ранее, было справедливо для величин напряжения, сопротивления и силы тока, являющихся основными. Работа тока определяется по формуле:

А = I х U х t, где А – работа тока, t – время течения по проводнику.

Для определения работы при последовательной схеме соединения, необходимо заменить в первоначальном выражении напряжение. Получаем:

А=I х (U1 + U2) х t

Раскрываем скобки и получаем, что на всей схеме работа определяется суммой на каждой нагрузке.

Точно также рассматриваем параллельную схему соединения. Только меняем уже не напряжение, а силу тока. Получается результат:

А = А1+А2

Мощность тока

При рассмотрении формулы мощности участка цепи снова необходимо пользоваться формулой:

Р=U х I

После аналогичных рассуждений выходит результат, что последовательное и параллельное соединение можно определить следующей формулой мощности:

Р=Р1 + Р2

Другими словами, при любых схемах общая мощность равна сумме всех мощностей в схеме. Этим можно объяснить, что не рекомендуется включать в квартире сразу несколько мощных электрических устройств, так как проводка может не выдержать такой мощности.

Влияние схемы соединения на новогоднюю гирлянду

После перегорания одной лампы в гирлянде можно определить вид схемы соединения. Если схема последовательная, то не будет гореть ни одной лампочки, так как сгоревшая лампочка разрывает общую цепь. Чтобы выяснить, какая именно лампочка сгорела, нужно проверять все подряд. Далее, заменить неисправную лампу, гирлянда будет функционировать.

Parallelnoe soedinenie girliandy

При применении параллельной схемы соединения гирлянда будет продолжать работать, даже если одна или несколько ламп сгорели, так как цепь не разорвана полностью, а только один небольшой параллельный участок. Для восстановления такой гирлянды достаточно увидеть, какие лампы не горят, и заменить их.

Последовательное и параллельное соединение для конденсаторов

Posledovatelno kondensatory

При последовательной схеме возникает такая картина: заряды от положительного полюса источника питания идут только на наружные пластины крайних конденсаторов. Конденсаторы, находящиеся между ними, передают заряд по цепи. Этим объясняется появление на всех пластинах равных зарядов с разными знаками. Исходя из этого, заряд любого конденсатора, соединенного по последовательной схеме, можно выразить такой формулой:

qобщ= q1 = q2 = q3

Для определения напряжения на любом конденсаторе, необходима формула:

U= q/С

Где С — емкость. Суммарное напряжение выражается таким же законом, который подходит для сопротивлений. Поэтому получаем формулу емкости:

С= q/(U1 + U2 + U3)

Чтобы сделать эту формулу проще, можно перевернуть дроби и заменить отношение разности потенциалов к заряду емкости. В результате получаем:

1/С= 1/С1 + 1/С2 + 1/C3

Немного иначе рассчитывается параллельное соединение конденсаторов.

Parallelno kondensatory

Общий заряд вычисляется как сумма всех зарядов, накопившихся на пластинах всех конденсаторов. А величина напряжения также вычисляется по общим законам. В связи с этим формула суммарной емкости при параллельной схеме соединения выглядит так:

С= (q1 + q2 + q3)/U

Это значение рассчитывается как сумма каждого прибора в схеме:

С=С1 + С2 + С3

Смешанное соединение проводников

В электрической схеме участки цепи могут иметь и последовательное и параллельное соединение, переплетающихся между собой. Но все законы, рассмотренные выше для отдельных видов соединений, справедливы по-прежнему, и используются по этапам.

Smeshannoe soedinenie

Сначала нужно мысленно разложить схему на отдельные части. Для лучшего представления ее рисуют на бумаге. Рассмотрим наш пример по изображенной выше схеме.

Удобнее всего ее изобразить, начиная с точек Б и В. Они расставляются на некотором расстоянии между собой и от края листа бумаги. С левой стороны к точке Б подключается один провод, а справа отходят два провода. Точка В наоборот, слева имеет две ветки, а после точки отходит один провод.

