Регулировка тока и напряжения на 10 ампер своими руками

Здравствуйте ув. читатель блога «Моя лаборатория радиолюбителя».

В сегодняшней статье речь пойдет о давно «заюзаной», но очень полезной схеме тиристорного фазоимпульсного регулятора мощности, которое мы будем использовать как зарядное устройство для свинцовых аккумуляторных батарей.

Начнем с того, что зарядное на КУ202 имеет целый ряд преимуществ:
— Способность выдерживать ток заряда до 10 ампер
— Ток заряда импульсный, что, по мнению многих радиолюбителей, помогает продлить жизнь аккумулятору
— Схема собрана с не дефицитных, недорогих деталей, что делает ее очень доступной в ценовой категории
— И последний плюс- это легкость в повторении, что даст возможность ее повторить, как новичку в радиотехнике, так и просто владельцу автомобиля, вообще не имеющего знания в радиотехнике, которому нужна качественная и простая зарядка.

Со временем попробовал доработанную схему с автоматическим отключением аккумулятора, рекомендую почитать Зарядное для автомобильного аккумулятора
В свое время я собирал эту схему на коленке за 40 минут вместе с травкой платы и подготовкой компонентов схемы. Ну хватит рассказов, давайте рассмотрим схему.

Схема тиристорного зарядного устройства на КУ202

Тиристорное импульсное зарядное устройство 10А на КУ202

Перечень используемых компонентов в схеме
C1 = 0,47-1 мкФ 63В

R1 = 6,8к — 0,25Вт
R2 = 300 — 0,25Вт
R3 = 3,3к — 0,25Вт
R4 = 110 — 0,25Вт
R5 = 15к — 0,25Вт
R6 = 50 — 0,25Вт
R7 = 150 — 2Вт
FU1 = 10А
VD1 = ток 10А, желательно брать мост с запасом. Ну на 15-25А и обратное напряжение не ниже 50В
VD2 = любой импульсный диод, на обратное напряжение не ниже 50В
VS1 = КУ202, Т-160, Т-250
VT1 = КТ361А, КТ3107, КТ502
VT2 = КТ315А, КТ3102, КТ503

Как было сказано ранее схема является тиристорным фазоимпульсным регулятором мощности с электронным регулятором тока зарядки.
Управление электродом тиристора осуществляется цепью на транзисторах VT1 и VT2. Управляющий ток проходит через VD2, необходимый для защиты схемы от обратных скачков тока тиристора.

Резистором R5 определяется ток зарядки аккумулятора, который должен быть 1/10 от емкости АКБ. К примеру АКБ емкостью 55А надо заряжать током 5.5А. Поэтому на выходе перед клемами зарядного устройства желательно поставить амперметр, для контроля за током зарядки.

По поводу питания, для данной схемы подбираем трансформатор с переменным напряжением 18-22В, желательно по мощности без запаса, ведь используем тиристор в управлении. Если напряжение больше- R7 поднимаем до 200Ом.

Так же не забываем что диодный мост и управляющий тиристор надо ставить на радиаторы через теплопроводящую пасту. Так же если вы используете простые диоды типа как Д242-Д245, КД203, помните что их надо изолировать от корпуса радиатора.

Регулятор тока своими руками для блока питания на 10 Ампер , очень просто и быстро.

На выход ставим предохранитель на нужные вам токи, если вы не планируете заряжать АКБ током выше 6А, то предохранителя на 6,3А вам хватит с головой.
Так же для защиты вашего аккумулятора и зарядного устройства, рекомендую поставить мою схему защиты от переполюсовки на реле или схему на компараторе, которая помимо защиты от переполюсовки защитит зарядное от подключения дохлых аккумуляторов с напряжением менее 10,5В.
Ну вот в принципе рассмотрели схемку зарядного на КУ202.

Печатная плата тиристорного зарядного устройства на КУ202

Печатная плата. Тиристорное импульсное зарядное устройство 10А на КУ202

В собранном виде от Сергея

Тиристорное импульсное зарядное устройство 10А

Скачать печатную плату
Пароль от архива jhg561bvlkm556

Удачи вам с повторением и жду ваших вопросов в комментариях

Для безопасной, качественной и надежной зарядки любых типов аккумуляторов, рекомендую универсальное зарядное устройство

Что бы не пропустить последние обновления в мастерской, подписывайтесь на обновления в Вконтакте или Одноклассниках, так же можно подписаться на обновления по электронной почте в колонке справа

Не хочется вникать в рутины радиоэлектроники? Рекомендую обратить внимание на предложения наших китайских друзей. За вполне приемлемую цену можно приобрести довольно таки качественные зарядные устройства

Зарядное устройство 12В 1.3А

Зарядное устройство 12В 1.3А

Простенькое зарядное устройство с светодиодным индикатором зарядки, зеленый батарея заряжается, красный батарея заряжена.

Есть защита от короткого замыкания, есть защита от переполюсовки. Отлично подойдет для зарядки Мото АКБ емкостью до 20Ач, АКБ 9Ач зарядит за 7 часов, 20Ач — за 16 часов. Цена на это зарядное всего 403 рубля,доставка бесплатна

Универсальное зарядное устройство 12-24В 10А

Зарядное устройство для самых разнообразных типов аккумуляторов 12-24В с током до 10А и пиковым током 12А. Умеет заряжать Гелиевые АКБ и САСА. Технология зарядки как и у предыдущего в три этапа. Зарядное устройство способно заряжать как в автоматическом режиме, так и в ручном. На панеле есть ЖК индикатор указывающий напряжение, ток заряда и процент зарядки.

Хороший прибор если вам надо заряжать все возможные типы АКБ любых емкостей, аж до 150Ач

Цена на это чудо 1 625 рублей, доставка бесплатна. На момент написания этих строк количество заказов 23, оценка 4,7 из 5. При заказе не забудьте указать Евровилку

Если какой то товар стал недоступен, пожалуйста напишите в комментарий внизу страницы.
С ув .Admin-чек

  • МИГ Электро: инновации, технологии и электроника для каждого
  • Используйте лазерные дальномеры в строительстве и ремонте
  • Датчики утечки воды
  • Проверка ТЭНа водонагревателя
  • Распиновка USB

Регулировка тока и напряжения на 10 ампер своими руками

Полезная информация о ресурсах рунета

TEHNODOKA.RU
Техническая документация
сайт создан для оказания помощи в поисках документации по различным устройствам бытового и промышленного назначения

Блоки питания, зарядные устройства
характеристики ««

  • БП рег.2-30в, Iн до 10А
  • БП, ЗУ на основе конденсатора
  • Базовые схемы выпрямителей
  • Источники опорного напряжения, стабилизация
  • Генераторы стабильного тока
  • Линейные стабилизаторы на дискретных элементах
  • Линейные стабилизаторы на интегральных схемах
  • Применение микросхемных стабилизаторов серии 142, К142, КР142
  • Разрядное устройство для АКБ. djvu(170КБ)
  • Стабилизатор из лабораторного автотрансформатора, Кольцов. djvu(164КБ)
  • Электропитание, Рудометов. djvu(291КБ)

Блок питания регулируемый от 2 до 30в, Iн до 10А

Трансформатор, диоды диодного моста должны соответствовать току применяемой в будущем нагрузке(10А). Диоды, транзисторы V1, V2, V3 обязательно крепить на радиаторе. Сопротивление R5 выполняет роль ограничения по току -ставить не обязательно, если вам это ограничение не нужно.
В БП предусмотрен режим работы с защитой от КЗ(очень удобен при ремонте РА), для этого тумблер Т1 должен быть включён как указано на схеме(верхнее положение), в этом случае работает только микросхема LM317T, соответственно ток нагрузки уменьшается до 1,5А.
Тумблером Т2 выбираем режим показаний измерительной головки, ток или напряжение.
Шунтом подбираем предел измерения головки по току, а сопротивлением R6 по напряжению.