Далее нужно изобразить пространство между точками. По верхнему проводнику расположены 3 сопротивления с условными значениями 2, 3, 4. Снизу будет идти ток с индексом 5. Первые 3 сопротивления включены в схему последовательно, а пятый резистор подключен параллельно.

Остальные два сопротивления (первый и шестой) подключены последовательно с рассматриваемым нами участком Б-В. Поэтому схему дополняем 2-мя прямоугольниками по сторонам от выбранных точек.

Теперь используем формулу расчета сопротивления:
  • Первая формула для последовательного вида соединения.
  • Далее, для параллельной схемы.
  • И окончательно для последовательной схемы.

Аналогичным образом можно разложить на отдельные схемы любую сложную схему, включая соединения не только проводников в виде сопротивлений, но и конденсаторов. Чтобы научиться владеть приемами расчета по разным видам схем, необходимо потренироваться на практике, выполнив несколько заданий.

Похожие темы:
  • Закон Ома. Для цепей и тока. Формулы и применение
  • Расчет сечения кабеля. По мощности, току, длине
  • Электрические цепи. Виды и составные части. Режимы работы
  • Активное и реактивное сопротивление. Свойства. Треугольник сопротивлений
  • Фильтры ВЧ. Виды и работа. Применение и особенности
  • Закон Джоуля-Ленца. работа и применение. Особенности
  • Соединение аккумуляторов. Виды и особенности

Химические электроисточники

Устройства, в которых электрогенерация основана на электрохимических процессах окисления и восстановления, называют химическими источниками тока (ХИТ). К ним относятся гальванические элементы (ГЭ), а также аккумуляторные батареи (АКБ).

параллельное соединение батареек

ХИТ — это удобный переносной аккумулятор электроэнергии, применяемый для электропитания разных типов оборудования. Он обеспечивает автономное функционирование многих установок без необходимости их прямого подключения к стационарной электрической сети.

Вот примеры, где установки этого типа наиболее востребованы:

  • Портативная электроника: наушники, пульты дистанционного управления, игровые приставки, фотоаппараты, видеокамеры, переносные аудиоплееры;
  • Мобильные телефоны и планшеты;
  • Ноутбуки, неттопы и планшетные компьютеры;
  • Классические автомобили, электромобили, а также специализированный автономный электрифицированный транспорт: электрокар, электротележка, электротягач;
  • Электронные игрушки: роботы, радиоуправляемые автомобили, другие развивающие и обучающие интерактивные игрушки;
  • Ручные и стационарные фонари, светильники, прожекторы;
  • Бытовая техника: часы, беспроводные мыши и клавиатуры, пульты управления бытовой техникой, термометры, метеостанции;
  • Медицинские приборы: слуховые аппараты, глюкометры, тонометры, а также портативные мониторы сердечного ритма.

Это лишь некоторые области применения химических ИТ. При этом очень часто в приборах используется несколько однотипных элементов, объединённых в единое устройство. Для определения необходимости сооружения такой сборки вначале оценивают параметры потребителя. Если они не соответствуют друг другу, то пользуясь основными законами электротехники, делают необходимые расчёты, а затем сооружают необходимый тип присоединения.

Последовательное присоединение ХИТ

Этот вид объединения является самым часто встречающимся. Это связано с тем, что для электропитания большинства потребителей, номинального ЭДС батареи бывает недостаточно. Так, для зажигания светодиода нужно подавать от 2 до 4 вольт, а для питания микромоторов — от 3 до 9 В.

Так как классическая батарея имеет невысокий ЭДС, всего 1,5 В, то увеличить его можно, достаточно подключить их друг за другом. Аналогично объединяют и аккумуляторные батареи. При этом нужно помнить, что общая емкость аккумуляторов при последовательном соединении не изменяется и будет равна ёмкости одиночного ГЭ.