На сайте имеется ещё следующая информация:

РЕКЛАМА:

# Посещая рекламные объявления — Вы выражаете благодарность создателям сайта 🙂

Простое автомобильное ЗУ на тиристоре с регулировкой тока 0…10 А

Сегодня нет недостатка в продаже зарядных устройств для свинцово-кислотных автомобильных аккумуляторов. Рынок наполнен различными моделями зарядных устройств от простых до сложных, автоматических и с ручным управлением.
Можно даже заказать готовые платы или DIY-наборы для самостоятельной сборки на Aliexpress, но результат может быть очень сомнителен.
Самостоятельное изготовление зарядного устройства, при наличии хотя бы базовых знаний по радиоэлектронике и основам пайки, не составляет особого труда. Большинство схем зарядных устройств просты в понимании и легки в настройке. Здесь вопрос можно поставить несколько иначе: целесообразность самостоятельного изготовления. Если говорить о схемах, где в качестве начального понижения напряжения питания используется силовой трансформатор, то именно от его наличия и зависит целесообразность сборки зарядного устройства.
Потому, как цены на трансформаторы промышленного изготовления мощностью от 100 Вт, довольно высоки и специально покупать его, дело сомнительное. А вот если есть в наличии такой трансформатор или хотя бы железо подходящей мощности с первичной обмоткой, то здесь уже вопросов не возникает.

Конструкция зарядного устройства, которую я хочу предложить Вам для повторения, как раз основана на понижении сетевого напряжения с помощью силового трансформатора, напряжение на вторичной обмотке которого лежит в диапазоне от 18 до 22 В.
Естественно трансформатор должен иметь соответствующую мощность, чтобы обеспечить конечный зарядный ток для аккумуляторной батареи. Данная схема рассчитана на максимальный зарядный ток в 10 А. поэтому и трансформатор должен обеспечивать выходной ток вторичной обмотки от 10 А. Схема позволяет регулировать зарядный ток практически от нулевого значения до максимального (здесь от 0 до 10 А). Регулирующий элемент — мощный тиристор.

Если бы после диодного моста VD1 стояла сглаживающая ёмкость, то первый же управляющий импульс открыл бы тиристор, а т.к. напряжение всегда отличается от нуля, закрыть бы его было бы нечем.

Печатная плата (можно скачать) выполнена из фольгированного стеклотекстолита в одностороннем варианте.

Для контроля процесса заряда АКБ необходима стрелочная измерительная головка с соответствующим шунтом на ток 10-15 А. Цифровые индикаторы могут давать в таком режиме измерения погрешность. Тиристор VS1 вместе с платой крепят на радиаторе площадью 400 см2. При правильном монтаже и исправных деталях схема в наладке не нуждается.

Подведем итоги

Итак, мы выяснили, что схем, позволяющих регулировать параметры зарядки аккумуляторной батареи, немало. Сложные и простые, с широким функционалом и просто стабилизаторы – выбирать есть из чего. Ну а тем, кого не удовлетворила, надо признать, довольно скромная подборка конструкций, можно рекомендовать статью «как сделать зарядное устройство для автомобильного аккумулятора своими руками» и несколько роликов по теме.

Простое зарядное устройство

Зарядное устройство из готовых узлов

Простой регулируемый блок питания 0,8-34 В, до 10 А на LM317 с транзистором, схема, пояснение работы.

В этой статье предлагаю разобрать весьма неплохой регулируемый трансформаторный блок питания, линейный стабилизатор которого собран на базе микросхемы LM317. Данный блок питания, при использовании именно таких электронных компонентов, что нарисованы на схеме, способен обеспечить максимальное выходное напряжение до 34.5 вольт. Это напряжение ограничено самой микросхемой линейного стабилизатора напряжения, а именно максимальное выходное напряжение на LM137 это 36 вольт, ну и минус около 0,6-1.5 вольта, которые осядут на база-эмиттерном переходе транзистора. Максимальный ток у блока питания может быть до 10 ампер, но при определенных условиях, о которых будет сказано ниже в этой статье. Коэффициент пульсаций у этого БП равен где-то 0,1%.