электрические цепи постоянного тока

Параллельное присоединение химических ИТ

Основная цель включения в параллель — это увеличение отдаваемой мощности. Суммарная величина ЭДС при параллельном соединении остаётся неизменной, а отдаваемая сила тока кратно увеличивается. При этом параллельное соединение батареек очень редко используется. Причина этому — разнообразие их типоразмеров, от G13 до D. Такое многообразие дает возможность подобрать батарейку с требуемой отдаваемой мощностью.

цепи постоянного и переменного тока

В случае с аккумуляторными батареями запараллеливание встречается чаще. Оно увеличивает суммарную ёмкость АКБ соответственно числу присоединённых ГЭ.

Смешанное соединение источников тока

Смешанная сборка ГЭ на практике никогда не выполняется. В первую очередь это обусловлено разнообразием их типоразмеров. Объединение АКБ по смешанной схеме используют чаще. Это позволяет не только нарастить ёмкость общей сборки, но и её ЭДС, а также сохранить компактность в одном из габаритных размеров аккумулятора.

Наиболее часто такую сборку можно увидеть в АКБ ноутбуков, электромобилей, а также в тяговых аккумуляторах электропогрузчиков.

последовательная цепь постоянного тока необходимые элементы питания

Особенности соединения ХИТ

При сооружении последовательной сборки химических ИТ должно соблюдаться одно простое правило. Оно заключается в том, что плюс первой батареи присоединяется к минусу второй, а плюс второй — с минусом третьей и так далее. Это правило выполняют с каждым последующим ХИТ, независимо от их числа.

При запараллеливании правила присоединения несколько иные. При такой схеме в один узел объединяют все одноимённые полюса источников электротока.

последовательное и параллельное соединение

При сооружении смешанной сборки всегда должно использоваться одинаковое число запараллеленных ГЭ.

параллельное соединение источников

Также общими для всех способов объединения считаются условия:

  • Один тип используемых ХИТ. Это связано с тем, что элементы могут обладать различным номинальным и зарядным напряжением, иметь различие в границах рабочих напряжений, а также различные допустимые токи заряда и разряда;
  • Иметь одинаковый уровень заряда.Это относится не только к АКБ, но и ГЭ. Из-за различия в уровнях заряда легко допустить переразряд одного из компонента сборки, что привёдет к его выходу из строя, протечке электролита, а также нарушению функционирования всей конструкции;
  • Одинаковая емкость. Существенное несовпадение ёмкостей приводит к постоянной недозарядке аккумулятора, имеющего большую ёмкость. А длительная работа в таком режиме ведёт к его быстрой деградации;
  • Совпадение номинального ЭДС. Объединение ИП отличающихся номинальных напряжений приводит к тому, что элемент сборки, имеющий меньший ЭДС, будет постоянно находиться в режиме заряда. При этом подаваемый на него потенциал, существенно превышает допустимый, что быстро выведет его из строя.
  • Подключение через проводники достаточного сечения. Для выполнения любого типа соединения нужно знать, какие токи будут протекать по проводникам. В соответствии с этим и выбирать проводники соответствующего размера, пропускная способность которых будет достаточной. В противном случае велика вероятность перегрева проводов с риском образованием пожара.

Вторичные электроисточники

ИТ называют вторичными, потому что не генерируют, а только преобразовывают электроэнергию, поступающую от первичного ИТ — электрической сети. К ним относятся: блоки питания, а также преобразователи AC-AC и AC-DC.

Основными задачами вторичного источника тока (ВИТ) являются:

  • передача заданной мощности;
  • преобразование напряжения (величины, формы, частоты);
  • стабилизация параметров;
  • защита потребителя.

Из-за высокой доступности этих устройств часто возникают вопросы о возможности объединения ВИТ. Давайте разбираться возможно ли это.