Схема регулируемого блока питания на 0,8-36 В, до 10 А на LM317 с транзистором

Перечень электронных компонентов, что используются в этой схеме:

Tr1 — трансформатор на 26 вольт и выходной ток до 10 ампер (280 Вт и более)
VD1 — диоды или мост на ток более 10 А и обратное напряжение более 40 В
D1 — микросхема линейного стабилизатора типа LM317, LM338, LM350
VT1 — биполярный транзистор типа КТ819, КТ829 и аналогичные
R1 — 5 кОм
R2, R3 — 240 Ом
R4 — 3-10 кОм
R * — от 1 кОм до 5 кОм подбирается под нужное выходное напряжение
C1 — 5000-10000 мкф и напряжение больше рабочего напряжения
C2 — 10 мкф
C3 — 470 мкф

Сразу стоит заметить для новичков, что это блок питания с линейным стабилизатором напряжения. То есть, при регулировке выходного напряжения все лишнее напряжение просто преобразуется в тепло. Оно оседает на регулируемых силовых компонентах, а именно на микросхеме стабилизатора D1 и силовом биполярном транзисторе VT1. И именно транзистор берет на себя всю лишнюю электрическую энергию и преобразует его просто в тепло, через собственный нагрев корпуса. А это значит, что чем больше тока будет потреблять нагрузка и чем меньше напряжения мы установим на выходе данного блока питания, тем меньше КПД будет этого блока питания. При минимальном напряжении на выходе и максимальном токе этот блок питания становится больше похож на электрический обогреватель. Причем в этом режиме он менее всего экономичен. К сожалению это проблема абсолютно всех линейных стабилизаторов.

Но эту проблему в значительной степени можно исправить если использовать трансформатор с несколькими выходными обмотками. То есть, мы от вторичной обмотки делаем выводы с шагом допустим 5 вольт. Находим подходящий переключатель, который нам будет подключать нужный вывод вторичной обмотки с наиболее подходящим напряжением, что мы будем использовать в конкретном случае, для конкретной нагрузки. Такой вариант переключения напряжений, что далее подается на схему стабилизатора напряжения, делает схему блока питания гораздо экономичнее, значительно повышая ее общий коэффициент полезного действия.

Теперь что касается самих рабочих компонентов этой схемы. Чтобы на выходе получить максимальное напряжение до 34.5 вольт и силу тока до 10 ампер понадобится силовой трансформатор мощностью не менее 280 Вт. Почему именно такая минимальная мощность должна быть у трансформатора. Дело в том, что максимальное входное напряжение для микросхемы D1 (LM317) 37 вольт. Но стоит учесть, что это амплитудное значение напряжения, которое будет у нас на выходе диодного моста при наличии сглаживающего конденсатора C1. Как известно, напряжение на выходе трансформатора имеет действующее значение, которое в 1,41 раза меньше амплитудного. То есть, мы 37 вольт делим на 1,41 и получаем около 26 вольт действующего напряжение, которое должна обеспечить нам вторичная обмотка имеющегося трансформатора. Следовательно, 26 вольт умножаем на 10 ампер и получаем мощность 260 Вт, ну и добавим небольшой запас по мощности с учетом различных потерь. И в итоге нам и нужен трансформатор с мощностью не менее 280 Вт. Ну, и как я ранее заметил, хорошо, чтобы он имел отводы от вторичной обмотки с шагом примерно 3-5 вольт, для повышения КПД этой схемы блока питания. Трансформатор лучше использовать тороидальный, он более эффективный, чем другие типы.

Поскольку мы будем работать с током до 10 ампер, то диодный пост также нужен с прямым током не менее 10 А, а лучше брать с запасом где-то 15-20 А. В схеме сглаживающий конденсатор C1 имеет емкость 5000 мкф, хотя лучше все же поставить микрофарад так на 10 000, сглаживание импульсов будет только лучше. Его напряжение должно быть более 35 вольт.

В схеме использована микросхема типа LM317, максимальный ток которой равен 1,5 ампер (если это оригинал, а не Китайская копия). Если у вас есть аналогичные микросхемы стабилизаторов напряжения типа LM338, LM350, рассчитанные на больший ток, то можно в схему поставить и их. Поскольку LM317 может выдержать ток всего лишь до 1,5 А, а мы планируем работать с током до 10 А, то в схему добавлен усилитель тока в виде биполярного транзистора КТ819 или КТ829 (составной). Чтобы убрать дополнительные пульсации напряжения, возникающие на выходе транзистора, в схеме предусмотрена отрицательная обратная связь в виде резистора R3. Именно этот резистор дает сигнал микросхеме, которая делает работу транзистора более стабильной. Резисторы R1 и R2 нужны для нормальной работы самой микросхемы линейного стабилизатора LM317. Напряжение на выходе задается сопротивлением R1. Резистор R4 служит небольшой нагрузкой на выходе блока питания, и также он способствует разряду выходного конденсатора после выключения схемы.

На схеме параллельно резистору R1 можно увидеть еще один резистор, отмеченный звездочкой. Он нужен, чтобы убрать с регулирующего напряжения резистора R1 так называемую мертвую зону. То есть, при работе с более низкими напряжениями (если вы сделаете блок питания на другое, более низкое напряжение) сопротивления резистора в 5 кОм будет много, и на нем появляется участок, при котором напряжение никак не меняется на выходе блока питания. Следовательно, поставив параллельно регулируемому резистору еще одни резистор с подходящим сопротивлением мы уменьшаем его величину и убираем эту самую мертвую зону.

В целом схема полностью рабочая и вполне способна выдавать ток до 10 ампер при условии, что вы будете использовать трансформатор, у которого будут дополнительные отводы на вторичной обмотке. Это нужно, чтобы уменьшить выделение тепла на биполярном транзисторе до минимума. Если же вы попытаетесь делать регулировку выходного напряжения только за счет транзистора, то даже его максимального рабочего тока не хватит, чтобы нормально рассеять все тепло, что на нем оседает. В этом случае он просто у вас сгорит. Чтобы облегчить нормальную работу биполярного транзистора параллельно ему можно поставить еще несколько штук таких же транзисторов, что распределит выделяемое тепло уже по нескольким элементам. Ну, и обязательно, как микросхема стабилизатора LM317, так и транзистор КТ819 должны быть установлены на радиатор с подходящими размерами. Включать схему без охлаждающего радиатора не рекомендуется, поскольку силовые элементы очень быстро выйдут из строя из-за перегрева.

Если собрать эту схему с учетом всех замечаний и рекомендаций, что были в этой статье, то данный лабораторный блок питания с регулировкой выходного напряжения будет работать вполне хорошо и надежно. Эта схема уже мной собиралась и ее работа была полностью проверена.

НИЖЕ ВИДЕО ПО ЭТОЙ ТЕМЕ

Как сделать простой трансформаторный блок питания с регулировкой выходного напряжения от 0,8 до 36 вольт (ток до 10 А) на LM317

Регулировка тока и напряжения на 10 ампер своими руками

Простой и действительно дешёвый источник питания. В качестве управляющей части используется регулируемый стабилизатор LM317. Силовая часть выполнена на трёх npn транзисторах TIP41C (2N3055).

Простой регулируемый источник питания 1,2-30В 10А на LM317

Источником напряжения для данной схемы является трансформатор 25-30В 30A с диодным мостом рассчитанным на данный ток.
Выходные транзисторы можно использовать любые, необходимой мощности в корпусе TO220 (КТ819Г, TIP132C, TIP41C и т.д.) или три внешних транзистора в корпусе TO-3 (КТ819ГМ, 2N3055 и т.д.)
КТ819Г — максимально допустимый ток 10А, максимальная рассеиваемая мощность 60Вт;
TIP41C — максимально допустимый ток 6А, максимальная рассеиваемая мощность 65Вт;
TIP132C — максимально допустимый ток 8А, максимальная рассеиваемая мощность 70Вт;
КТ819ГМ — максимально допустимый ток 15А, максимальная рассеиваемая мощность 100Вт;
2N3055 — максимально допустимый ток 15А, максимальная рассеиваемая мощность 115Вт;

Транзисторы обязательно должны быть установлены на подходящий радиатор, желательно с кулером. С1, С2, С8 — электролиты необходимы для фильтрации помех, вольтаж 50В. Резисторы 0,1 Ом должны быть рассчитаны на мощность 5 Вт. Pad1 и Pad2 используются для подключения амперметра, если вы не планируете его использование, то просто соедините Pad1 и Pad2 между собой.