Создание цепей резервирования

Резервирование (или резервное электропитание) используется для обеспечения непрерывного функционирования потребителей в случае длительных или кратковременных сбоев в основном ИП. Вот некоторые причины, по которым используется резервирование:

  • Предотвращение потери данных при внезапном прекращении электропитания у персональных компьютеров, серверов, а также сетевого оборудования;
  • Обеспечение непрерывности работы в некоторых критически важных системах, например, телекоммуникационного оборудования, медицинских устройств, станков и промышленных процессов
  • Защита от повышенного или пониженного напряжения, его скачков, а также других дестабилизирующих факторов, возникающих в электрической сети;
  • Аварийное питание систем безопасности, аварийного и эвакуационного освещения, на случай появления нештатных ситуаций, таких, например, как пожар, землетрясение или другие чрезвычайные ситуации.

Резервное электроснабжение обеспечивает надёжность, непрерывность работы и защиту от потерь данных в различных сферах, где питание играет важную роль.

Для организации резервирования требуется минимум два ИП. Постоянно задействован только один из них, второй же включается только в случае отключения первого. При такой топологии блоки не оказывают друг на друга никакого влияния, а за их переключением следит специализированное устройство автоматического включения резерва (АВР).

полюсы источника

Параллельное включение

Топология включения двух и более БП в параллель — широко распространена и применяется в целях увеличения выходной мощности. Она позволяет организовать объединение БП в единую цепь постоянного тока.

Их параллельная работа увеличивает величину отдаваемого тока за счёт перераспределения нагрузки между ними.

Однако применение такой топологии предполагает ряд ограничений, влияющих на общую эффективность. В первую очередь это наличие схем, способных контролировать равномерное перераспределение электротока между блоками. На неравномерность распределения влияют: внутреннее устройство ВИТ, параметры используемых проводников (длина, сечение, материал), а также конфигурация внешних цепей.

Некоторые производители в своих устройствах сразу реализуют перераспределяющие схемы. Их наличие позволяет объединять такие БП без особых проблем. Если же у ВИТ отсутствуют встроенные цепи распределения, то необходимо организовывать внешние, обладающие не меньшей эффективностью.

Наличие таких цепей обеспечит высокую стабильность работы.

Одним из основных условий допуска ВИТ в такую топологию — совпадение выходных ЭДС.

эдс батареи аккумуляторов

Последовательное включение

Присоединение БП друг за другом — это ещё один способ нарастить отдаваемую нагрузке мощность. Такая топология увеличивает выходное напряжение, за счет того, что на выходе образуется сумма ЭДС всех ВИТ.

При этом необязательно совпадение выходных напряжений входящих в схему блоков. Что более важно, так это значение максимального тока единичного блока.Так как электроток, протекающий через каждый ВИТ одинаков, то каждый блок должен обладать способностью выдержать его. В идеале все объединяемые ВИТ, должны быть идентичны друг другу.

Также есть два условия стабильного функционирования такого присоединения. Первое — выходные цепи должны быть настроены так, чтобы выдержать возникающее напряжение смещения. Для этого цепи заземления устройств должны быть изолированы.

Второе — объединяемые устройства должны иметь защиту от обратного потенциала. Такая ситуация возможна, если все ИТ включены, а один из них выключен. В таком случае на его выходе может появиться обратный потенциал, что способно повредить выходные электроцепи БП. Элегантным решением — выступает установка диода.

Для своей эффективной работы диод должен иметь напряжение пробоя выше, чем у отдельного ИП.

смешанное соединение источников тока

Наиболее популярный метод, позволяющий увеличить мощность, отдаваемую потребителю от химических элементов — это их последовательное включение. При этом смешанный вариант используется значительно реже, только для электропитания специализированных механизмов. Запараллеливание ХИТ — практически никогда не применяется. Причина этому — существенное разнообразие их типоразмеров.

Варианты конфигурирования БП ненамного меньше. Помимо того, что их используют в цепях резервирования, ещё с их помощью организуют присоединение по последовательной схеме, а также в параллель. При этом если в БП отсутствуют электрические цепи согласования совместной работы, то сооружение внешних является обязательным.

Оцените статью
TutShema
Добавить комментарий