Печатная плата выполненная в EAGLE:

Простой регулируемый источник питания 1,2-30В 10А на LM317

Готовая плата с установленными компонентами:

Простой регулируемый источник питания 1,2-30В 10А на LM317

Удачи при сборке! И не путайте полярность электролитов — громко хлопают

Скачать схему и печатную плату в EAGLE: 1-30v-10a-power-supply.zip [76,66 Kb] (cкачиваний: 11901)
Вольный перевод от Tonich, специально для Radioaktiv.ru
Источник на английском языке

Регулировка тока и напряжения на 10 ампер своими руками

Полезная информация о ресурсах рунета

TEHNODOKA.RU
Техническая документация
сайт создан для оказания помощи в поисках документации по различным устройствам бытового и промышленного назначения

Блоки питания, зарядные устройства
характеристики ««

  • БП рег.2-30в, Iн до 10А
  • БП, ЗУ на основе конденсатора
  • Базовые схемы выпрямителей
  • Источники опорного напряжения, стабилизация
  • Генераторы стабильного тока
  • Линейные стабилизаторы на дискретных элементах
  • Линейные стабилизаторы на интегральных схемах
  • Применение микросхемных стабилизаторов серии 142, К142, КР142
  • Разрядное устройство для АКБ. djvu(170КБ)
  • Стабилизатор из лабораторного автотрансформатора, Кольцов. djvu(164КБ)
  • Электропитание, Рудометов. djvu(291КБ)

Блок питания регулируемый от 2 до 30в, Iн до 10А

Трансформатор, диоды диодного моста должны соответствовать току применяемой в будущем нагрузке(10А). Диоды, транзисторы V1, V2, V3 обязательно крепить на радиаторе. Сопротивление R5 выполняет роль ограничения по току -ставить не обязательно, если вам это ограничение не нужно.
В БП предусмотрен режим работы с защитой от КЗ(очень удобен при ремонте РА), для этого тумблер Т1 должен быть включён как указано на схеме(верхнее положение), в этом случае работает только микросхема LM317T, соответственно ток нагрузки уменьшается до 1,5А.
Тумблером Т2 выбираем режим показаний измерительной головки, ток или напряжение.
Шунтом подбираем предел измерения головки по току, а сопротивлением R6 по напряжению.

На сайте имеется ещё следующая информация:

РЕКЛАМА:

# Посещая рекламные объявления — Вы выражаете благодарность создателям сайта 🙂

Простой и мощный регулятор 55В 20А без ШИМ

Простой и мощный регулятор 55В 20А без ШИМ

Очень простой и мощный регулятор без ШИМ и микросхем можно собрать своими руками на транзисторах. Данное устройство подойдет для регулировки постоянного тока до 20 Ампер при напряжении до 55 Вольт. Такую схему можно с успехом использовать в зарядниках, регуляторах нитей накала и тп.

Детали:

  • Транзистор IRF3205 — 4 шт. — http://alii.pub/68qqw8
  • Транзистор IRFZ44N — http://alii.pub/5ct567
  • Стабилизатор L7812CV — http://alii.pub/68qr7p
  • Резисторы 10 кОм, 22 кОм — http://alii.pub/5h6ouv
  • Переменный резистор 10 кОм — 2 шт. — http://alii.pub/5o27v2
  • Вентилятор DC 12 В 0,07 А — http://alii.pub/68qraf
  • Терморезистор NTC10K — http://alii.pub/68qqvn

Схема строится на основе 4-х N-канальных силовых КМОП-транзисторов HEXFET с обратным диодом, имеющих низкое сопротивление в активном состоянии и высокое быстродействие при переключении.

Простой и мощный регулятор 55В 20А без ШИМ

В нее можно установить lm317, IRF3205N либо IRF1405N (если позволяют финансы). Эти полевики имеют большую мощность рассеивания и повышенную рабочую температуру перехода (до 175 градусов Цельсия), поэтому для нормальной работы устройства необходимо заранее позаботиться о хорошем радиаторе.

Простой и мощный регулятор 55В 20А без ШИМ

Найдя подходящую пластину для охлаждения, крепим на ней «мосфеты» (можно использовать термопасту). Для удобства дальнейшей сборки лучше разместить их поблизости друг от друга.

Простой и мощный регулятор 55В 20А без ШИМ

Далее на истоках транзисторов подпаиваем буферные нагрузки. Для этого можно использовать готовые резисторы по 11 Вт 0,1 Ом или самостоятельно намотать катушки толстым проводом, как показано на картинке.

Простой и мощный регулятор 55В 20А без ШИМ

Другие концы нагрузок соединяем между собой общей шиной.

Простой и мощный регулятор 55В 20А без ШИМ

Аналогично соединяем отдельными шинами стоки и затворы полевиков. При этом между истоком и затвором первого транзистора помещаем резистор на 22 кОм. На край радиаторной подложки выводим два провода: один красный от стоков транзисторов (подключается напрямую), второй синий от их затворов (подключается через резистор 10 кОм и потенциометр WL 10 K). Их можно приклеить к радиатору суперклеем. Шину от стоков подпаиваем на левую ножку (вход) переменного резистора, от затворов через сопротивление – на центральную (выход). Провод с его правой ножки соединяем с синим отводом. Сам потенциометр также можно приклеить к радиатору, но изолируя его корпус от пластины.

Простой и мощный регулятор 55В 20А без ШИМ

Теперь крепим к радиатору стабилизатор напряжения на 12 В (L7812CV) и еще один полевой транзистор (IRFZ44N). Оба компонента тщательно изолируем от подложки (лучше несколько прокладок!).

Простой и мощный регулятор 55В 20А без ШИМ

На полевик подпаиваем подстроечный резистор на 10 кОм (W103). Его вторую и третью ножку крепим к затвору транзистора, первую – к истоку.

Простой и мощный регулятор 55В 20А без ШИМ

Между затвором и стоком IRFZ44N ставим терморезистор 10 кОм. Потом его можно «уложить на корпус одного из «мосфетов».

Простой и мощный регулятор 55В 20А без ШИМ

Синюю шину соединяем с «землей» (в данном случае средней ножкой) стабилизатора L7812CV и истоком IRFZ44N. Красную шину подпаиваем ко входу L7812CV. Далее берем кулер на 12 В (к примеру, DC 12 V 0,07 A) и подключаем его красный провод к выходу стабилизатора L7812CV, черный – к стоку IRFZ44N. Подав на красную и синюю шины питание (12-25 В) убеждаемся, что вентилятор работает, причем скорость его вращения регулируется резистором W103.

Простой и мощный регулятор 55В 20А без ШИМ

Простой и мощный регулятор 55В 20А без ШИМ

Крепим вентилятор к краю основания радиатора, а между синей шиной и шиной истоков IRF3205N включаем «нагрузку» (пять, соединенных параллельно, автомобильных лампочек на 12 В / 21 Вт).

Простой и мощный регулятор 55В 20А без ШИМ

Подав на красную и синюю шины питание 22 В видим, что лампочки загорелись. Регулировать их яркость можно потенциометром.

Простой и мощный регулятор 55В 20А без ШИМ

При увеличении мощности включается вентилятор. Когда 12 В уменьшается до положения короткого замыкания, вентилятор останавливается.

Простой и мощный регулятор 55В 20А без ШИМ

Чтобы не горели полевики при длительной работе устройства, можно добавить резистор 330-500 Ом между потенциометром и отрицательной линией. Также можно поставить простенькую защиту на реле от короткого замыкания.

Оцените статью
TutShema
Добавить комментарий